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INTRODUCTION

In the framework of linear dynamic analysis of bladed-disk, the intentional detuning has been identified as an efficient technological way for reducing the sensitivity of the forced response of bladed-disks to mistuning induced by small variations of the mechanical properties [START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF][START_REF] Whitehead | The maximum factor by which forced vibration of blades can increase due to mistuning[END_REF]. Various research concerning the modeling of mistuned bladed-disk have been carried out, with the development of reduced-order models (see for instance [START_REF] Castanier | Reduced order modeling technique for mistuned bladed disks[END_REF][START_REF] Yang | A reduced-order model of mistuning using a subset of nominal system modes[END_REF][START_REF] Bladh | Component-mode-based reduced order modeling techniques for mistuned bladed disks-part 1: The-oretical models[END_REF][START_REF] Sinha | Reduced-order model of a bladed rotor with geometric mistuning[END_REF] for linear cases and [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity[END_REF][START_REF] Grolet | Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and groebner bases[END_REF] for nonlinear cases) and of probabilistic approaches [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Mignolet | Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies[END_REF]. The pattern optimization has been proved to be efficient for reducing the response amplitudes in the linear context. Nevertheless, geometrical nonlinear effects can no longer be neglected with the current technological improvements due to the use of more flexible and lighter materials which sometimes leads to large displacements and strains.

The main objective of this paper is to investigate the effects of geometrical nonlinearities on the nonlinear dynamical behavior of a bladed-disk that is both mistuned and intentionally mistuned. The intentional mistuning is introduced by a given pattern that defines the spatial distribution of different types of sectors on the full bladed-disk. The mistuning is caused by all the discrepancies that are encountered in the manufacturing process and that break the cyclic symmetry of the structure which may cause dynamical amplification effects. For the sake of clarity "intentional mistuning" and "mistuning" are respectively denoted by "detuning" and "mistuning". We are then interested in quantifying the nonlinear dynamical behavior of the detuned-mistuned bladed-disk assuming the intensity of the load sufficiently high to rightly consider large displacements and large strains.

The main novelty of this work is that both detuning and mistuning phenomena are taken into account within the computational model. The detuning modeling requires to consider two different generating sectors whose finite element meshes are compatible from one sector to another one and to assemble the full structure according to a given pattern. The mistuning phenomena is taken into account through the nonparametric probabilistic approach of uncertainties [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] extended to the geometrical nonlinear context as proposed in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity[END_REF]. An adapted methodology in accordance with those objectives is implemented. We are therefore interested in the physical nonlinear analysis of such detuned and mistuned bladed-disk structure.

The first Section summarizes the main methodological steps of the nonlinear analysis of such detuned and mistuned bladed-disk structures. Details are given on the choice of the projection basis used to build the nonlinear reduced-order model that is required [START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF] to optimize the dimension of the nonlinear reduced-order model and (2) to implement the mistuning uncertainties according to the nonparametric probabilistic approach keeping a reasonable size of the random germ matrix. The second Section is devoted to a numerical application for which a simple model representing an industrial detuned and mistuned bladed-disk is considered. In particular, a mistuned case and a mistuned-detuned case are considered. The nonlinear dynamical amplification factors resulting from a uniform excitation over a narrow low-frequency band of excitation are then compared for the two mistuned cases, inside and outside of the frequency band of excitation.

METHODOLOGY

This section is devoted to the construction of a stochastic nonlinear reduced-order model. The constitutive equations of the materials are linear elastic. The external loads are sufficiently large so that the structure undergoes geometrical nonlinear effects induced by the large displacements and strains.

The main difficulty is to obtain a nonlinear stochastic computational model that is able to take into account both detuning and mistuning phenomena considering industrial high-dimensional computational model (HDM). This means that the nonlinear stochastic computational model has to be optimally reduced in order to perform nonlinear stochastic computations with a reasonable computational cost. With the current use of the nonparametric probabilistic strategy, a deterministic nonlinear reduced-order computational model has to be constructed for representing the detuned bladed-disk structure. Uncertainties are then added to this mean nonlinear reduced-order model in order to model the mistuning phenomena. The main steps are as follows:

• A first projection modal basis is computed by solving a generalized eigenvalue problem related to the HDM.

• A second basis is obtained using the Proper-Orthogonal Decomposition (POD) method performed on the structural displacements that are computed with the nonlinear reduced-order model resulting from the projection of the HDM on the first modal basis. • Mistuning uncertainties are then added to the mean nonlinear reduced-order model obtained from the double projection method.

Nonlinear finite element computational model of a detuned bladed-disk

The detuning is done according to a given pattern, defining the spatial repartition of several different sector types on the full bladeddisk. The finite element meshes of each sector type are compatible from one sector interface to another one. In the rotating frame, the nonlinear differential equation that describes the computational model of the nonlinear dynamical behavior of a rotating detuned bladed-disk as a function of the rotational speed Ω is written as

[M] ü + ( [D] + [C g (Ω)] ) u + ( [K e ] + [K c (Ω)] + [K g (Ω)] ) u + F NL (u) = F , (1) 
in which the R n -vector u(t) is the vector of unknown displacements. In equation ( 1), the

(n × n) real matrices [M], [D], [C g (Ω)], [K e ], [K c (Ω)], [K g (Ω)
] are respectively the mass matrix with positive definiteness properties, the damping matrix with symmetry and positive definiteness properties, the gyroscopic coupling matrix with skew-symmetry properties, the elastic stiffness matrix with symmetry and positive definiteness properties, the centrifugal stiffness matrix with symmetry and negative definiteness properties, the geometrical stiffness matrix with symmetry and positive definiteness properties. It is assumed that rotational velocity is sufficiently large so that

[K e ] + [K c (Ω)] + [K g (Ω)
] is positive definite and there is no static unstability (divergence). In equation ( 1), the R n -vector F results from the discretization of the external forces and the R n -vector F NL (q) describes the nonlinear internal forces issued from the geometrical nonlinearities.

Numerical construction of an adapted projection basis

A possible approach would consist in solving the generalized eigenvalue problem related to the conservative and linear part of the differential equation [START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF]. Nevertheless, such generalized eigenvalue problem would yield complex eigenvectors because of the skewsymmetry property of the gyroscopic coupling. To avoid this difficulty, the projection basis is built in two steps. First, the previous generalized eigenvalue problem is solved without damping and gyroscopic coupling matrices. Let ϕ 1 , . . . , ϕ m be the eigenmodes related to the m first eigenvalues, 0

< λ 1 λ 2 • • • λ n are stored in the (n × m) real modal matrix [Φ m ].
Such projection modal basis is then used to build the nonlinear reduced-order model related to equation [START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF]. A convergence analysis is carried out with respect to m. Once convergence is reached, the nonlinear reduced-order model is used for computing the forced time-response denoted q 0 (t). The POD basis is obtained by solving the eigenvalue problem for the correlation matrix related to the nonlinear time response q 0 (t). The eigenvectors related to the N most contributing eigenvalues are retained to form the POD vector basis. Let [W (m,N) ] be the (m × N) real matrix whose columns are these POD vector basis. As explained in [START_REF] Capiez-Lernout | Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation[END_REF], this POD vector basis is efficiently generated by computing the N left singular vectors of the real matrix [V ] defined by

[V ] i j = q 0 i (t j ) √ ∆t . (2) 
The projection basis of the HDM, which allows for constructing the nonlinear reduced-order model, is represented by the (n × N) real matrix [Ψ] that is written as

[Ψ] = [Φ m ] [W (m,N) ] . (3) 
With such reduced-order basis, the nonlinear reduced-order model is written as

u(t) = [Ψ] q(t) , (4) 
[M] q(t)

+ ( [D] + [C(Ω)] ) q(t) + [K(Ω)]q(t) + F NL (q(t)) = F(t) , (5) 
in which

[M] = [Ψ] T [M][Ψ] (6) 
[D] = [Ψ] T [D][Ψ] (7) 
[C(Ω)] = [Ψ] T [C g (Ω)][Ψ] (8) 
[K] = [Ψ] T ([K e ] + [K c (Ω)] + [K g (Ω)]) [Ψ] (9) 
F(t) = [Ψ] T F(t) . ( 10 
)
The reduced quadratic and cubic stiffness operators K

i jk , {i, j, k} ∈ {1, 2, . . . , N} 3 and K

i jk , {i, j, k, l} ∈ {1, 2, . . . , N} 4 are explicitly constructed [START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity[END_REF] and the R N -vector F NL (q) is then calculated using

F NL i (q) = K (2) 
i jk q j q k + K

i jk q j q k q , ∀q ∈ R N .

After solving the nonlinear differential equation ( 5), for which q(t) is the R N -vectors of the unknown generalized coordinates, the physical response is retrieved by using equation [START_REF] Yang | A reduced-order model of mistuning using a subset of nominal system modes[END_REF].

Construction of the stochastic reduced-order model

The stochastic nonlinear computational model corresponds to a probabilistic modeling of the mistuning for the detuned rotating bladed-disk. As previously explained, the nonparametric probabilistic approach of uncertainties is used [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF]. Its generalization to the nonlinear geometrical context [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF], including a strategy for reducing the size of the germs [START_REF] Capiez-Lernout | An improvement of the uncertainty quantification in computational structural dynamics with nonlinear geometrical effects[END_REF] is used. It involves a positive matrix [K NL ] with order P = N(N + 1) containing entries contain all the cubic, quadratic and linear elastic stiffness contributions. The corresponding random matrix [K NL ] is written as:

[K NL ] = [L K ][G K (δ K )][L K ] T + [∆ K] (12) 
in which [L K ] is a (P × Q) real matrix whose columns contain Q, the predominant eigenvectors of matrix [K NL ], where

[∆ K] = [K NL ] - [L K ][L K ]
T and where [G K (δ K )] is the full (Q × Q) random matrix with Q ≪ P, constructed using the Maximum Entropy principle [START_REF] Soize | Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering[END_REF] and where δ K is the hyperparameter that allows for controlling the level of uncertainties. By construction the mathematical expectation,

E{[K NL ]} of random matrix [K NL ] is the deterministic matrix [K NL ].
All the details concerning the construction of [K NL ] can be found in [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF].

NUMERICAL APPLICATION

The numerical application concerns the nonlinear dynamical analysis of a detuned and mistuned rotating bladed-disk. From an industrial point of view, such an application is of industrial interest when exceptional operating ranges such as severe loads or unstable flutter situations yielding low-damping levels are considered.

Description of the finite element model

The bladed-disk comprises 24 blades and is made of an homogeneous and isotropic elastic material (steel) with Young modulus 2 × 10 11 N.m -2 , Poisson's ratio 0.3, and mass density 7650 Kg.m -3 . In the rotating frame, the disk is clamped at the inner radius of the disk sector. The geometrical characteristics of the generating sector are summarized in Table 1. Software ANSYS has been used to construct the computational model of the reference sector, which is constituted of tridimensional solid finite elements: brick elements with 20 nodes, pyramidal elements with 13 nodes, and tetrahedral elements with 10 nodes. The computational model of the tuned bladeddisk (with 24 blades) has been constructed using the computational model of the sector. The characteristics of the finite element model are given in Table 2 1. The mesh of the finite element sector is shown in Figure 2. Eigenfrequencies of the linearized tuned rotating bladed-disk Figure 3 displays the Campbell diagram representing the evolution of the eigenfrequencies according to the rotational velocity Ω for the tuned case (pattern P 1 ). Figure 4 displays the graph of eigenfrequencies ν α = √ λ α as a function of the nodal diameter number h for the linearized tuned rotating bladed-disk (configuration P 1 ) for which the rotational speed is Ω = 465 rad.s -1 .

P 1 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ( 13 
) P 2 = [1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2] ( 14 

Defining the external load

An h = 20 engine order excitation is chosen for which there are two close eigenfrequencies from two different classes of eigenmodes. In the time domain, the load vector F(t) is defined by,

F(t) = s 0 g(t) F . ( 15 
)
The time-function g(t) is defined for t ∈ R and is constructed so that its Fourier transform is | g(2πν)| = 1 on the frequency band B e = [1000, 1600] Hz of excitation and zero outside B e . In the numerical process, the signal g(t) is truncated by choosing t ini = -0.065 s such that g(t ini ) = 0 with a time duration T = 0.35 s, ensuring the low frequencies located outside B e to be captured when considering nonlinear dynamical responses. Figures 5 and6 show the graph t → g(t) and its Fourier transform ν → | g(2πν)|. The spatial distribution of the external load is a normalized vector F for which all directions related to the node located at the tip of each blade are simultaneously excited and the load intensity is given by s 0 = 1 N. The dynamical analysis is performed in the time domain. Then a Fourier Transform of the time responses allows for analyzing the nonlinear dynamical responses in the frequency domain. 

NUMERICAL PARAMETER CONCERNING THE STOCHASTIC REDUCED-ORDER MODEL

We are interested in analyzing the nonlinear dynamical response in the frequency band of analysis B = [0, 4 000] Hz. For each pattern, the first generalized eigenvalue problem is solved and a convergence analysis of the nonlinear dynamical responses showed that m = 145 eigenmodes were required for the first reduced-order basis. The convergence analysis with respect to the responses computed with the first nonlinear reduced-order model shows that N = 55 vectors in the second reduced-order basis (constructed by the POD method) are sufficient to reproduce the nonlinear dynamical behavior in frequency band B [START_REF] Picou | Effects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk[END_REF]. In the following, all calculations are carried out with a reduced-order basis characterized by (m, N) = (145, 55). Concerning the size of the random germ, a convergence analysis has shown that a good approximation was obtained for Q = 500 N(N + 1) = 3 080.

Nonlinear dynamical analyses of both tuned and detuned rotating bladed-disk

In this Section, the nonlinear deterministic dynamical response of the tuned and detuned bladed-disk is considered. In the following, the subscripts NL and LIN are used for the nonlinear case and for the linear case (when a quantity is used either for NL or for LIN, the Circumferential wave number subscript is removed). Let u j α (t) be the time displacement of blade j according to local direction e α . For a given pattern, the observation |||u j ||| is defined by

|||u j ||| 2 = max t ||u j (t)|| 2 with ||u j (t)|| 2 = 3 ∑ α=1 |u j α (t)| 2 . ( 16 
)
For each pattern, the response related to the most responding blade j 0 in the time domain is considered. We then have 2,NL (t) for pattern (P 1 ) and pattern (P 2 ). Table 3 summarizes the maximum displacements for both linear and nonlinear cases corresponding to pattern P 1 and P 2 Linear Nonlinear It should be underlined that the major effects of the geometrical nonlinearities is to induce an indirect excitation outside the frequency excitation frequency band as shown in [START_REF] Capiez-Lernout | Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity[END_REF][START_REF] Picou | Effects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk[END_REF] in turbomachinery context or in [START_REF] Akkaoui | Nonlinear dynamical analysis of a fluidstructure computational model with sloshing and capillarity[END_REF] in fluide-structure interaction.

j 0 = arg max j |||u j ||| . ( 17 

Nonlinear dynamical analysis of the mistuned-detuned rotating bladed-disk

Unlike the previous Section where the observations related to the deterministic case were denoted by lowercase letters, the random observations corresponding to the stochastic case (presence of mistuning) are similarly denoted by capital letters. In this part, we are interested in the nonlinear dynamical stochastic analysis of the mistuned-detuned rotating bladed-disk. Let B NL (2πν) be the random amplification dynamic factor defined by, 

B NL (2πν) = || U j 0 NL (2πν)|| ||| u j 0 ,tuned NL ||| , (18) 

CONCLUSION

A methodology adapted to the modeling of the mistuned and the detuned rotating bladed-disk has been detailed and applied to a simple model representing an industrial bladed-disk. The results highlight the indirect excitation of the structure through the geometrical nonlinearities, above and below the excitation frequency band. Furthermore, the dynamical analysis of the considered detuned and mistuned rotating bladed-disk has allowed the sensitivity of the structure outside the excitation frequency band to be quantified. The computational implementation of the proposed methodology shows that we are able to propose a nonlinear geometrical analysis of a detuned-mistuned rotating bladed-disk structure. In the present case, the considered detuned pattern is not optimized regarding the dynamical amplification factor. An interesting perspective is to perform an optimization of the detuning with respect to dynamical criteria involving the amplification factor that occur in the excitation frequency band as well as the local amplification factors that occurs outside the excitation frequency band. 
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 1 FIGURE 1: Configurations P 1 (left) and P 2 (right)

FIGURE 2 :FIGURE 3 :

 23 FIGURE 2: Mesh of the finite element sector

FIGURE 4 :FIGURE 5 :

 45 FIGURE 4:Graph h → ν α (h) of the eigenfrequencies ν α related to the tuned pattern P 1 of the rotating bladed-disk as a function of the nodal diameter number h.

P 1 1 .TABLE 3 :

 13 48 × 10 -3 m 5.33 × 10 -4 m P 2 1.67 × 10 -3 m 6.18 × 10 -4 m Maximum displacements in the time domain and related to a load intensity s 0 = 1 N. It is clearly seen that this load yields to significant geometrical effects that stiffen the nonlinear dynamical response of the tuned and detuned structures. The observed nonlinear time responses look more irregular, suggesting numerous resonances contributions outside B e . The nonlinear dynamical response is then analyzed in the frequency domain. Let u j 0 α (2πν) be the Fourier Transform of u j 0 α (t).

Figure 11

 11 displays the graph of ν → || u j 0 LIN (2πν)|| (red line) and the graph of ν → || u j 0 NL (2πν)|| (blue line) related to pattern P 1 . Figure 12 displays the graph of ν → || u j 0 LIN (2πν)|| (red line) and the graph of ν → || u j 0 NL (2πν)|| (blue line) corresponding to pattern P 2 . For both patterns, secondary resonances induced by the geometrical nonlinear effects appear below and above excitation frequency band B e .
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 2728 FIGURE 7: Linear dynamical analysis in the time domain: graph of t → u j 0 2,LIN (t) corresponding to pattern P 1 .

2 FIGURE 9 : 2 FIGURE 10 :

 29210 FIGURE 9: Nonlinear dynamical analysis in the time domain: graph of t → u j 0 2,NL (t) corresponding to pattern P 1 .

FrequencyFIGURE 11 :

 11 FIGURE 11: Nonlinear dynamical analysis of the deterministic tuned structure (pattern P 1 : graphs of ν → || u j 0 LIN (2πν)|| (red line) and ν → || u j 0 NL (2πν)|| (blue line) and excitation frequency band B e (light blue area).
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FIGURE 12 :

 12 FIGURE 12: Nonlinear dynamical analysis of the deterministic detuned structure (pattern P 2 : graphs of ν → || u j 0 LIN (2πν)|| (red line) and ν → || u j 0 NL (2πν)|| (blue line) and excitation frequency band B e (light blue area).
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FIGURE 13 :Frequency

 13 FIGURE 13: Nonlinear mistuning analysis of the detuned structure (pattern P 2 ): graph of ν → b NL (2πν) (thick dashed line), confidence region of B NL (2πν) (yellow area) and excitation frequency band B e (light blue area) for δ = 0.1.

FIGURE 14 :

 14 FIGURE 14: Nonlinear mistuning analysis of the detuned structure (pattern P 2 ): graph of ν → b NL (2πν) (thick dashed line), confidence region of B NL (2πν) (yellow area) and excitation frequency band B e (light blue area) for δ = 0.3.

TABLE 1 :

 1 . A detuned bladed-disk structure is constructed by defining another sector type (denoted 2), which is obtained Geometrical characteristics of the reference sector by decreasing the Young modulus of the blade. The Young modulus of the disk remains equal to 2 × 10 11 N × m -2 . Consequently, two patterns are considered: a cyclic one (tuned) denoted as P 1 and a detuned one denoted as P 2 . The finite element model of tuned configuration P 1 and the detuned configuration P 2 are shown in Figure

	Inner disk Radius	19.8 mm
	Outer disk Radius	100 mm
	Disk width	20 mm
	Blade thickness at root section 4.8 mm
	Blade thickness at tip section	2 mm

  )

	Structure	Elements	Nodes	DOFs
	Blade sector	2,714	6,896	20,688
	Disk sector	836	4,554	13,662
	Full structure	85,200	265,080 787,176

TABLE 2 :

 2 Characteristics of the finite element model

  LIN (t) for both patterns P 1 and P 2 . It can be seen that both tuned and detuned structures yield different responses in the time domain. Figures 9 and 10 respectively display the graphs of t → u
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