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of single cells

Marie Doumic∗ Adéläıde Olivier† Lydia Robert

July 11, 2019

Abstract

Is it possible to estimate the dependence of a growing and dividing population on a given
trait in the case where this trait is not directly accessible by experimental measurements, but
making use of measurements of another variable? This article adresses this general question
for a very recent and popular model describing bacterial growth, the so-called incremental or
adder model. In this model, the division rate depends on the increment of size between birth and
division, whereas the most accessible trait is the size itself. We prove that estimating the division
rate from size measurements is possible, we state a reconstruction formula in a deterministic and
then in a statistical setting, and solve numerically the problem on simulated and experimental
data. Though this represents a severely ill-posed inverse problem, our numerical results prove
to be satisfactory.

Introduction

The field of structured population equations has attracted much interest for more than sixty years,
leading to substantial progress in their mathematical understanding. These equations describe a
population dynamics in terms of well-chosen traits, which offer a relevant characterization of the
individual behaviour. More recently, thanks to considerable progress in experimental measurements,
the question of estimating the parameters from single-cell measurements also attracts a growing
interest, since it finally allows comparing models model and data, and thus investigating which
variable is biologically relevant as a structuring variable - see for instance [30] for the application
to age-structured and size-structured models for bacterial growth.

However, the so-called structuring variable of the model may be quite abstract (”maturity”,
”satiety”...), and/or not directly measurable, whereas the quantities that are effectively measured
may be linked to the structuring one in an unknown or intricate manner. As an illustration of
this idea, we can cite the interesting series of articles by H.T. Banks and co-authors, concerning
the estimation of the division rate in data sets where the measured quantity was the fluorescence
(carboxyfluorescein succinimidyl ester (CFSE)) of the cells. Initially, they designed a fluorescence-
structured model [2], but then the estimated division rates appeared difficult to interpret biolog-
ically. Indeed, the fluorescence was artificially added to the cells, thus it was not structuring : the
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difficulty was to find out which variable was really structuring, and how it was related to the mea-
sured quantities. This was done successfully by this group by building a model structured in both
the true structuring variable - the so-called ”cyton model” - and in the label, i.e. the measured
quantity [3].

From such considerations we can formulate a general question: is it possible to estimate the
dependence of a population on a given variable, which is not experimentally measurable, by taking
advantage of the measurement of another variable?

In this article, we address this question in a specific setting, namely the growth and division of
bacteria. Recently, it was evidenced that for several types of bacteria and yeast cells, the ”increment
of size”, i.e. the increase of size of a cell between its birth and its division, provides a better-fitted
model than age- or size-structured models [9, 17, 19, 33]. These studies were based on data obtained
by time-lapse microscopy and consisting in measurements of single-cells growing and dividing. Such
data allows estimating for each cell its lifetime, its size at birth and at division, and its size-evolution
through time. We refer to this kind of data as ”measurements of dividing cells”.

Comparison of models and data, such as performed in the above-mentioned studies, requires
time-lapse microscopy data obtained in finely controlled conditions ensuring stable, steady-state
growth. In addition, precise image analysis is also required to obtain accurate size measurements
of numerous single-cells. Obtaining such data is therefore not straight-forward and can be time-
consuming. This can represent an important limitation, for instance for screening strategies where
data has to be obtained in many different bacterial strains or experimental conditions. Here we
consider the case of data consisting only in instantaneous size measurements of single-cells in a
population. Such measurements can be more easily obtained, by microscopy snapshots, or using a
flow cytometer or a coulter counter which both allow high-throughput acquisition.

From such data, the question of estimating the division rate in a size-structured model has
been studied in a series of papers, in a deterministic [6, 16, 29] or statistical [15] setting. The
rates of convergence for the estimates have been proved to correspond to an inverse problem of
degree of ill-posedness one, hence worse than the rate of convergence obtained from measurements
of dividing cells (corresponding, in a deterministic setting, to a degree of ill-posedness zero, see [14]
for a discussion of this heuristics).

In view of the new biological evidence in favour of the incremental model [8, 10, 17, 31, 33],
this article is devoted to the same question as in [29] and following articles, but for the incremental
model: Can we estimate an increment-dependent division rate from a measurement of the size-
distribution of cells? Though formulated in a similar way, this new problem is much more complex,
since the observed variable (instantaneous size) is not the structuring variable (size increment).

Let us now give a mathematical definition of the problem under study. First of all, we recall
the increment-structured model.

The incremental model for bacterial growth

Let us denote u(t, a, x) the density of cells at time t of size x which have an increment a = x − y
between their actual size x and their size at birth y. We denote this increment a as it may be
viewed as a kind of age, since it increases monotonically and starts at zero at birth - but an age
that would have a link with the size: if g(x) denotes the growth rate of a cell of size x, its ”aging
rate” is also g(x). We have the following increment-and-size model, as proposed in Taheri-Araghi
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et al. [33] for bacteria, and also designed in a different context by Hall et al. in [22] :

∂

∂t
u(t, a, x) +

∂

∂a
(g(x)u(t, a, x)) +

∂

∂x
(g(x)u(t, a, x)) + g(x)B(a, x)u(t, a, x) = 0, (1)

g(x)u(t, 0, x) = 4

∞∫
0

g(2x)B(a, 2x)u(t, a, 2x)da, g(0)u(t, a, 0) = 0, u(0, a, x) = uin(a, x). (2)

The instantaneous probability to divide is, as in [22], g(x)B(a, x) for a cell of size-increment a and
size x. From a modelling point of view, writing the division rate as the product of g and a function
B allows us to interpret B as the instantaneous probability to divide in a unit of growth instead of
a unit of time. This is coherent with the fact that the cell may ignore the ”time” and use its growth
as a clock. As will be explained below, in the case proposed by Taheri-Araghi et al. [33] where
B(a, x) = B(a), this is also coherent with a much simpler and more natural underlying piecewise
deterministic Markov process (PDMP), where the time of division is a simple renewal process of
jump rate B(a), so that the increments of dividing cells are mutually independent and distributed

according to the density fB(a) = B(a) exp
(
−

a∫
0

B(s)ds
)
.

Asymptotic behaviour of the incremental model

Under suitable assumptions on the coefficients g and B (for instance the theorem 3.7. of [11] may be
adapted and provides a proof for smooth growth and division rates, and most recently [20] studies
the case g(x) = x, with fairly general division rate B), we have a dominant eigentriplet (λ,U, φ)
unique solution of

λU(a, x) +
∂

∂a
(g(x)U(a, x)) +

∂

∂x
(g(x)U(a, x)) + g(x)B(a)U(a, x) = 0, (3)

g(x)U(0, x) = 4

∞∫
0

g(2x)B(a)U(a, 2x)da, g(0)U(a, 0) = 0, (4)

λφ(a, x)− g(x)
∂

∂a
φ(a, x)− g(x)

∂

∂x
φ(a, x) + g(x)B(a)φ(a, x) = 2g(x)B(a)φ(0,

x

2
), (5)

λ > 0, φ ≥ 0, U ≥ 0,

∫∫
U(a, x)dadx = 1,

∫∫
U(a, x)φ(a, x)dadx = 1. (6)

Moreover, using for instance the general relative entropy inequalities, we have under some more
assumptions (theorem 4.5. in [11])∫∫

|u(t, a, x)e−λt −
(∫∫

uin(a, x)φ(a, x)dadx
)
U(a, x)|φ(a, x)dadx→t→∞ 0.

Let us however notice that under the assumption made in [33], namely that g(x) = x, this precise
asymptotic behaviour fails to happen and a cyclic behaviour is observed, as already proved for
the growth-fragmentation equation [5, 21]. This corresponds to an idealised case; in reality, there
is always some variability, leading to a growth slightly different from perfectly exponential and
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to a division into two slightly unequal parts, see for instance [30]. From a numerical perspective,
this slight ”imperfection” has to be included, else the cyclic behaviour will perturb the results, see
Section 3 for more details.

Mathematical formulation of the inverse problem

From now on, we denote U by UB to underline the dependence in the unknown division rate.
Let us assume that we measure the steady size-distribution, which is modeled by the marginal

UB,x(x) =
∞∫
0

UB(a, x)da. Such a measurement may be done for instance via a sample of n cells

for which we measure their sizes (x1, · · · , xn), assumed to be the realization of an i.i.d. sample
distributed along UB,x, in the spirit of Doumic, Hoffmann, Reynaud-Bouret and Rivoirard [15].

We also assume division into two equally-sized daughters, as modelled in (1), and that g(x) and
λ are already known from an independent measurement or previous knowledge. Typically, λ may
be measured through the time evolution of the total mass, which is classical in biology [27], and
under the consensual assumption of exponential growth g(x) = τx, we have λ = τ. In this article,
we do not consider the noise in the measurement of λ and g, which could be included in future
work.

The problem we want to solve in order to have a fully determined model is:

Given
(
λ, g(·)

)
and given measurements of x→ UB,x(x),

can we estimate the division rate a→ B(a)?

In Section 1, we provide an explicit though intricate formula for the estimation of B from
UB, without taking the noise into account. We then provide a statistical estimator in Section 2,
numerically implemented in Section 3 both on simulated data and real data. These numerical results
provides us with clues concerning directions for future work, which we comment in the discussion
(Section 4).

1 Reconstruction formula in a deterministic setting

Before providing the reconstruction formula for B, let us introduce some useful notation. As stan-
dard in the field of renewal processes, we introduce the probability distribution function fB and
the survival function SB of the increments of dividing cells:

fB(a) := B(a) exp(−
a∫

0

B(s))ds, SB(a) :=

∞∫
a

fB(s)ds = e
−
a∫
0

B(s)ds
. (7)

Symetrically, we introduce the size-distribution of dividing cells, that we denote LB

LB(x) =

x∫
0

g(x)B(a)UB(a, x)da. (8)

As shown below, the function LB is an important intermediate to formulate B from the measure-
ment of UB,x. Though we cannot write it as an explicit function of UB,x, it can be obtained in a
similar way as the distribution of dividing cells for the size-structured equation, see [16].
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Lemma 1. Let g be a positive continuous function on (0,∞), λ ≥ 0, and UB,x a positive function
on (0,∞) such that λUB,x+ d

dx(gUB,x) ∈ L2(xpdx) with p ∈ [0,∞)\{3}. Then there exists a unique
solution LB ∈ L2(xpdx) such that

λUB,x(x) +
d

dx
(gUB,x

)
(x) = 4LB(2x)− LB(x), (9)

and there exists Cp > 0 such that

‖LB‖L2(xpdx) ≤ Cp‖λUB,x +
d

dx
(gUB,x)‖L2(xpdx).

If moreover there exists UB ∈W 1,1((0,∞)×(0,∞)) solution of the system (3)-(4) such that UB,x =
∞∫
0

UB(a, x)da, then this unique solution coincides with the size-distribution of dividing cells defined

by (8).

Proof. The existence, uniqueness and continuity part directly follows from [16] Proposition A.1.
If UB is solution to (3)-(4) , we integrate Equation (3) along the increment a, use the boundary
condition (4), and obtain Equation (9) with LB defined by (8). �

With this lemma, we see that the estimation of LB from UB,x is an inverse problem of degree
of ill-posedness 1 when stated in a space L2(xpdx) (degree 3/2 in the framework of a statistical
noise [15, 28]), as already known from [29]. Interestingly, we remark that this would remain true
also if the division rate would depend on other structuring variables, as soon as the growth rate
and the division kernel are known: this allows one to reconstruct the size distribution of dividing
cells from the size distribution of all cells, in any framework.

We are now ready to formulate B in terms of UB,x, LB, and the parameters λ and g. This is
done in the next proposition.

In all what follows, we denote by f∗ the Fourier transform of a function f :

f∗(ξ) =

+∞∫
−∞

f(x)eixξdx.

Proposition 1. Let B and g be such that there exists a unique positive eigentriplet (λ,UB, φB)
solution of the eigenproblem (3)–(6). Let us furthermore assume λUB,x + d

dx(gUB,x) ∈ L2(xpdx)
and define LB as the unique solution of Equation (9) given by Lemma 1.

We define fB and SB by (7). We define two intermediate functions NB and GB by

GB(y) = 4eλG(y)LB(2y), NB(y) = g(y)eλG(y)UB,x(y), (10)

with G(x) an anti-derivative of 1/g(x). We assume that N∗B and G∗B are the well-defined Fourier
transforms of NB and GB.

We have the following reconstruction formula for B in terms of λ, UB,x and g :

B(a) =
fB(a)

SB(a)
=

+∞∫
−∞

(
1 + iξ

N∗B(ξ)

G∗B(ξ)

)
e−iaξdξ

+∞∫
a

(
+∞∫
−∞

(
1 + iξ

N∗B(ξ)

G∗B(ξ)

)
e−isξdξ

)
ds

, (11)
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provided that all the inverse Fourier transforms are well defined and that neither G∗B nor the de-
nominator vanishes.

Corollary 1. Under the assumptions of Proposition 1, if g(x) = τx we have λ = τ , GB(y) =
4yLB(2y) and NB(y) = τy2UB,x(y).

Remark 1. At this stage, the reconstruction formula is formal: to give it a rigorous meaning and
ensure its validity, we would have to prove that all the quantities are well-defined, in particular
that the Fourier transform G∗B never vanishes. This requires a full study per se, and is beyond the
scope of this work: in another case study, this has been done for instance for the estimation of
the fragmentation kernel of the growth-fragmentation equation in the article [13], using the Cauchy
integral to prove that a Mellin transform never vanishes, proof adapted to another case in [23]. For
these two cases however, the proofs used strongly an explicit formulation of the solution with the use
of Mellin or Fourier transforms, thanks to the fact that B was a power law in [13], and constant
in [23]. We let it for future work.

Proof. The aim is to use the classical formula B(a) = fB(a)
SB(a) , and to find a formulation for fB in

terms of UB,x, then express SB as its integral.

First step. Formulating UB,x in terms of λ, g, LB and B.
As done for the study of the eigenvalue problem carried out for instance in [11, 20], we can

classically obtain a formulation of UB(a, x) in terms of LB. We first write Equation (4) under the
form

g(x)UB(0, x) = 4LB(2x), (12)

and then use the method of characteristics to solve (3) and (12). We define an intermediate function
C(a, x) = g(x)UB(a, x) solution of

∂

∂a
C(a, x) +

∂

∂x
C(a, x) +

( λ

g(x)
+B(a)

)
C(a, x) = 0,

we define C̃(a, x) = C(a, x+ a)e

a∫
0

(
λ

g(x+s)
+B(s)

)
ds
, which satisfies ∂

∂a C̃(a, x) = 0, so that

C(a, x+ a)e

a∫
0

(
λ

g(x+s)
+B(s)

)
ds

= C(0, x),

which gives for UB:

g(y)UB(a, y) = g(y−a)UB(0, y−a)e
−
a∫
0

(
λ

g(y−a+s)+B(s)
)
ds

= 4LB
(
2(y−a)

)
e
−
a∫
0

(
λ

g(y−a+s)+B(s)
)
ds
, (13)

using (12) for the last equality. We integrate the equation (13) in a and obtain

g(y)UB,x(y) =

y∫
0

4LB
(
2(y − a)

)
e
−
a∫
0

(
λ

g(y−a+s)+B(s)
)
ds
da.
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Second step. Formulating two deconvolution problems for SB and fB.
Denoting by G an antiderivative of 1/g, and defining an intermediate function NB, the previous

formula is equivalent to

NB(y) := g(y)eλG(y)UB,x(y) = 4

y∫
0

eλG(y−a)LB
(
2(y − a)

)
e
−
a∫
0

B(s)ds
da. (14)

We define GB by (10), thus Equation (14) is nothing but

NB(x) =
[
GB ? SB

]
(x). (15)

This is a deconvolution problem, where SB is the unknown. If we find estimators of NB and GB,
we can reconstruct SB. Since fB = − d

daSB, integrating by parts we can transform (15) into a
deconvolution problem for fB.

Third step. Solution of the deconvolution problems by Fourier transform.
Extending all the functions on R− by zero (with a slight abuse of notation, we keep the same

notation for the function and for its extension), we rewrite (15) in the Fourier domain, and for
ξ ∈ R such that G∗B(ξ) 6= 0:

N∗B = G∗BS
∗
B =⇒ S∗B(ξ) =

N∗B
G∗B

(ξ).

Since fB is a probability density for which we assume continuity around 0 and fB(0 = 0, we can
extend it continuously by 0 on R−, we have f∗B(0) = 1, and and since fB = −dSB

da for a > 0 we get

f∗B = 1 + iξS∗B = 1 + iξ
N∗B(ξ)

G∗B(ξ)
,

for ξ ∈ R such that G∗B(ξ) 6= 0. The 1 expresses the Fourier transform of the discontinuity of the

prolongation of SB in 0, since SB(0+) = 1; however, this term should be compensated by iξ
N∗B(ξ)

G∗B(ξ) ,

since we have assumed fB(0) = 0.

Fourth step. Inverse Fourier transforms. fB and SB are given by the formulae

fB(a) =
1

2π

+∞∫
−∞

(
1 + iξ

N∗B(ξ)

G∗B(ξ)

)
e−iaξdξ and SB(a) =

+∞∫
a

fB(s)ds,

provided all these quantities exist, and we have proved the formula (11). �

Remark 2. An alternative formula for B(a) would be obtained using a direct formula for the
survival function,

SB(a) =
1

2π

+∞∫
−∞

N∗B
G∗B

(ξ)e−iaξdξ.
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2 Statistical setting: estimation procedure

Let us assume that we have a sample X1, . . . , Xn independent and identically distributed according
to UB,x. This idealizes the case where, for instance, a picture of all individuals at a given time is
taken, and their sizes experimentally measured. We give here a procedure to estimate B from such
a sample.

2.1 Estimation of GB

Step 1. Estimation of UB,x by a kernel estimator

Ûn,x(y) =
1

n

n∑
j=1

Kh1(y −Xj)

with Kh1(·) = h−1
1 K(h−1

1 ·). Estimation of D(y) =
(
gUB,x

)′
(y) by

D̂n(y) =
1

n

n∑
j=1

g(Xj)K
′
h2(y −Xj).

For the choice of the regularization parameters h1 = h1,n and h2 = h2,n, see Section 3.

Step 2. Inversion of (9) replacing the left-hand side by λÛn,x(y) + D̂n(y). We obtain L̂n(y) an
estimator of LB(y). For this step, we follow [6], and concatenate the inverse given in Lemma 1 in

L2(dx) for x ≤ x̄, that we denote L̂n,l(y), with the inverse in L2(x4dx), denoted L̂n,r(y), for x ≥ x̄,
for a given (to be determined numerically) x̄ > 0: we set

L̂n(y) = L̂n,l(y)1lx≤x̄ + L̂n,r(y)1lx>x̄.

Step 3. We deduce an estimator of GB(y) using its definition (10):

Ĝn(y) = 4eλG(y)L̂n(2y).

2.2 Estimation of the Fourier transforms G∗B and N∗B

Estimation of N∗B. Recall Equation (14) giving the definition of NB. Then

N∗B(ξ) =

∞∫
0

g(x)eλG(x)eixξUB,x(x)dx,

which can be estimated by

N̂∗n(ξ) =
1

n

n∑
j=1

g(Xj)e
λG(Xj)eiXjξ.

When growth is exponential i.e. in the specific case g(x) = τx, we have λ = τ and G(x) = ln(x)/τ .
Thus the previous formula simplifies into

N̂∗n(ξ) =
τ

n

n∑
j=1

(Xj)
2eiXjξ.
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Estimation of G∗B. We compute the Fourier transform of Ĝn(y) (see Section 3 for the practical

details). It gives us an estimator Ĝ∗n of G∗B(y).

2.3 Estimation of the Fourier transform f ∗B

We have an estimator of the Fourier transform of fB by

f̂∗n(ξ) = 1 + iξ
N̂∗n(ξ)

Ĝ∗n(ξ)
1Ωn(ξ)

with Ωn = {ξ ∈ R; |Ĝ∗n(ξ)| ≥ ξ}, with ξ = ξn a well-adapted threshold.

2.4 Inverse Fourier transforms to estimate SB and fB.

Estimators of fB and SB are

f̂n,h3(a) =
1

2π

1/h3∫
−1/h3

f̂∗n(ξ)e−iaξdξ and Ŝn,h3(a) =

∞∫
a

f̂n,h3(s)ds

with h3 = h3,n a parameter of regularization to be well-chosen (see Section 3).

2.5 Reconstruction of B.

Finally the division rate B can be estimated at a given point a by

B̂n,h(a) =
f̂n,h(a)

Ŝn,h(a) ∨$2

=

1/h∫
−1/h

(
1 + iξ N̂

∗
n(ξ)

Ĝ∗n(ξ)
1Ωn(ξ)

)
e−iaξdξ

+∞∫
s

( 1/h∫
−1/h

(
1 + iξ N̂

∗
n(ξ)

Ĝ∗n(ξ)
1Ωn(ξ)

)
e−isξdξ

)
ds ∨$

with $ = $n a well-adapted threshold.

Remark 3. Following Remark 2, an alternative estimator of B would be obtained using

Ŝn,h4(a) =
1

2π

1/h4∫
−1/h4

Ŝ∗n(ξ)e−iaξdξ where Ŝ∗n(ξ) =
N̂∗n

Ĝ∗n
(ξ)1Ωn(ξ)

with h4 = h4,n a regularization parameter to be well-chosen. Note that such a procedure would not
guarantee the decaying property of SB, or yet the fact that fB = −S′B, SB(0) = 1 and SB(∞) = 0.
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3 Numerical study

3.1 Numerical implementation

For a given estimator ĝ of a function g (with real or complex values), we evaluate ĝ on a regular
grid with mesh ∆t and compute the empirical error as

e =
‖ĝ − g‖2,∆t
‖g‖2,∆t

where ‖ · ‖2,∆t is the L2-discrete norm over the numerical sampling.

Choice of the regularization parameters

In the aboveseen formulae, we have distinguished five successive steps, and several regularization
parameters which need careful implementation: h1, h2 and x̄ for the estimation of LB; h3 for the
integration domain of the inverse Fourier transform; and the thresholds ξ and $ to avoid explosion
when the denominators vanish in the formulae. Each of the five steps have been tested separately,
and we discuss below practical ways to determine such regularization parameters.

• The parameter h1 is either automatically chosen by the kernel smoothing function ksdensity

of Matlab, or chosen via an adaptive method such as Goldenschluger and Lepski, or Penalized
Comparison to Overfitting (PCO) most recently introduced [26, 34]. Similarly for h2, we can
use an adaptive method or choose it a priori, in relation with h1 - for instance, if we have
the a priori that UB,x ∈ H1, the order of an optimal choice for h1 will be O(n−

1
3 ), for h2 it is

O(n−
1
5 ), so that we can choose a priori h2 = h

3
5
1 .

• To compute x̄, we refer to the previous studies [6, 30]. Since for any estimation ÛB,x ∈
H1((1+xp)dx)∩W 1,∞ with p > 3 the unique solution L̂0

B in L2(dx) to Equation (9) is also in

L1 ∩ L∞, which is not the case for the unique solution L̂
p
B in L2(xpdx), we keep the solution

in L2(xpdx) only for the right-hand tail of the distribution, which leads us to define x̄ as

x̄ := argminx≥x0max |L̂
p
B − L̂0

B|, x0
max := argmaxx≥0 L̂

0
B.

• The key parameter h3 is chosen in an oracle way, that is to say that we minimise in h the
criterion

e(h) =
‖f̂n,h − fB‖2,∆a
‖fB‖2,∆a

.

This oracle choice requires the knowledge of fB, which is impossible in practice, but our
aim here is to learn how well our procedure can do (in ideal conditions, when the tuning
parameters can be chosen perfectly). In practice we have set ξ = 0, since the regularization
by h3 suffices numerically. We chose $n = 1/n.

Use of the regularity properties of the functions

The protocol described in Section 2 does not guarantee important properties of the functions, such
that the positivity of fB and B, and

∫
fBda = 1. All these characteristics will be enforced in the

numerical study to improve qualitatively the results.
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3.2 Numerical results on simulated data

In order to evaluate the quality of the reconstruction and the influence of each step of the protocol,
we first studied separately each estimation necessary for the reconstruction of B. For the simula-
tions, growth is exponential with rate 1, g(x) = x, so that λB = 1. We choose for the division rate
B(a) = a2 for a ≥ 0. We thus immediately deduce formulae for the density fB and the survival
function SB. We compute numerically the Fourier transform f∗B. All Fourier and Inverse Fourier
transforms were computed by an integral using the same scheme as in [6] (see Technical aspects of
Section 4.1 in [6]).

Numerical solution for UB,x

To compute numerically the first eigenvector U solution of (3)–(6), we follow the classical first order
finite volume scheme proposed for instance in [7, 12] for similar equations, renormalize the solution
at each time step, and stop the iterations when the distribution has converged, the error between
two successive steps being smaller than the precision desired. An important point is to allow the
scheme to be slightly dissipative - which is the case by choosing a regular grid - contrarily to the
one proposed for instance in [5], which would give rise to an oscillatory behaviour.

The solution UB,x is computed in our framework (g(x) = x and B(a) = a2) with regular grids:
size ranges from 0 to 6 and increment ranges form 0 to 3 with meshes ∆x = ∆a = 6/500. We require
a precision of 0.01%. Besides the stationary distribution in size we compute the size-distribution of
dividing cells LB. By formula (10), we obtain numerically GB and NB. (And we compute numerically
the Fourier transforms G∗B and N∗B.)

Protocol 1 – Reconstruction of B when both UB,x and LB are given with highest
accuracy.

For the reconstruction of B we use directly the numerical and high-resolution solutions of UB,x and
LB of the previous step. The noise is thus limited to the numerical error, itself very limited thanks
to the high resolution of the grid and to the requirement of a very small error in the long-time
asymptotics.

See Figure 1 for the different steps of the protocol. See Figure 3 (red curves) and Tables 1 and 2
for results.

Protocol 2 – Reconstruction of B when UB,x is given with highest accuracy but LB is
unknown.

See Figure 2 for the different steps of the protocol. See Figure 3 (yellow curves) and Tables 1 and 2
for results.

Both of the Protocols 1 and 2 give a satisfactory reconstruction of the division rate B on the
range [0; 2], with an error around 8% (Table 2). The estimation deteriorates for an increment of size
higher than 2 since the probability for a cell to exceed this increment is less than 10%. Computing
the error on the wider range [0; 2.5], we surprisingly observe that Protocol 2 (with an error around
13%) gives a more robust estimation than Protocol 1, which includes fewer statistical unknowns
(error around 20%).

11



Coming back to the first steps (Table 1) we observe that Protocol 2 achieves errors below
5%, whereas Protocol 1 leads to 10% error for the reconstruction of the density fB. Is this due
to error compensation when computing the ratio in the reconstruction formula of Section 2.3?
Figure 3d shows that the reconstruction of the Fourier transform of the density is good in modulus
for frequency |ξ| < 5 for Protocol 2, whereas the reconstruction by Protocol 1 deteriorates from
smaller frequencies (around ξ = ±3). Both protocols underestimate the maximum of the density
fB, but this is amplified using Protocol 1. As a consequence of the bias in the estimation of the
density fB, we observe a bias in the estimation of the division rate B. It is slightly overestimated
for increments of size lower than 1 and underestimated beyond.

Protocol 3 – Reconstruction of B when UB,x is reconstructed from X1, . . . , Xn i.i.d. ∼
UB,x and LB is given with highest accuracy.

See Figure 4 for the different steps of the protocol. See Figures 5, 8 and 10 for results.

Protocol 4 – Reconstruction of B from X1, . . . , Xn i.i.d. ∼ UB,x.

See Figure 6 for the different steps of the protocol. See Figures 7, 8 and 10 for results.

Protocols 3 and 4 have been repeated M = 100 times for each tested n ranging from 500 to
50 000. This enables us to obtain empirical confidence intervals (CI) for the estimation of the division
rate B and for the different intermediate reconstructions. As expected the computed 95%-CI shrink
as n grows (Figure 8). The reconstruction of B is satisfactory on the range [0; 1.75] when n = 500,
and slightly beyond 2 when n = 50 000. We observe the same bias as the one already mentioned for
Protocols 1 and 2. It seems even amplified looking at the mean of the 100 reconstructions, to such
an extent that the true division rate B(a) = a2 is on the fringe of the 95%-CI when n = 50 000.

One can plot the mean error over the M = 100 reconstructions versus the sample size n in
log-log scale (Figure 10). Doing so linear curves are obtained and the extracted-slopes give us
the speeds in the decrease of the error (with respect to n) for our different reconstructions. The
speeds are surprisingly slightly better for Protocol 4 than for Protocol 3, which is in line with the
comparison of Protocols 1 and 2.

As regards Protocol 4, the speed for the estimation of UB,x is close to n−0.4, which is expected
(indeed (n0 + 1)/(2(n0 + 1) + 1) = 0.4 with n0 = 1 the order of a Gaussian kernel). For the
estimation of U

′
B,x we expect (n0 + 1)/(2(n0 + 1) + 2) ≈ 0.33 and we obtain worse (slope of −0.25).

The inversion step in order to obtain LB (and GB) does not deteriorate this speed hugely (slope
of −0.23). After the computation of the Fourier transform, the speed for the estimation of GB is
of the same order (slope of −0.25). For the estimation of NB we obtain the expected slope −0.5
which corresponds to a parametric speed in n−1/2. It is not possible to predict a priori the speed
of a quotient estimator, and we obtain a slope of −0.24 for the estimation of f∗B. We obtain a final
speed of n−0.16 for the estimation of B (for Protocol 4). This is much more difficult to interpret
these last speeds since the regularity of NB and GB comes in. We refer to the Discussion below
and to Johannes [25] for general results on the quality of density estimators in a deconvolution
problem when the ”noise” law is unknown, generalizing results such as Fan [18] when the ”noise”
law is known. See also the study of Belomestny and Goldenshluger [4] in the case of a multiplicative
measurement error leading to the use of Mellin transform techniques (instead of an additive error
leading to the use of Fourier transform ones).
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Last but not least we observe a saturation of the error for very large n (n ≥ 20 000 in Protocol 3
and n ≥ 30 000 in Protocol 4). Thus the slopes were computed taking into account this effect when
necessary (removing the last points).

3.3 Numerical results on experimental data

We now turn to experimental data of bacterial growth to test the method. In the corresponding
experiments cells are followed through time and the joint distribution of instantaneous size and
size increment is estimated, as well as the joint distribution of size and size increment of dividing
cells. This allows us to compare our results obtained through our indirect method with a direct
estimation of the division rate B(a) from kernel density estimation of fB(a) and SB(a).

The dataset we analysed comes from a single-cell experimental study on E. coli growth, per-
formed by Stewart et al. [32], and we used the data analysis performed in [30] (see Methods - data
analysis). Following the results of [30], we can assume here that all cells grow with approximately
the same growth rate g(x) = τx with τ = 0.0275min−1. Corollary 1 then states that we have
GB(y) = 4yLB(2y) and NB(y) = τy2UB,x(y).

The experimental sample contains n = 31, 333 measurements of cell sizes. We perform a kernel
density estimation with h1 = 0.125 on Figure 11a to display it (Step 1 of the estimation procedure,
Section 2.1).

The second step consists in the estimation L̂n of the size distribution of dividing cells LB,
through the numerical solution of Equation (9) (Step 2 of the procedure, Section 2.1). In our case
of a rich dataset, we also have access to a sample of nd = 1, 679 dividing cells, so that we can compare
our estimation with the kernel density estimation of this sample (done here with hd = 0.167): we

denote this estimate L̂hdnd , and both are displayed in Figure 11b. We see that this approximation is
relatively satisfactory, though far from being perfect. The distance between the two distributions
has two main reasons. First, the sample of dividing cells may be noisier than the sample of all
cells: since the measurement is done only on time intervals of 2min, there is an error due to the
size growth of the cell during these 2min. Second, the cells may not all grow at exactly the same
growth rate τ (see Figure S4 in [30]) so that Equation (9) is an approximation, see for instance [14]
for a more complete model including growth rate variability. However, we also note that this way
of computing the size distribution of cells remains valid even if the division rate would depend on
other variables, so that Equation (9) allows one to estimate the size distribution of dividing cells
from the measurement of a size sample, provided the approximation of homogeneous growth rate
is valid, and if this growth rate is measured independently.

For the following steps, we do not have a direct way to compare the Fourier transforms of the
intermediate functions GB and NB to directly measured quantities, but we can estimate fB (and

so SB =
∞∫
a
fB(s)ds and B = fB

SB
, as classically done for renewal processes) from the increment-and-

size experimental distribution of dividing cells. Let us recall that fB is not equal to the increment
distribution of dividing cells, due to the well known bias selection effect [24, 30] of keeping the two
daughter cells at each division step. However, for the specific case of a linear growth rate, we have
an easy relation between the increment-and-size distribution of dividing cells and fB. We notice
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that the function U1(a, x) := xU(a,x)∫∫
xU(a,x)dadx

≥ 0, is solution of the system

∂

∂a
(g(x)U1(a, x)) +

∂

∂x
(g(x)U(a, x)) + g(x)B(a)U1(a, x) = 0, (16)

g(x)U1(0, x) = 2

∞∫
0

g(2x)B(a)U1(a, 2x)da, g(0)U1(a, 0) = 0, (17)

U ≥ 0,

∫∫
U(a, x)dadx = 1, (18)

which defines the increment-and-size distribution of all cells in the conservative case, i.e. when only
one child is kept at each division. We thus have

fB(a) =

∫
τxB(a)U1(a, x)dx∫∫
τxB(a)U1(a, x)dadx

=

∫
x(xB(a)U(a, x))dx∫∫
x2B(a)U(a, x)dadx

,

and we notice that this formula is nothing but a weighted average of xB(a)U(a,x)∫∫
xB(a)U(a,x)dadx

, which is the

increment-and-size distribution of dividing cells taken in experimental conditions, that is, when the
two children are kept at each division (for a more detailed explanation on the links between the two
points of view, we refer to [14], Section 4.2). All these considerations provide us with the following
estimate of fB from the increment-and-size sample of dividing cells: let us denote (Aj , Xj)1≤j≤nd
the 2-dimensional sample of increment A and size X at division, that we assume to behave as if
(Aj , Xj) were independent identically distributed according to the probability law xB(a)U(a,x)∫∫

xB(a)U(a,x)dadx
:

we have

f̂B,nd(a) :=
1

nd

nd∑
j=1

Khd(a−Aj)Xj .

In Figure 12a we compare f̂B,n to a kernel density estimation of the increment distribution of

dividing cells; and finally in Figure 12b we compare our estimator B̂n to B̂nd =
f̂B,nd

∞∫
a
f̂B,nd (s)ds∨$2

. If the

results may be viewed as qualitatively in agreement, they are not fully satisfactory, and especially
not comparable with the results obtained on simulated data. The reasons may be twofold. First,
modeling errors: the incremental model is in good agreement with the data but cannot completely
describe the full complexity of the biological process, including all potential fluctuations

Second, our problem being severely-ill posed, even if the results on simulated data are of good
quality, we did not take into account the experimental noise, which is due to errors and/or im-
precision of image analysis, leading to noise in size measurement and division timing, and to the
sampling in time (which affects only the measurements on dividing cells), with a time step that is
only ten times less than the cell generation time. This means that relatively important differences
in the increment distribution of dividing cells / in the increment-structured division rate, may lead
to differences on the size distribution of all cells which, for this level of noise, are not significant.
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4 Discussion

In this article, we have proposed an explicit reconstruction formula to estimate the increment-
structured division rate of a population dividing by fission into two equal parts. The formula may
be easily generalized to other types of division kernels, as done for the size-structured equation
in [6]. Based on this formula, we designed and implemented a numerical protocol, which we used to
investigate numerically which rates of convergence could be expected. We finally tested the method
on experimental data; though our results reveal qualitatively satisfactory, they did not reach the
precision obtained for simulated data. This highlighted inherent difficulties of the problem, which
deserve to be further investigated. These difficulties are linked to two sources of noise, not yet
adressed neither theoretically nor numerically: modelling error and single-cell measurement errors.
Investigating the influence of modelling error, e.g. heterogeneity of cells with respect to growth rate
or fragmentation kernel, or yet dependence of the division rate on another trait different from the
increment, could give first insights in this direction. To take into account single-cell measurement
errors, we need to add a deconvolution problem to our noise model, assuming for instance that
we measure realizations of an i.i.d. sample Yi = Xi + σξi where Xi are i.i.d. random variables
distributed along UB,x and ξi are i.i.d. normally distributed random variable, σ being the level of
noise.

Let us now discuss some possible variants of the method, and directions to prove estimation
inequalities.

Possible variants of the method

Instead of estimating LB from UB,x by Lemma 1, using L2(dx) for x < x̄ and L2(x4dx) for x > x̄,
and only then take its Fourier transform, we could use the following lemma 2: first define an estimate
of the function ΓB from the sample, and then solve Equation (19). It seems attractive since the
Fourier transform then admits a simple and explicit definition from the sample (X1, · · ·Xn); but in
practice, it appeared difficult to handle and would deserve a full study - in particular to determine,
as for x̄, a convenient threshold ξ̄ to use one or the other of the spaces L2(xpdx).

Lemma 2. Let GB defined by (10), and G∗B its Fourier transform. Then G∗B is solution of the
following equation

G∗B(2ξ) = G∗B(ξ) + ΓB(ξ) (19)

with ΓB defined by

ΓB(ξ) = iτξ

∞∫
0

x2eixξUB,x(x)dx. (20)

For ΓB ∈ L2(ξpdξ) with p ≥ 0, this functional equation admits a unique solution G∗B ∈ L2(ξpdξ).

Proof. At the view of (9) and (10) one immediately gets

G∗B(ξ) =

∞∫
0

GB(x)eixξdx =

∞∫
0

4eλG(x)LB(2x)eixξdx = T1 + T2

with

T1 =

∞∫
0

eλG(x)
(
λUB,x(x) + (gUB,x)′(x)

)
eixξdx and T2 =

∞∫
0

eλG(x)LB(x)eixξdx.
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Let us compute the first term:

T1 =

∞∫
0

λeλG(x)+ixξUB,x(x)dx+
[
(gUB,x)(x)eλG(x)+ixξ

]∞
x=0
−
∞∫

0

(gUB,x)(x)
(

λ
g(x) + iξ

)
eλG(x)+ixξdx

= −iξ
∞∫

0

eλG(x)+ixξg(x)UB,x(x)dx.

In order to treat the second term, we assume the growth is exponential i.e. g(x) = τx. In this
special case we have G(x) = ln(x)/τ and thus G(2x) = G(2) +G(x). Then

T2 = 2

∞∫
0

eλG(2x)LB(2x)ei2xξdx = 1
2e
λG(2)

∞∫
0

4eλG(x)LB(2x)eix(2ξ)dx = G∗B(2ξ)

using at last eλG(2) = 2 since λ = τ . Gathering the two terms we obtain (19). The existence and
uniqueness in L2(xpdx) for p 6= −1 directly follows from [16] Proposition A.1.applied to the equation
transformed for u(ξ) = 1

ξ2
G∗B(ξ), which satisfies

4u(2ξ)− u(ξ) =
ΓB(ξ)

ξ2
,

which admits a unique solution for ΓB
x2
∈ L2(ξqdξ) for q 6= 3, which is equivalent to ΓB ∈ L2(ξpdξ)

with p 6= −1. Since we have G∗B(0) =
∞∫
0

4yLB(2y)dy > 0 (it represents the average size of dividing

cells), we are only interested in p ≥ 0. �

The function ΓB can be easily estimated by Γ̂n(ξ) = iτξ
n

∑n
j=1X

2
j e

iXjξ truncated for |ξ| ≤ ξ.
Then, in the same spirit as for the solution of (9), we could solve Equation (19) by writing

G∗B(ξ) = −
∞∑
k=0

ΓB(2kξ), =⇒ Ĝn = −
N∑
k=0

Γ̂n(2kξ), ∀ξ ∈ R,

but numerically it happens not to give better estimation results and to be less easily compared
with the original function in the space state, so that we preferred the method explained above.

Other variants and improvements of the method would be to constraint the space of solutions
for f̂n,h to the space of probability measures. This is done manually in our procedure, taking the
positive and real part of the estimated inverse Fourier transform (see Section 2.3), but constrained
optimization or projection on a finite-dimension space approximating probability measures could
improve the results. This will be investigated in future work.

Estimation inequalities

To prove estimation inequalities, several difficulties appear, which give a roadmap for further in-
vestigation of the problem.
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First, we have to prove that the denominator of our ratios in our inverse Fourier transforms,
namely G∗B, does not vanish. This has been done for related problems (estimation of the fragmenta-
tion kernel) in two recent papers, by using complex analysis methods (Lemma 1.iii in [23], Theorem
2.i in [13]). In [13], it was the central and most technical point of the study. Here however, the proof
carried out in [23] based on the argument principal could probably be adapted.

Second, the deconvolution problem (15) appears as a deconvolution problem with unknown
”noise”, since GB plays the role of the noise. The difficulty is thus to investigate whether GB is
ordinary smooth or super smooth, with the following definitions:

• Ordinary smooth of order β: c1|t|−β ≤ |G∗B(t)| ≤ c2|t|−β for any |t| ≥M , for positive constants.

• Super smooth of order β: c1|t|γ1e−c0|t|
β ≤ |G∗B(t)| ≤ c2|t|γ2e−c0|t|

β
for any |t| ≥M , for positive

constants.

The smoother the ”noise”, the more ill-posed the problem. Once a given order of magnitude for
the decay of G∗B assumed, speeds of convergence and orders of magnitude for the choice of the
regularization constant h3 may be classically obtained, see for instance [1] (ch.4, Section 4.2.2).
However, assuming a given decay for G∗B means that we assume a certain degree of regularity - and
no more - for GB, i.e. for LB, i.e. for the unknown B itself. If regularity results exist and can be
extended to higher regularity by the chain rule for our equation, see e.g. [11, 20], the reverse is
false - results such as: if B is not derivable, then UB,x cannot be twice derivable. This shows the
importance of designing a posteriori and adaptive methods.

Acknowledgments. A.O. was on leave (”délégation”) at the french National Research Centre
for Science (CNRS) during the finalization of this work. M.D. has been partly supported by the
ERC Starting Grant SKIPPERAD (number 306321). We thank Albert Cohen, Marc Hoffmann and
Benôıt Perthame for very fruitful discussions.

5 Appendix: Figures and tables

Figures 1, 2, 4 and 6 use the notation F for the Fourier transform and F−1
h for the following operator.

For a suitable function f ,

F−1
h (f)(a) =

1

2π

1/h∫
−1/h

f(ξ)e−iaξdξ.

Reconstruction of LB GB G∗B f∗B fB SB
Numerical [0;6] [0;6] [-50;50] [ −1

4.75 ; 1
4.75 ] [0;5] [0;5]

sampling ∆x = 6
500 ∆x = 6

500 ∆ξ = 0.05 ∆ξ = 0.05 ∆a = 0.01 ∆a = 0.01

Protocol 1 - - - 0.1062 0.1043 0.0395

Protocol 2 0.0478 0.0417 0.0417 0.0470 0.0482 0.0149

Table 1: Errors of Protocols 1 and 2 for the intermediate steps.
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INPUT

g(x) = x, λB = 1, UB,x(·) and LB(·)

GB(x) = 4xLB(2x)

N ∗B(ξ)

f̂∗1 (ξ) = 1 + iξ
N∗

B(ξ)
G∗
B
(ξ)

f̂1(a) Ŝ1(a) =
∫ a
0
f̂1(s)ds

B̂1(a) =
f̂1(a)

Ŝ1(a)

OUTPUT

NB(x) = x2UB,x(x)

G∗B(ξ)

F F

F−1h

Figure 1: Protocol 1 – Reconstruction of B when both UB,x and LB are (almost) exactly known.
The oracle choice for h gives us the value 1/4.75.

Reconstruction of B B

Numerical [0;2] [0;2.5 ]
sampling ∆a = 0.01 ∆a = 0.01

Protocol 1 0.0730 0.2065

Protocol 2 0.0849 0.1321

Table 2: Errors of Protocols 1 and 2 for B in function of the numerical sampling.
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INPUT

g(x) = x, λB = 1, and UB,x(·)

NB(x) = x2UB,x(x)

N̂ ∗2 (ξ)

f̂∗2 (ξ) = 1 + iξ
N̂∗2 (ξ)

Ĝ∗2 (ξ)

f̂2(a) Ŝ2(a) =
∫ a
0
f̂2(s)ds

B̂2(a) =
f̂2(a)

Ŝ2(a)

OUTPUT

Ĝ∗2 (ξ)

L̂2(·) solution to

2UB,x(x) + xU
′

B,x(x) = 4LB(2x)− LB(x)

Ĝ2(x) = 4xL̂2(2x)
F

F

F−1h

Figure 2: Protocol 2 – Reconstruction of B when UB,x is (almost) exactly known but not LB. The
oracle choice for h gives us the value 1/5.
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(a) UB,x, LB and L̂2 in function of x (b) NB , GB and Ĝ2 in function of x

(c) |N∗B |, |G∗B | and |Ĝ∗2| in function of ξ (d) |f∗B |, |f̂∗1 | and |f̂∗2 | in function of ξ

(e) fB , f̂1 and f̂2 in function of a (f) SB , Ŝ1 and Ŝ2 in function of a
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(g) B, B̂1 and B̂2 in function of a

Figure 3: Results of Protocols 1 and 2. (x stands for size, ξ for frequency and a for increment of
size)
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INPUT

g(x) = x, λB = 1, and X1, . . . , Xn ∼ UB,x(·), LB(·)

N̂ ∗n(ξ) = 1
n

n∑
k=1

(Xk)
2eiXkξ

f̂∗3,n(ξ) = 1 + iξ
N̂∗

n(ξ)
G∗
B
(ξ)

f̂3,n(a) Ŝ3,n(a) =
∫ a
0
f̂3,n(s)ds

B̂3,n(a) =
f̂3,n(a)

Ŝ3,n(a)∨$n

OUTPUT

G∗B(ξ)

GB(x) = 4xLB(2x)

F

F−1h

Figure 4: Protocol 3 – Reconstruction of B when UB,x is reconstructed from X1, . . . , Xn i.i.d. ∼
UB,x but LB is (almost) exactly known. The oracle choice for h3 gives us values that range between
1/3.25 for n = 500 and 1/4.75 for n = 50 000. We set $n = 1/n.
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(a) |N∗B |, |N̂∗n| in function of ξ (b) |f∗B |, |f̂∗1 | and |f̂∗3,n| in function of ξ

(c) fB , f̂1 and f̂3,n in function of a (d) SB , Ŝ1 and Ŝ3,n in function of a

(e) B, B̂1 and B̂3,n in function of a

Figure 5: Results of Protocol 3 for n = 2000 and M = 100 Monte Carlo samples. (x stands for size,
ξ for frequency and a for increment of size)
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INPUT

g(x) = x, λB = 1, and X1, . . . , Xn ∼ UB,x(·)

N̂ ∗n(ξ) = 1
n

n∑
k=1

(Xk)
2eiXkξ

f̂∗4,n(ξ) = 1 + iξ
N̂∗n(ξ)

Ĝ∗n(ξ)

f̂4,n(a) Ŝ4,n(a) =
∫ a
0
f̂4,n(s)ds

B̂4,n(a) =
f̂4,n(a)

Ŝ4,n(a)∨$n

OUTPUT

Ĝ∗n(ξ)

L̂n(·) solution to

2Ûn,h1
(x) + xÛ

′

n,h2
(x) = 4LB(2x)− LB(x)

Ĝn(x) = 4xL̂n(2x)

Ûn,h1
(·) and Û

′

n,h2
(·)

F

F−1h3

Figure 6: Protocol 4 – Reconstruction of B when both UB,x and LB are reconstructed from
X1, . . . , Xn i.i.d. ∼ UB,x. The parameter h1 is automatically chosen by the kernel smoothing func-
tion ksdensity; h2 is deduced from h1. The oracle choice for h3 gives us values that range between
1/3.25 for n = 500 and 1/4.5 for n = 50 000. We set $n = 1/n.
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(a) UB,x and Ûn,h (b) U
′

B,x and Û
′

n,h′

(c) 2UB,x + xU
′

B,x and 2Ûn,h + Û
′

n,h′ (d) LB and L̂n in function of x

(e) GB and Ĝn in function of x (f) |G∗B |, |Ĝ∗2| and |Ĝ∗n| in function of ξ
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(g) |f∗B |, |f̂∗2 | and |f̂∗4,n| in function of ξ (h) fB , f̂2 and f̂4,n in function of a

(i) SB , Ŝ2 and Ŝ4,n in function of a (j) B, B̂2 and B̂4,n in function of a

Figure 7: Results of Protocol 4 for n = 2000 and M = 100 Monte Carlo samples.
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(a) B̂3,n with n = 500 (b) B̂4n with n = 500

(c) B̂3,n with n = 5 000 (d) B̂4,n with n = 5 000

(e) B̂3,n with n = 50 000 (f) B̂4,n with n = 50 000

Figure 8: Results of Protocols 3 and 4 – Estimation of the division rate B(a) = a2 in function of
the increment of size a for different n (500, 5 000, 10 000) and M = 100 Monte Carlo samples.
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(a) Estimation of UB,x (b) Estimation of U
′

B,x

(c) Estimation of 2UB,x + xU
′

B,x (d) Estimation of LB

(e) Estimation of GB (f) Estimation of G∗B
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(a) Estimation of N∗B (b) Estimation of f∗B

(c) Estimation of fB (d) Estimation of SB

(e) Estimation of B

Figure 10: Results of Protocols 3 and 4 – Reduction of the mean error over M = 100 samples (in log-
scale) in function of the sample size (from n = 500 to n = 50 000). Empirical errors are computed over

the following regular grids: (a)-(e) [0; 6], ∆x = 6
500 ; (f)-(h) [−10; 10], ∆ξ = 0.05; (i)-(j) [0; 2.25], ∆a = 1√

n
;

(k) [0; 2], ∆a = 1√
n
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(a) Estimation of the size distribution

Ûn,x of UB,x from an experimental sample
taken from [32], n = 31, 333, h = 0.125.

(b) Estimation of the size distribution of di-

viding cells LB: 1/ estimation LB from Ûn,x (plain
blue line, Step 2 of Section 2.1), 2/ estimation from
the experimental sample of dividing cells, for which
nd = 1, 679 and hd = 0.167 (dotted-dashed red line).

Figure 11: Testing the procedure on experimental data.
Initial step: estimation of the size distribution

(a) Estimation of fB(a) (b) Estimation of the division rate B(a)

Figure 12: Testing the procedure on experimental data.
Final step: estimation of the increment-structured division rate
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edition, 2005.

[2] H. T. Banks, K. L. Sutton, W. C. Thompson, G. Bocharov, D. Roose, T. Schenkel, and A. Mey-
erhans. Estimation of cell proliferation dynamics using cfse data. Bulletin of mathematical
biology, 73(1):116–150, 2011.

[3] H. T. Banks and W. C. Thompson. A division-dependent compartmental model with cyton
and intracellular label dynamics. Int. J. Pure Appl. Math, 77:119–147, 2012.

[4] D. Belomestny and A. Goldenshluger. Nonparametric density estimation from observations
with multiplicative measurement errors. arXiv preprint arXiv:1709.00629, 2017.

[5] E. Bernard, M. Doumic, and P. Gabriel. Cyclic asymptotic behaviour of a population re-
producing by fission into two equal parts. Kinetic and Related Models , 12(3):551–571, June
2019.

[6] T. Bourgeron, M. Doumic, and M. Escobedo. Estimating the division rate of the growth-
fragmentation equation with a self-similar kernel. Inverse Problems, 30(2):025007, 2014.

[7] F. B. Brikci, J. Clairambault, and B. Perthame. Analysis of a molecular structured population
model with possible polynomial growth for the cell division cycle. Mathematical and Computer
Modelling, 47(7-8):699–713, 2008.

[8] Clotilde Cadart, Sylvain Monnier, Jacopo Grilli, Pablo J Sáez, Nishit Srivastava, Rafaele At-
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