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ABSTRACT
This work concerns the nonlinear numerical analysis of mistuned blades for a rotating detuned bladed-disk structure with

geometrical nonlinearities. The detuning phenomenon is taken into account through a deterministic approach by modifying
material properties of some blades. A nonlinear reduced-order model is obtained by setting up a basis using a double projection
method. The mistuning uncertainties are implemented through a nonparametric probabilistic approach for which the level of
uncertainties is controlled by a hyperparameter. A numerical application is carried out on a bladed-disk structure made up of
24 blades whose finite element model has about 800,000 dofs exhibiting complex dynamic behaviors.

NOMENCLATURE
bNL Deterministic dynamical amplification factor
g(t) Load in time domain
ĝ(2πν) Fourier transform of g(t)
h Nodal diameter number
j Blade number
j0 Blade of interest
m Number of eigenvectors
n Number of degrees-of-freedom
s0 Load intensity
t Time
tini Initial time
u j

α(t) Displacement at the tip of blade number j according to local direction eα

û j
α(2πν) Fourier transform of u j

α(t)
B(2πν) Random dynamical amplification factor
N Dimension of the nonlinear reduced-order model
P Dimension of [KNL] matrix

∗ Corresponding author.
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Q Dimension of [GK(δK)] random matrix
T Time duration of the excitation
λα Eigenvalue number α

δK Dispersion parameter
ν Frequency (Hz)
∆t Time sampling
Ω Rotational velocity of the bladed-disk
B Frequency band of analysis
Be Excitation frequency band
F Spatial distribution vector of the load
K(2)

i jk Quadratic stiffness operator of the reduced-order model

K(3)
i jkl Cubic stiffness operator of the reduced-order model
P Pattern
q0(t) Vector of generalized coordinates related to the first projection basis
q(t) Vector of generalized coordinates in the time domain
u(t) Displacement vector in the time domain
F(t) Load vector
FNL Nonlinear internal forces
F(t) Load vector of the reduced-order-model
ϕα Eigenmode number α

[Cg(Ω)] Gyroscopic coupling matrix
[D] Damping matrix
[Kc(Ω)] Centrifugal stiffness matrix
[Ke] Elastic stiffness matrix
[Kg(Ω)] Geometrical stiffness matrix
[LK ] Part of [KNL] matrix decomposition
[M] Mass matrix
[V ] Matrix used for constructing the POD basis
[C(Ω)] Gyroscopic coupling matrix of the mean reduced-order-model
[D] Dissipation matrix of the mean reduced-order-model
[K] Stiffness matrix of the mean reduced-order-model
[KNL] Positive matrix containing all the cubic, quadratic and linear elastic stiffness contributions
[M] Mass matrix of the mean reduced-order-model
[W(m,N)] Second projection basis of the mean reduced-order-model
[∆K̃] Stiffness residual matrix
[Φm] (n×m) Modal matrix
[Ψ] Global projection matrix
[GK(δK)] Random germ matrix given by the nonparametric probabilistic approach
[KNL] Random matrix containing all the random cubic, quadratic and linear elastic stiffness contributions

INTRODUCTION
In the framework of linear dynamic analysis of bladed-disk, the intentional detuning has been identified as an efficient technological

way for reducing the sensitivity of the forced response of bladed-disks to mistuning induced by small variations of the mechanical
properties [1, 2]. Various research concerning the modeling of mistuned bladed-disk have been carried out, with the development of
reduced-order models (see for instance [3–6] for linear cases and [7, 8] for nonlinear cases) and of probabilistic approaches [9, 10]. The
pattern optimization has been proved to be efficient for reducing the response amplitudes in the linear context. Nevertheless, geometrical
nonlinear effects can no longer be neglected with the current technological improvements due to the use of more flexible and lighter
materials which sometimes leads to large displacements and strains.

The main objective of this paper is to investigate the effects of geometrical nonlinearities on the nonlinear dynamical behavior of
a bladed-disk that is both mistuned and intentionally mistuned. The intentional mistuning is introduced by a given pattern that defines



the spatial distribution of different types of sectors on the full bladed-disk. The mistuning is caused by all the discrepancies that are
encountered in the manufacturing process and that break the cyclic symmetry of the structure which may cause dynamical amplification
effects. For the sake of clarity ”intentional mistuning” and ”mistuning” are respectively denoted by ”detuning” and ”mistuning”. We are
then interested in quantifying the nonlinear dynamical behavior of the detuned-mistuned bladed-disk assuming the intensity of the load
sufficiently high to rightly consider large displacements and large strains.

The main novelty of this work is that both detuning and mistuning phenomena are taken into account within the computational
model. The detuning modeling requires to consider two different generating sectors whose finite element meshes are compatible from
one sector to another one and to assemble the full structure according to a given pattern. The mistuning phenomena is taken into account
through the nonparametric probabilistic approach of uncertainties [9] extended to the geometrical nonlinear context as proposed in [7].
An adapted methodology in accordance with those objectives is implemented. We are therefore interested in the physical nonlinear
analysis of such detuned and mistuned bladed-disk structure.

The first Section summarizes the main methodological steps of the nonlinear analysis of such detuned and mistuned bladed-disk
structures. Details are given on the choice of the projection basis used to build the nonlinear reduced-order model that is required
(1) to optimize the dimension of the nonlinear reduced-order model and (2) to implement the mistuning uncertainties according to the
nonparametric probabilistic approach keeping a reasonable size of the random germ matrix. The second Section is devoted to a numerical
application for which a simple model representing an industrial detuned and mistuned bladed-disk is considered. In particular, a mistuned
case and a mistuned-detuned case are considered. The nonlinear dynamical amplification factors resulting from a uniform excitation
over a narrow low-frequency band of excitation are then compared for the two mistuned cases, inside and outside of the frequency band
of excitation.

METHODOLOGY
This section is devoted to the construction of a stochastic nonlinear reduced-order model. The constitutive equations of the materials

are linear elastic. The external loads are sufficiently large so that the structure undergoes geometrical nonlinear effects induced by the
large displacements and strains.

The main difficulty is to obtain a nonlinear stochastic computational model that is able to take into account both detuning and
mistuning phenomena considering industrial high-dimensional computational model (HDM). This means that the nonlinear stochastic
computational model has to be optimally reduced in order to perform nonlinear stochastic computations with a reasonable computational
cost. With the current use of the nonparametric probabilistic strategy, a deterministic nonlinear reduced-order computational model has
to be constructed for representing the detuned bladed-disk structure. Uncertainties are then added to this mean nonlinear reduced-order
model in order to model the mistuning phenomena. The main steps are as follows:

• A first projection modal basis is computed by solving a generalized eigenvalue problem related to the HDM.
• A second basis is obtained using the Proper-Orthogonal Decomposition (POD) method performed on the structural displacements

that are computed with the nonlinear reduced-order model resulting from the projection of the HDM on the first modal basis.
• Mistuning uncertainties are then added to the mean nonlinear reduced-order model obtained from the double projection method.

Nonlinear finite element computational model of a detuned bladed-disk
The detuning is done according to a given pattern, defining the spatial repartition of several different sector types on the full bladed-

disk. The finite element meshes of each sector type are compatible from one sector interface to another one. In the rotating frame,
the nonlinear differential equation that describes the computational model of the nonlinear dynamical behavior of a rotating detuned
bladed-disk as a function of the rotational speed Ω is written as

[M]ü+([D]+ [Cg(Ω)] ) u̇+([Ke]+ [Kc(Ω)]+ [Kg(Ω)] )u+FNL(u) = F , (1)

in which the Rn-vector u(t) is the vector of unknown displacements. In equation (1), the (n× n) real matrices [M], [D], [Cg(Ω)], [Ke],
[Kc(Ω)], [Kg(Ω)] are respectively the mass matrix with positive definiteness properties, the damping matrix with symmetry and positive
definiteness properties, the gyroscopic coupling matrix with skew-symmetry properties, the elastic stiffness matrix with symmetry and
positive definiteness properties, the centrifugal stiffness matrix with symmetry and negative definiteness properties, the geometrical
stiffness matrix with symmetry and positive definiteness properties. It is assumed that rotational velocity is sufficiently large so that
[Ke]+ [Kc(Ω)]+ [Kg(Ω)] is positive definite and there is no static unstability (divergence). In equation (1), the Rn-vector F results from



the discretization of the external forces and the Rn-vector FNL(q) describes the nonlinear internal forces issued from the geometrical
nonlinearities.

Numerical construction of an adapted projection basis
A possible approach would consist in solving the generalized eigenvalue problem related to the conservative and linear part of the

differential equation (1). Nevertheless, such generalized eigenvalue problem would yield complex eigenvectors because of the skew-
symmetry property of the gyroscopic coupling. To avoid this difficulty, the projection basis is built in two steps. First, the previous
generalized eigenvalue problem is solved without damping and gyroscopic coupling matrices. Let ϕ1, . . . ,ϕm be the eigenmodes related
to the m first eigenvalues, 0 < λ1 6 λ2 6 · · · 6 λn are stored in the (n×m) real modal matrix [Φm]. Such projection modal basis is
then used to build the nonlinear reduced-order model related to equation (1). A convergence analysis is carried out with respect to m.
Once convergence is reached, the nonlinear reduced-order model is used for computing the forced time-response denoted q0(t). The
POD basis is obtained by solving the eigenvalue problem for the correlation matrix related to the nonlinear time response q0(t). The
eigenvectors related to the N most contributing eigenvalues are retained to form the POD vector basis. Let [W(m,N)] be the (m×N) real
matrix whose columns are these POD vector basis. As explained in [11], this POD vector basis is efficiently generated by computing the
N left singular vectors of the real matrix [V ] defined by

[V ]i j = q0i(t j)
√

∆t . (2)

The projection basis of the HDM, which allows for constructing the nonlinear reduced-order model, is represented by the (n×N) real
matrix [Ψ] that is written as

[Ψ] = [Φm] [W(m,N)] . (3)

With such reduced-order basis, the nonlinear reduced-order model is written as

u(t) = [Ψ]q(t) , (4)

[M]q̈(t)+([D]+ [C(Ω)] ) q̇(t)+ [K(Ω)]q(t)+FNL (q(t)) =F(t) , (5)

in which

[M] = [Ψ]T [M][Ψ] (6)

[D] = [Ψ]T [D][Ψ] (7)

[C(Ω)] = [Ψ]T [Cg(Ω)][Ψ] (8)

[K] = [Ψ]T ([Ke]+ [Kc(Ω)]+ [Kg(Ω)]) [Ψ] (9)

F(t) = [Ψ]T F(t) . (10)

The reduced quadratic and cubic stiffness operators K(2)
i jk , {i, j,k} ∈ {1,2, . . . ,N}3 and K(3)

i jk` , {i, j,k, l} ∈ {1,2, . . . ,N}4 are explicitly
constructed [12] and the RN-vector FNL(q) is then calculated using

FNL
i (q) =K(2)

i jk q j qk +K
(3)
i jk` q j qk q` , ∀q ∈ RN . (11)

After solving the nonlinear differential equation (5), for which q(t) is the RN-vectors of the unknown generalized coordinates, the
physical response is retrieved by using equation (4).



Construction of the stochastic reduced-order model
The stochastic nonlinear computational model corresponds to a probabilistic modeling of the mistuning for the detuned rotating

bladed-disk. As previously explained, the nonparametric probabilistic approach of uncertainties is used [9, 13]. Its generalization to the
nonlinear geometrical context [14], including a strategy for reducing the size of the germs [15] is used. It involves a positive matrix [KNL]
with order P = N(N +1) containing entries contain all the cubic, quadratic and linear elastic stiffness contributions. The corresponding
random matrix [KNL] is written as:

[KNL] = [LK ][GK(δK)][LK ]
T +[∆K̃] (12)

in which [LK ] is a (P×Q) real matrix whose columns contain Q, the predominant eigenvectors of matrix [KNL], where [∆K̃] = [KNL]−
[LK ][LK ]

T and where [GK(δK)] is the full (Q×Q) random matrix with Q ≪ P, constructed using the Maximum Entropy principle [13]
and where δK is the hyperparameter that allows for controlling the level of uncertainties. By construction the mathematical expectation,
E{[KNL]} of random matrix [KNL] is the deterministic matrix [KNL]. All the details concerning the construction of [KNL] can be found
in [14].

NUMERICAL APPLICATION
The numerical application concerns the nonlinear dynamical analysis of a detuned and mistuned rotating bladed-disk. From an

industrial point of view, such an application is of industrial interest when exceptional operating ranges such as severe loads or unstable
flutter situations yielding low-damping levels are considered.

Description of the finite element model
The bladed-disk comprises 24 blades and is made of an homogeneous and isotropic elastic material (steel) with Young modulus

2× 1011 N.m−2, Poisson’s ratio 0.3, and mass density 7650Kg.m−3. In the rotating frame, the disk is clamped at the inner radius of
the disk sector. The geometrical characteristics of the generating sector are summarized in Table 1. Software ANSYS has been used to
construct the computational model of the reference sector, which is constituted of tridimensional solid finite elements: brick elements
with 20 nodes, pyramidal elements with 13 nodes, and tetrahedral elements with 10 nodes. The computational model of the tuned bladed-
disk (with 24 blades) has been constructed using the computational model of the sector. The characteristics of the finite element model
are given in Table 2. A detuned bladed-disk structure is constructed by defining another sector type (denoted 2), which is obtained

Inner disk Radius 19.8 mm

Outer disk Radius 100 mm

Disk width 20 mm

Blade thickness at root section 4.8 mm

Blade thickness at tip section 2 mm

TABLE 1: Geometrical characteristics of the reference sector

by decreasing the Young modulus of the blade. The Young modulus of the disk remains equal to 2× 1011 N ×m−2. Consequently,
two patterns are considered: a cyclic one (tuned) denoted as P1 and a detuned one denoted as P2. The finite element model of tuned
configuration P1 and the detuned configuration P2 are shown in Figure 1. The mesh of the finite element sector is shown in Figure 2.

P1 = [111111111111111111111111] (13)
P2 = [111111222222111111222222] (14)



Structure Elements Nodes DOFs

Blade sector 2,714 6,896 20,688

Disk sector 836 4,554 13,662

Full structure 85,200 265,080 787,176

TABLE 2: Characteristics of the finite element model

FIGURE 1: Configurations P1 (left) and P2 (right)

Eigenfrequencies of the linearized tuned rotating bladed-disk
Figure 3 displays the Campbell diagram representing the evolution of the eigenfrequencies according to the rotational velocity Ω

for the tuned case (pattern P1). Figure 4 displays the graph of eigenfrequencies να =
√

λα as a function of the nodal diameter number h
for the linearized tuned rotating bladed-disk (configuration P1) for which the rotational speed is Ω=465rad.s−1.

Defining the external load
An h= 20 engine order excitation is chosen for which there are two close eigenfrequencies from two different classes of eigenmodes.

In the time domain, the load vector F(t) is defined by,

F(t) = s0 g(t)F . (15)

The time-function g(t) is defined for t ∈ R and is constructed so that its Fourier transform is |ĝ(2πν)|= 1 on the frequency band
Be = [1000,1600]Hz of excitation and zero outside Be. In the numerical process, the signal g(t) is truncated by choosing tini =−0.065s
such that g(tini) = 0 with a time duration T = 0.35s, ensuring the low frequencies located outside Be to be captured when considering
nonlinear dynamical responses. Figures 5 and 6 show the graph t→ g(t) and its Fourier transform ν→|ĝ(2πν)|. The spatial distribution
of the external load is a normalized vector F for which all directions related to the node located at the tip of each blade are simultaneously
excited and the load intensity is given by s0=1N. The dynamical analysis is performed in the time domain. Then a Fourier Transform
of the time responses allows for analyzing the nonlinear dynamical responses in the frequency domain.



FIGURE 2: Mesh of the finite element sector
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FIGURE 3: Graph of Ω 7→ να(Ω) defining the Campbell diagram of the tuned structure (pattern P1).

NUMERICAL PARAMETER CONCERNING THE STOCHASTIC REDUCED-ORDER MODEL
We are interested in analyzing the nonlinear dynamical response in the frequency band of analysis B = [0,4000]Hz. For each

pattern, the first generalized eigenvalue problem is solved and a convergence analysis of the nonlinear dynamical responses showed that
m = 145 eigenmodes were required for the first reduced-order basis. The convergence analysis with respect to the responses computed
with the first nonlinear reduced-order model shows that N = 55 vectors in the second reduced-order basis (constructed by the POD
method) are sufficient to reproduce the nonlinear dynamical behavior in frequency band B [16]. In the following, all calculations are
carried out with a reduced-order basis characterized by (m,N) = (145,55). Concerning the size of the random germ, a convergence
analysis has shown that a good approximation was obtained for Q = 500� N(N +1) = 3080.

Nonlinear dynamical analyses of both tuned and detuned rotating bladed-disk
In this Section, the nonlinear deterministic dynamical response of the tuned and detuned bladed-disk is considered. In the following,

the subscripts NL and LIN are used for the nonlinear case and for the linear case (when a quantity is used either for NL or for LIN, the
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subscript is removed). Let u j
α(t) be the time displacement of blade j according to local direction eα . For a given pattern, the observation

|||u j||| is defined by

|||u j|||2=max
t
||u j(t)||2 with ||u j(t)||2 =

3

∑
α=1
|u j

α(t)|2 . (16)

For each pattern, the response related to the most responding blade j0 in the time domain is considered. We then have

j0=arg
{

max
j
|||u j|||

}
. (17)
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FIGURE 6: Graph of ν 7→ |ĝ(2πν)|.

Figures 7 and 8 display the graphs of t 7→ u j0
2,LIN(t) for both patterns P1 and P2. It can be seen that both tuned and detuned structures

yield different responses in the time domain. Figures 9 and 10 respectively display the graphs of t 7→ u j0
2,NL(t) for pattern (P1) and

pattern (P2). Table 3 summarizes the maximum displacements for both linear and nonlinear cases corresponding to pattern P1 and P2

Linear Nonlinear

P1 1.48×10−3 m 5.33×10−4 m

P2 1.67×10−3 m 6.18×10−4 m

TABLE 3: Maximum displacements in the time domain

and related to a load intensity s0 = 1N. It is clearly seen that this load yields to significant geometrical effects that stiffen the nonlinear
dynamical response of the tuned and detuned structures. The observed nonlinear time responses look more irregular, suggesting numer-
ous resonances contributions outside Be. The nonlinear dynamical response is then analyzed in the frequency domain. Let û j0

α (2πν)

be the Fourier Transform of u j0
α (t). Figure 11 displays the graph of ν 7→ ||û j0

LIN(2πν)|| (red line) and the graph of ν 7→ ||û j0
NL(2πν)||

(blue line) related to pattern P1. Figure 12 displays the graph of ν 7→ ||û j0
LIN(2πν)|| (red line) and the graph of ν 7→ ||û j0

NL(2πν)||
(blue line) corresponding to pattern P2. For both patterns, secondary resonances induced by the geometrical nonlinear effects appear
below and above excitation frequency band Be. It should be underlined that the major effects of the geometrical nonlinearities is to
induce an indirect excitation outside the frequency excitation frequency band as shown in [7,16] in turbomachinery context or in [17] in
fluide-structure interaction.

Nonlinear dynamical analysis of the mistuned-detuned rotating bladed-disk
Unlike the previous Section where the observations related to the deterministic case were denoted by lowercase letters, the random

observations corresponding to the stochastic case (presence of mistuning) are similarly denoted by capital letters. In this part, we are
interested in the nonlinear dynamical stochastic analysis of the mistuned-detuned rotating bladed-disk. Let BNL(2πν) be the random
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FIGURE 7: Linear dynamical analysis in the time domain: graph of t 7→ u j0
2,LIN(t) corresponding to pattern P1.
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FIGURE 8: Linear dynamical analysis in the time domain: graph of t 7→ u j0
2,LIN(t) corresponding to pattern P2.

amplification dynamic factor defined by,

BNL(2πν) =
||Û

j0
NL(2πν)||

|||û j0,tuned
NL |||

, (18)

in which |||û j0,tuned
NL |||= max

ν∈Be
||û j0,tuned

NL (2πν)||. Figures 13 to 14 display the deterministic dynamical amplification factor ν 7→ bNL(2πν)

(thick dashed line). The corresponding confidence region of random observation BNL(2πν) for δ = 0.1 and δ = 0.3 corresponding to a
probability level of 0.95. In these figures, the excitation frequency band Be is represented by the light blue area. It can be seen that the
nonlinear dynamical behavior is very sensitive to uncertainties outside the excitation frequency band. These results are obtained for a
given pattern of the detuned structure.
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FIGURE 9: Nonlinear dynamical analysis in the time domain: graph of t 7→ u j0
2,NL(t) corresponding to pattern P1.
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FIGURE 10: Nonlinear dynamical analysis in the time domain: graph of t 7→ u j0
2,NL(t) corresponding to pattern P2.

CONCLUSION
A methodology adapted to the modeling of the mistuned and the detuned rotating bladed-disk has been detailed and applied to a

simple model representing an industrial bladed-disk. The results highlight the indirect excitation of the structure through the geometrical
nonlinearities, above and below the excitation frequency band. Furthermore, the dynamical analysis of the considered detuned and
mistuned rotating bladed-disk has allowed the sensitivity of the structure outside the excitation frequency band to be quantified. The
computational implementation of the proposed methodology shows that we are able to propose a nonlinear geometrical analysis of a
detuned-mistuned rotating bladed-disk structure. In the present case, the considered detuned pattern is not optimized regarding the
dynamical amplification factor. An interesting perspective is to perform an optimization of the detuning with respect to dynamical
criteria involving the amplification factor that occur in the excitation frequency band as well as the local amplification factors that occurs
outside the excitation frequency band.
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