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Abstract

In this paper, we propose a discretization of the multi-dimensional stationary compressible Navier-Stokes equations
combining finite element and finite volume techniques. As the mesh size tends to 0, the numerical solutions are
shown to converge (up to a subsequence) towards a weak solution of the continuous problem for ideal gas pressure
laws p(ρ) = aργ , with γ > 3/2 in the three-dimensional case. It is the first convergence result for a numerical
method with adiabatic exponents γ less than 3 when the space dimension is three. The present convergence result
can be seen as a discrete counterpart of the construction of weak solutions established by P.-L. Lions and by S.
Novo, A. Novotný.
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1 Introduction

Let Ω be an open bounded connected subset of Rd, with d = 2 or 3, with Lipschitz boundary. We consider
the system of stationary isentropic Navier-Stokes equations, posed for x ∈ Ω:

div(ρu) = 0,

div(ρu⊗ u)− µ∆u− (µ+ λ)∇(divu) + a∇ργ = f .

(1.1a)

(1.1b)

The quantities ρ ≥ 0 and u = (u1, .., ud)
T are respectively the density and velocity of the fluid, while f is

an external force. The pressure satisfies the ideal gas law with a > 0 and γ > 1. Equation (1.1a) expresses
the local conservation of the mass of the fluid while equation (1.1b) expresses the local balance between
momentum and forces. The viscosity coefficients µ and λ are such that µ > 0 and µ+λ > 0. System (1.1)
is complemented with homogeneous Dirichlet boundary conditions on the velocity:

u|∂Ω = 0, (1.2)

and the following average density constraint (up to the normalization by |Ω| it is the same as prescribing
the total mass)

1

|Ω|

∫

Ω

ρ dx = ρ⋆ > 0. (1.3)

Regarding the theoretical results on these equations, the existence of weak solutions has been first
proved by Lions in [26] for adiabatic exponents γ > 5

3 in dimension d = 3, a result which has then
been extended to coefficients γ ∈ (32 ,

5
3 ) by Novo and Novotný in [27]. From the numerical viewpoint,

compressible fluid equations have been intensively studied and several approximations have been designed
in the last few years. In this paper, we consider a stabilized version of a numerical scheme implemented
in the industrial software CALIF3S [1] developed by the French Institut de Radioprotection et de Sûreté
Nucléaire (IRSN, a research center devoted to nuclear safety). This scheme falls in the class of staggered
discretizations in the sense that the scalar variables (density, pressure) are associated with the cells of
a primal mesh M while the vectorial variables (velocity, external force) are associated with the set E
of faces of the primal mesh. Such decoupling, associated here with a Crouzeix-Raviart finite element
discretization [2] (but other non-conforming finite elements are possible, such as the Rannacher-Turek
discretization [29]) of the viscous stress tensor, provides a discrete pressure estimate, thanks to the so-
called discrete inf-sup stability condition (see for instance [17]). This condition, which is also satisfied by
the MAC scheme (see [20], [18], [19]) on structured grids, ensures the unconditional stability of the scheme
in almost incompressible regimes (for instance in the low Mach regime, see [12] and [21]). Let us mention
that, contrary to the MAC scheme (where the domain Ω is assumed to be a finite union of orthogonal
parallelepipeds, and the mesh is composed by a structured partition of rectangular parallelepipeds with cell
faces normal to the coordinate axis), the scheme considered in this paper is able to cope with unstructured
meshes.
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In its reduced form, our numerical scheme reads

divM(ρu) + T 1
stab + T 2

stab = 0,

divE(ρu⊗ u)− µ∆Eu− (µ+ λ)(∇ ◦ div)Eu+ a∇E(ρ
γ) + T 3

stab = Π̃Ef ,

where, as suggested by the notations used for the discrete differential operators, the (scalar) mass equation
is discretized on the primal mesh M, whereas the (vectorial) momentum equation is discretized on a dual
mesh associated with the set of faces E .

The finite element discretization for the viscous stress tensor is here coupled with finite volume dis-
cretizations of the convective terms which allow, thanks to standard techniques, to obtain discrete con-
vection operators satisfying maximum principles (e.g. [23]). The discrete mass convection operator is a
standard finite volume operator defined on the cells of the primal mesh M while the discrete momentum
convection operator is also a finite volume operator written on dual cells, i.e. cells centered at the location
of the velocity unknowns, namely the faces E . A difficulty implied by such staggered discretization lies in
the fact that, as in the continuous case, the derivation of the energy inequality needs that a mass balance
equation be satisfied on the same (dual) cells, while the mass balance in the scheme is naturally written
on the primal cells. A procedure has therefore been developed to define the density on the dual mesh cells
and the mass fluxes through the dual faces from the primal cell density and the primal faces mass fluxes,
which ensures a discrete mass balance on dual cells.

Compared to the continuous problem (1.1), the discrete equations contain three additional “stabiliza-
tion” terms T i

stab that ensure the convergence (up to extracting a subsequence) of the numerical solutions
towards weak solutions of (1.1)-(1.2)-(1.3) as the mesh size tends to 0. The first stabilization term T 1

stab

guarantees the total mass constraint (1.3) at the discrete level. The second stabilization term T 2
stab, which

is a discrete counterpart of a diffusion term for the density, provides an additional (mesh dependent)
estimate on the discrete gradient of the density. As we will explain in details in the core of the paper,
this artificial discrete diffusion is used to show the crucial convergence property satisfied by the effective
viscous flux. The last stabilization term T 3

stab is an artificial pressure gradient which is necessary only if
γ ≤ 3. The precise definitions of the discrete operators and stabilization terms are given in Section 3.

There exist in the literature several recent convergence results for finite element or mixed finite volume
- finite element schemes. In [7], Eymard et al. (see also [13] for the particular case γ = 1, i.e. a linear
pressure term) study the compressible Stokes equations, that correspond to (1.1) where the nonlinear
convective term div(ρu⊗u) is neglected. At the discrete level, two stabilization terms, namely, T 1

stab and
a term similar to T 2

stab, are introduced for the convergence analysis of the numerical scheme. In the case
of Equations (1.1)-(1.2)-(1.3), i.e. with the additional convective term, Gallouët et al. prove in the recent
paper [15] the convergence of the MAC scheme under the condition γ > 3, with only one stabilization
term T 1

stab ensuring the mass constraint (1.3) (we refer to Remark 5.1 below which explains why T 2
stab

is unnecessary for the MAC scheme). Finally, Karper proved in [22] (see also the recent book [9]) a
convergence result in the evolution case, again for γ > 3, and an equivalent of the artificial diffusion term
T 2
stab is also introduced (note that in the evolutionary case there is no additional mass constraint and thus

no need for T 1
stab). Let us mention that for the evolutionary case, error estimates are available in [16] for

the whole range γ > 3
2 , and that convergence results have been obtained in [10] for 1 < γ < 2 within the

framework of dissipative measure-valued solutions, a “weaker” framework than ours.

To the best of our knowledge, our result is the first convergence result in the three-dimensional case for
values γ ∈ (32 , 3] within the framework of weak solutions with finite energy (see Definition 2.1). It provides
an alternative proof of the existence result obtained by Lions or by Novo and Novotný. Compared to
the previous numerical studies dealing with coefficients γ > 3, it requires the introduction of a third
stabilization term T 3

stab, an artificial pressure term weighted by some power of the mesh size: hξ
∇E(ρ

Γ)

3



with Γ > 3. Note that the stabilization terms T 2
stab and T 3

stab are not implemented in practice and are
introduced here for the convergence analysis.

Let us emphasize that the evolution case is beyond the scope of this paper and left for future work.

The paper is organized as follows: in Section 2, we present the main ingredients for the analysis of the
continuous problem (1.1)-(1.2)-(1.3). This section does not present any substantial novelty compared to
the work of Novo and Novotnỳ [27], and the reader already familiar with the analysis of the compressible
Navier-Stokes equations can directly pass to the next sections concerning the discrete problem. Then, in
Section 3, we introduce our numerical scheme and state precisely our main convergence result. We derive
in Section 4 mesh independent estimates and show the existence of solutions to the numerical scheme.
Finally, Section 5 is devoted to the proof of convergence of the numerical method as the mesh size tends
to 0. We provide in the Appendix additional material and proofs.

2 The continuous setting

The aim of this section is to present the main ingredients involved in the analysis of the continuous problem
(1.1)-(1.2)-(1.3) for readers who are not familiar with the compressible Navier-Stokes equations. Although
the existence theory of weak solutions to these equations is now well understood since the works of Lions
[26] and Feireisl [8] (see also [28]), the analysis developed there involves advanced tools (such as weak
compactness methods based on energy estimates, renormalized solutions, effective viscous flux, etc.) that
are to our opinion worth recalling. Especially as these tools will be also crucial in the convergence analysis
of our numerical scheme.

It turns out that the estimates and compactness arguments differ significantly according to the value of
the adiabatic exponent γ appearing in the pressure law. For d = 3 and γ > 3, the case treated in previous
numerical studies, a sketch of the proof of the stability of weak solutions can be found for instance in [15].
We focus here, as in the other sections, on the case d = 3 and γ ∈ (32 , 3] which is the case covered by the
study of Novo and Novotný.
Essentially, the minimal value γ∗ = 3 is the one that ensures a control of the pressure ργ and of the
convective term ρu ⊗ u in L2(Ω). The value γ∗ = 5

3 exhibited by Lions corresponds to the minimal
exponent guaranteeing that ρ is controlled in L2(Ω). As we will explain later on (see Remark 2.4 below),
this control is required to prove that weak solutions are renormalized solutions. This constraint on γ
has been relaxed by Novo, Novotný [27] (and Feireisl [8] in the evolutionary case) to reach γ > 3

2 which
corresponds to the minimal exponent ensuring that ρu⊗ u is controlled in Lp(Ω), with p > 1.

This section is organized as follows: in the first subsection we recall the classical definition of weak
solutions to problem (1.1)-(1.2)-(1.3) and state a stability result on these solutions. We present in the
second subsection the main arguments for the key step of the proof of the stability, that is the proof of
the strong convergence of the density. In the last subsection we explain how to approximate (1.1) in order
to construct effectively weak solutions.

2.1 Definition of weak solutions, stability result

Definition 2.1. Let Ω be a Lipschitz bounded domain of R3. Let γ > 3
2 . Let f ∈ L2(Ω) and ρ⋆ > 0. A

pair (ρ,u) ∈ L3(γ−1)(Ω)×H1
0(Ω) is said to be a weak solution to Problem (1.1)-(1.2)-(1.3) if it satisfies:

Positivity of the density and global mass constraint:

ρ ≥ 0 a.e. in Ω and
1

|Ω|

∫

Ω

ρ dx = ρ⋆. (2.1)
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Equations (1.1a)–(1.1b) are satisfied in the weak sense:

∫

Ω

ρu ·∇φdx = 0 ∀φ ∈ C∞
c (Ω), (2.2)

−
∫

Ω

ρu⊗ u : ∇v dx− a

∫

Ω

ργ div v dx+ µ

∫

Ω

∇u : ∇v dx

+ (λ+ µ)

∫

Ω

divu div v dx =

∫

Ω

f · v dx, ∀v ∈ C∞
c (Ω)3. (2.3)

The pair (ρ,u) ∈ L3(γ−1)(Ω)×H1
0(Ω) is said to be a weak solution with bounded energy if, in addition to

the previous conditions, it satisfies the energy inequality

µ

∫

Ω

|∇u|2 dx+ (λ+ µ)

∫

Ω

(divu)2 dx ≤
∫

Ω

f · udx. (2.4)

Finally the pair (ρ,u) ∈ L3(γ−1)(Ω) ×H1
0(Ω) is said to be a weak renormalized solution if, in addition to

the previous conditions and for any b ∈ C0([0,+∞)) ∩ C1((0,+∞)) such that

|b′(t)| ≤
{

ct−λ0 , λ0 < 1 if t < 1,

ctλ1 , λ1 + 1 ≤ 3(γ−1)
2 if t ≥ 1,

(2.5)

the pair (ρ,u) satisfies

div(b(ρ)u) +
(
b′(ρ)ρ− b(ρ)

)
divu = 0 in D′(R3), (2.6)

where ρ and u have been extended by 0 outside Ω.

Remark 2.1. In the whole paper, we adopt the following notations:

H1
0(Ω) := H1

0(Ω)
d, W

1,p
0 (Ω) := W1,p

0 (Ω)d, Lp(Ω) := Lp(Ω)d, p ∈ [1,+∞].

Remark 2.2. Since γ > 3
2 , we have ρu ∈ L

6
5 (Ω) and by density (2.2) is valid for all φ ∈ W1,6

0 (Ω). In

addition, ρu⊗ u ∈ L1+η(Ω)3 and ργ ∈ L1+η(Ω) for some η > 0 so that (2.3) is valid for all v ∈ W
1,q
0 (Ω)

for all q ∈ [1,+∞).

Remark 2.3. For d = 3, γ > 3, and d = 2, γ > 1, we would get better integrability on ρ. Precisely, we
would have ρ ∈ L2γ(Ω).

Remark 2.4.

• When γ is large enough, namely γ ≥ 5
3 , the following lemma, initially proved by Di Perna and Lions

[3], shows that any weak solution with finite energy of (1.1) is a renormalized weak solution.

Lemma 2.1 ([28] Lemma 3.3). Assume that γ ≥ 5
3 and let ρ ∈ L

3(γ−1)
loc (R3), u ∈ H1

loc(R
3) satisfying

the continuity equation
div(ρu) = 0 in D′(R3).

Then, equation (2.6) holds for any b ∈ C0([0,+∞)) ∩ C1((0,+∞)) satisfying (2.5).
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More precisely, the justification of the renormalized equation requires a preliminary regularization of
the density. The commutator term resulting from this regularization involves in particular products
such as ρ divu which are then controlled precisely under the condition that ρ ∈ L2

loc(R
3) since divu ∈

L2
loc(R

3) (see for instance [28] Lemma 3.1). This condition is achieved as soon as 3(γ − 1) ≥ 2, i.e.
γ ≥ 5

3 . The interested reader is also referred to [11] (Appendix B) for a discussion on the criticality
of the assumption on ρ.

• If the pair (ρ,u) ∈ L3(γ−1)(Ω) × H1
0(Ω) is a renormalized solution which satisfies, instead of the

continuity equation (2.2),

div(ρu) = g in D′(Ω) for some g ∈ L1
loc(R

3),

then, extending ρ, u by zero outside Ω (denoting again ρ,u, g the extended functions), the previous
equation also holds in D′(R3). Moreover, for any b ∈ C1([0,+∞)) satisfying (2.5), denoting bM the
truncated function such that

bM (t) =

{
b(t) if t < M,

b(M) if t ≥ M,

then we have

div(bM (ρ)u) +
(
[bM ]′+(ρ)ρ− bM (ρ)

)
divu = g [bM ]′+(ρ) in D′(R3) (2.7)

where

[bM ]′+(t) =

{
b′(t) if t < M,

0 if t ≥ M.

We now focus on the stability of weak solutions the proof of which is essential for the analysis of the
numerical scheme in the next sections. In Section 2.3, some elements are given for the approximation
procedure that allows to construct such weak solutions.

Theorem 2.2. Let Ω be a Lipschitz bounded domain of R3. Assume that γ ∈ (32 , 3]. Consider sequences
of external forces (fn)n∈N ⊂ L2(Ω) and masses (ρ⋆n)n∈N ⊂ R

∗
+, and an associated sequence (ρn,un)n∈N of

renormalized weak solutions with bounded energy. Assume that ρ⋆n → ρ⋆ > 0 and that (fn)n∈N converges
strongly in L2(Ω) to f . Then, there exist (ρ,u) ∈ L3(γ−1)(Ω)×H1

0(Ω) and a subsequence of (ρn,un)n∈N,
still denoted (ρn,un)n∈N such that:

• The sequence (un)n∈N converges to u in Lq(Ω) for all q ∈ [1, 6),

• The sequence (ρn)n∈N converges to ρ in Lq(Ω) for all q ∈ [1, 3(γ − 1)) and weakly in L3(γ−1)(Ω),

• The sequence (ργn)n∈N converges to ργ in Lq(Ω) for all q ∈ [1, 3(γ−1)
γ ) and weakly in L

3(γ−1)
γ (Ω),

• The pair (ρ,u) is a weak solution of Problem (1.1)-(1.2)-(1.3) with finite energy.

For the sake of brevity, we shall not present the complete proof of Theorem 2.2. Let us recall the
methodology: first we derive the basic uniform estimates which enable us in the next step to derive
compactness results on the sequence (ρn,un)n∈N and to pass to the limit in the mass and momentum
equations as n → +∞. These steps do not present any remarkable difficulty and are just sketched below.
They will be performed in details in the next sections concerning the discrete case. We prefer to focus
here on the final step which consists in proving the strong convergence of the density, convergence which
is essential to pass to the limit in the equation of state (i.e. in the non linear pressure law).

The basic uniform estimates are recalled in the next proposition.
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Proposition 2.3 (Uniform controls). Let Ω be a Lipschitz bounded domain of R3. Assume that γ ∈ (32 , 3].
Let (ρn,un)n∈N be the sequence defined in Theorem 2.2. Then, we have the following a priori controls:

‖un‖H1
0(Ω) + ‖ργn‖L1+η(Ω) + ‖ρn‖L3(γ−1)(Ω) ≤ C(Ω, (‖fn‖L2(Ω))n∈N), ∀n ∈ N, (2.8)

where η = 2γ−3
γ > 0.

The control of the velocity easily follows from the energy inequality (2.4), while the control of the
pressure (and the density) derives from an estimate linked to the so-called Bogovskii operator B defined
in the next Lemma.

Lemma 2.4. Let Ω be a bounded Lipschitz domain of Rd, d ≥ 1. Then, there exists a linear operator B
depending only on Ω with the following properties:

(i) For all q ∈ (1,+∞),

B : Lq
0(Ω) =

{
p ∈ Lq(Ω), s.t. < p >=

1

|Ω|

∫

Ω

p dx = 0
}
→ W

1,q
0 (Ω).

(ii) For all q ∈ (1,+∞) and p ∈ Lq
0(Ω),

div(Bp) = p, a.e. in Ω.

(iii) For all q ∈ (1,+∞), there exists C = C(q,Ω), such that for any p ∈ Lq
0(Ω):

|Bp|
W1,q(Ω) ≤ C ‖p‖Lq(Ω).

The interested reader is referred to [28] (Chapter 3.3) for a proof and additional properties on this
operator. Applying Lemma 2.4 to Pn = aργn and using the resulting field vn = B(Pn− < Pn >) as a test
function in (2.3), one gets the desired control on the pressure and thus on the density.

Thanks to the previous estimates we deduce that up to the extraction of a subsequence, the sequence

(ρn,un, ρ
γ
n) weakly converges to a triple (ρ,u, ργ) ∈ L3(γ−1)(Ω) ×H1

0(Ω)× L
3(γ−1)

γ (Ω). In particular, the
limit (ρ,u, ργ) satisfies the momentum equation in the following sense:

−
∫

Ω

ρu⊗ u : ∇v dx− a

∫

Ω

ργ div v dx+ µ

∫

Ω

∇u : ∇v dx

+ (λ+ µ)

∫

Ω

divu div v dx =

∫

Ω

f · v dx, ∀v ∈ C∞
c (Ω)3. (2.9)

To complete the proof of Theorem 2.2, it remains to identify the limit pressure ργ in (2.9). Namely we
have to pass to the limit in the equation of state and prove that

ργ = ργ a.e. in Ω (2.10)

which is equivalent to proving the strong convergence of the density towards its weak limit.

2.2 Passing to the limit in the equation of state

This is classically obtained in two steps: first by proving some weak compactness property satisfied by the
so-called effective viscous flux defined as (2µ+ λ)divu− aργ , and then, by using the monotonicity of the
pressure to deduce the strong convergence of the sequence of densities (ρn)n∈N.
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2.2.1 Weak compactness of the effective viscous flux

Let us first recall the definition of the curl operator, and a useful identity linked to this operator.

Lemma 2.5 (A differential identity). Let Ω be a Lipschitz bounded domain of R3. For a = (a1, a2, a3)
T

and b = (b1, b2, b3)
T in R

3 we denote a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T ∈ R

3. For a vector
valued function v = (v1, v2, v3)

T , denote curlv = ∇ ∧ v where ∇ = (∂1, ∂2, ∂3)
T . With these notations, if

u ∈ H1(Ω) and v ∈ H1(Ω), the following identity holds:
∫

Ω

∇u : ∇v dx =

∫

Ω

divudiv v dx+

∫

Ω

curlu · curlv dx

+

∫

∂Ω

(∇v.n) · u dσ(x) +

∫

∂Ω

curlv · (u ∧ n) dσ(x)−
∫

∂Ω

div v (u · n) dσ(x). (2.11)

If u ∈ H1
0(Ω) and v ∈ H1(Ω), this identity simplifies to:

∫

Ω

∇u : ∇v dx =

∫

Ω

divu div v dx+

∫

Ω

curlu · curlv dx. (2.12)

We shall also need the next result.

Lemma 2.6. Let Ω be a bounded open set of Rd. Then, there exists a linear operator A with the following
properties:

(i) For all q ∈ (1,+∞),
A : Lq(Ω) → W1,q(Ω).

(ii) For all q ∈ (1,+∞) and p ∈ Lq(Ω),

div(Ap) = p, and curl(Ap) = 0, a.e. in Ω.

(iii) For all q ∈ (1,+∞), there exists C = C(q,Ω), such that for any p ∈ Lq(Ω):

|Ap|
W1,q(Ω) ≤ C ‖p‖Lq(Ω).

Proof. A solution is given by Ap := ∇∆−1(p), where ∆−1 is defined as the inverse of the Laplacian on
R

3, here applied to p extended by 0 outside Ω. The reader is referred to [28] Section 4.4.1 for properties
of the operator A. In particular the operator A does not depend on q.

Proposition 2.7. Let Ω be a Lipschitz bounded domain of R3. Assume that γ ∈ (32 , 3]. Let (ρn,un)n∈N

be the sequence defined in Theorem 2.2. For k ∈ N
∗, define

Tk(t) =

{
t if t ∈ [0, k),

k if t ∈ [k,+∞).
(2.13)

The sequence (Tk(ρn))n∈N is bounded in L∞(Ω) and up to extracting a subsequence, it converges for the
weak-* topology in L∞(Ω) towards some function denoted Tk(ρ). Then, up to extracting a subsequence,
the following identity holds:

lim
n→+∞

∫

Ω

(
(2µ+ λ) divun − aργn

)
Tk(ρn)φdx =

∫

Ω

(
(2µ+ λ) divu− aργ

)
Tk(ρ)φdx, ∀φ ∈ C∞

c (Ω).

(2.14)
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Proof. Let k ∈ N
∗. For n ∈ N, let wn = ATk(ρn) be the field associated with Tk(ρn) through Lemma 2.6.

We have

div wn = Tk(ρn), curl wn = 0, (wn)n∈N is bounded in W1,q(Ω) ∀q ∈ (1,+∞).

Moreover, (wn)n∈N is bounded in L∞(Ω) and up to extracting a subsequence, as n → +∞, it strongly
converges in Lq(Ω) and weakly in W1,q(Ω) for all q ∈ (1,+∞) towards some function w satisfying:

div w = Tk(ρ) and curl w = 0. (2.15)

Let φ ∈ C∞
c (Ω). Considering in (2.3) the test function vn = φwn we get:

−
∫

Ω

ρnun ⊗ un : ∇(φwn) dx− a

∫

Ω

ργn div(φwn) dx+ µ

∫

Ω

∇un : ∇(φwn) dx

+ (λ+ µ)

∫

Ω

divun div(φwn) dx =

∫

Ω

f · (φwn) dx.

Using the formula (2.12) and the fact that div(φwn) = Tk(ρn)φ+wn ·∇φ and curl(φwn) = L(φ)wn where
L(φ) is a matrix involving first order derivatives of φ, we obtain:

∫

Ω

(
aργn − (2µ+ λ)divun

)
Tk(ρn)φdx

= −
∫

Ω

(
aργn − (2µ+ λ)divun

)
wn ·∇φdx+ µ

∫

Ω

curlun · L(φ)wn dx

−
∫

Ω

ρnun ⊗ un : ∇(φwn) dx−
∫

Ω

fn · (φwn) dx

Thanks to the previous estimates and convergences , we are allowed to pass to the limit as n → +∞

lim
n→+∞

∫

Ω

(
aργn − (2µ+ λ)divun

)
Tk(ρn)φdx

= −
∫

Ω

(
aργ − (2µ+ λ)divu

)
w ·∇φdx+ µ

∫

Ω

curlu · L(φ)w dx

− lim
n→+∞

∫

Ω

ρnun ⊗ un : ∇(φwn) dx−
∫

Ω

f · (φw) dx.

An analogous equation can be obtained from the limit momentum equation (2.9) with the test function
φw. It reads: ∫

Ω

(
aργ − (2µ+ λ)divu

)
Tk(ρ)φdx

= −
∫

Ω

(
aργ − (2µ+ λ)divu

)
w · ∇φdx+ µ

∫

Ω

curl(u) · L(φ)w dx

−
∫

Ω

ρu⊗ u : ∇(φw) dx−
∫

Ω

f · (φw) dx.

Comparing the two expressions, we get

lim
n→+∞

∫

Ω

(
aργn − (2µ+ λ)divun

)
Tk(ρn)φdx

=

∫

Ω

(
aργ − (2µ+ λ)divu

)
Tk(ρ)φdx

− lim
n→+∞

∫

Ω

ρnun ⊗ un : ∇(φwn) dx+

∫

Ω

ρu⊗ u : ∇(φw) dx.
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Hence it remains to show the two last integrals are equal, which is not direct since we have only weak
convergence on (ρnun)n∈N and (∇wn)n∈N.

This convective term is usually treated with compensated compactness tools by means of Div-Curl and
commutator lemmas (see [28] Section 4.4). In the case γ > 3, a simpler proof is presented in [15] which
enables to bypass the use of these tools. We adapt this simple proof to our case γ ∈ (32 , 3] by using a
regularization of the velocity un. Let us first extend un and u by 0 on R

3\Ω and introduce the regularized
velocities un,δ = un ∗ωδ and uδ = u∗ωδ, where (ωδ)δ>0 is a mollifying sequence. By standard properties
of the convolution and our a priori control of the velocity un, the following convergences hold (see for
instance [9] Lemma 5 p.75 where a regularization of the velocity is also used)

un,δ −→
n→+∞

uδ strongly in L
q
loc(R

3) ∀q ∈ [1, 6) uniformly in δ,

un,δ −→
δ→0

un strongly in L
q
loc(R

3) ∀q ∈ [1, 6) (uniformly in n),

uδ −→
δ→0

u strongly in L6
loc(R

3).

(2.16)

(2.17)

(2.18)

Since div(ρnun) = 0, we then have, for any δ > 0:
∫

Ω

ρnun ⊗ un : ∇(φwn) dx =

∫

R3

un,δ ⊗ (ρnun) : ∇(φwn) dx+ Rn,δ
1

= −
∫

R3

div(un,δ ⊗ ρnun) · (φwn) dx+Rn,δ
1

= −
∫

R3

(ρnun ·∇)un,δ · (φwn) dx+Rn,δ
1

where

Rn,δ
1 =

∫

R3

(un − un,δ)⊗ (ρnun) : ∇(φwn) dx.

Since (ρnun)n∈N is bounded in Lp(Ω) for some p > 6
5 , (∇wn)n∈N is bounded in Ls(Ω)3 for any s ∈ (1,+∞),

then the following inequality holds, for some triple (p, q, s), such that p > 6
5 , s > 1, q < 6 and 1

p+
1
q +

1
s = 1:

|Rn,δ
1 | ≤ C‖ρnun‖Lp(Ω)‖∇(φwn)‖Ls(Ω)3‖un − un,δ‖Lq(R3)

≤ C‖un − un,δ‖Lq(R3).

As a consequence:

lim sup
n→+∞

|Rn,δ
1 | ≤ C lim sup

n→+∞
‖un − un,δ‖Lq(R3). (2.19)

Thanks to the regularization of the velocity, we ensure that (∇un,δ)n∈N is bounded in L6
loc(R

3)3. The
sequence

(
(ρnun · ∇)un,δ)n∈N = (Qn,δ)n∈N is then bounded in Lr(Ω), for some r > 1 and up to the

extraction of a subsequence, it weakly converges in Lr(Ω) towards some function Qδ ∈ Lr(Ω). We have
∫

Ω

ρnun ⊗ un : ∇(φwn) dx = −
∫

Ω

(ρnun ·∇)un,δ · (φwn) dx+Rn,δ
1

= −
∫

Ω

Qδ · (φw) dx+Rn,δ
1 +Rn,δ

2 (2.20)

where

Rn,δ
2 = −

∫

Ω

Qn,δ · (φwn) dx+

∫

Ω

Qδ · (φw) dx

=

∫

Ω

(
Qδ −Qn,δ

)
· (φw) dx+

∫

Ω

φQn,δ ·
(
w −wn

)
dx.
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Since (wn)n∈N converges strongly to w in Lq(Ω), for all q ∈ (1,+∞), we have

|Rn,δ
2 | → 0 as n → +∞ for any fixed δ > 0. (2.21)

We now want to show thatQδ = (ρu·∇)uδ. To that end, let us consider a fixed test function v ∈ W
1,∞
0 (Ω)

and write (again thanks to the fact that div(ρnun) = 0)

∫

Ω

(ρnun ·∇)un,δ · v dx = −
∫

Ω

un,δ ⊗ (ρnun) : ∇v dx

= −
∫

Ω

uδ ⊗ (ρnun) : ∇v dx+ R̃n,δ
2

=

∫

Ω

div(uδ ⊗ ρnun) · v dx+ R̃n,δ
2

=

∫

Ω

(ρu ·∇)uδ · v dx+ R̃n,δ
2

with

R̃n,δ
2 =

∫

Ω

(uδ − un,δ)⊗ (ρnun) : ∇v dx

which tends to 0 (uniformly with respect to δ) as n → +∞, since (ρnun)n∈N converges weakly to ρu in
Lq1(Ω) for some q1 > 6

5 , and (un,δ)n∈N converges strongly to uδ (uniformly with respect to δ) in Lq2(Ω)
for any q2 < 6. As a consequence, we identify Qδ = (ρu · ∇)uδ. Now, back to (2.20), since at the limit
div(ρu) = 0, we have:

∫

Ω

ρnun ⊗ un : ∇(φwn) dx = −
∫

Ω

(ρu ·∇)uδ · (φw) dx+Rn,δ
1 +Rn,δ

2

=

∫

Ω

ρuδ ⊗ u : ∇(φw) dx+Rn,δ
1 +Rn,δ

2

=

∫

Ω

ρu⊗ u : ∇(φw) dx+Rn,δ
1 +Rn,δ

2 +Rδ
3

where

Rδ
3 =

∫

Ω

(uδ − u)⊗ (ρu) : ∇(φw) dx.

Combining (2.19) and (2.21), we get that for any fixed δ > 0:

lim sup
n→+∞

∣∣∣
∫

Ω

ρnun ⊗ un : ∇(φwn) dx−
∫

Ω

ρu⊗ u : ∇(φw) dx
∣∣∣ ≤ C lim sup

n→+∞
‖un − un,δ‖Lq(R3) + |Rδ

3|,

for some q < 6. By (2.18), we have Rδ
3 → 0 as δ → 0. Hence, by the uniform in n convergence of (un,δ)δ>0

towards un as δ → 0 (2.17), letting δ tend to 0 yields:

lim
n→+∞

∫

Ω

ρnun ⊗ un : ∇(φwn) dx =

∫

Ω

ρu⊗ u : ∇(φw) dx.

We finally conclude that

lim
n→+∞

∫

Ω

(
aργn − (2µ+ λ)divun

)
Tk(ρn)φdx =

∫

Ω

(
aργ − (2µ+ λ)divu

)
Tk(ρ)φdx.
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2.2.2 Strong convergence of the density

Let us begin this subsection with a brief sketch of the general strategy that we will employ. Concentration
phenomena being excluded, the only mechanism which can prevent the strong convergence is the presence
of oscillations. We need to prove that we control these oscillations. For large values of γ, namely γ ≥ 2,
one can show an “improved” version of the weak compactness of the effective viscous flux (2.14) where
Tk(ρn) (resp. Tk(ρ)) is replaced by ρn (resp ρ). Then, passing to the limit n → +∞ in the renormalized
continuity equation

div((ρn ln ρn)un) = −ρndivun in D′(R3),

we get

div(ρ ln ρ u) = −ρdivu in D′(R3),

where all the functions have been extended by zero outside Ω. On the other hand, applying the renormal-
ization theory of Di Perna-Lions (Lemma 2.1) on the limit ρ ∈ L3(γ−1)(Ω), u ∈ H1

0(Ω) we also have

div((ρ ln ρ)u) = −ρdivu in D′(R3). (2.22)

Subtracting this equation from the previous one, we arrive at

div
(
(ρ ln ρ− ρ ln ρ) u

)
= ρdivu− ρdivu in D′(R3).

The weak compactness property of the effective viscous flux yields

div
(
(ρ ln ρ− ρ ln ρ) u

)
=

a

2µ+ λ

(
ρργ − ργ+1

)
in D′(R3).

Integrating in space, we end up with the identity ρργ = ργ+1 a.e., from which the strong convergence of
the density follows by invoking the monotonicity of the pressure (Minty’s trick).

In the arguments presented above, one of the key point is to write (2.22) which requires from the theory
of Di Perna and Lions that ρ ∈ L2(Ω) (see Remark 2.4). The previous proof can be adapted in the case
γ ∈ (53 , 2) using a “weaker” version of the effective viscous flux identity where ρn is essentially replaced by
ραn for some α ∈ (0, 1). This is the case initially demonstrated by Lions in [26]. For smaller values of γ,
i.e. 3

2 < γ ≤ 5
3 , we do not ensure a priori (2.22) since ρ does not belong to L2(Ω). The idea of Feireisl [8]

(adapted then by Novo and Novotný in the stationary case) is to work on the truncated variable Tk(ρ),
defined in (2.13) which is bounded for fixed k (and thus in L2(Ω)). With similar arguments as before, one
may then show the strong convergence of (Tk(ρn))n∈N to Tk(ρ) (uniformly with respect to n in Lγ+1(Ω)).
Combining finally this result with the strong convergence of the truncated variables as k → +∞ (see
Lemma 2.8 below), we will get the strong convergence of (ρn)n∈N.

Properties of the truncation operators Tk.

Lemma 2.8. Under the assumptions of Proposition 2.7, there exists a constant C such that the following
inequality holds for all 1 ≤ q < 3(γ − 1), n ∈ N and k ∈ N

∗:

‖Tk(ρ)− ρ‖Lq(Ω) + ‖Tk(ρ)− ρ‖Lq(Ω) + ‖Tk(ρn)− ρn‖Lq(Ω) ≤ Ck
1

3(γ−1)
− 1

q . (2.23)

Consequently, as k → +∞, the sequences (Tk(ρ))k∈N∗ and (Tk(ρ))k∈N∗ both converge strongly to ρ in Lq(Ω)
for all q ∈ [1, 3(γ − 1)).
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Proof. As a consequence of the inequality

|{ρn ≥ k}| ≤ 1

k

∫

Ω

ρn dx = |Ω|ρ
∗
n

k
≤ C

k

we deduce by Hölder’s inequality that for any q ∈ [1, 3(γ − 1))

‖Tk(ρn)− ρn‖Lq(Ω) = ‖(Tk(ρn)− ρn)X{ρn≥k}‖Lq(Ω)

≤ ‖ρnX{ρn≥k}‖Lq(Ω)
≤ Ck

1
3(γ−1)

− 1
q ‖ρn‖L3(γ−1)(Ω) ≤ Ck

1
3(γ−1)

− 1
q ,

where Xω is the characteristic function of a set ω and where the constant C only depends on q and the
uniform bounds on the sequences (ρ⋆n)n∈N and (‖ρn‖L3(γ−1))n∈N. Doing the same with the limit density ρ,
we get

‖Tk(ρ)− ρ‖Lq(Ω) ≤ Ck
1

3(γ−1)
− 1

q .

Finally, we have:

‖Tk(ρ)− ρ‖Lq(Ω) ≤ lim inf
n→+∞

‖Tk(ρn)− ρn‖Lq(Ω) ≤ lim sup
n→+∞

‖Tk(ρn)− ρn‖Lq(Ω) ≤ Ck
1

3(γ−1)
− 1

q .

which ends the proof.

Lemma 2.9. Under the assumptions of Proposition 2.7, there exists a constant C such that the following
estimate holds:

sup
k>1

lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖Lγ+1(Ω) ≤ C. (2.24)

Proof. First of all, observe that for all r1, r2 ≥ 0, |Tk(r1) − Tk(r2)|γ+1 ≤ (rγ1 − rγ2 )(Tk(r1) − Tk(r2)), and
thus

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx ≤ lim sup
n→+∞

∫

Ω

(ργn − ργ)(Tk(ρn)− Tk(ρ)) dx

≤
∫

Ω

(
ργTk(ρ)− ργ Tk(ρ)

)
dx+

∫

Ω

(
ργ − ργ

)(
Tk(ρ)− Tk(ρ)

)
dx.

Invoking the convexity of the functions t 7→ tγ and t 7→ −Tk(t), we have ργ ≥ ργ and Tk(ρ) ≤ Tk(ρ) so
that

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx ≤
∫

Ω

(
ργTk(ρ)− ργ Tk(ρ)

)
dx.

We can now use the weak compactness property satisfied by the effective viscous flux (2.14):

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx

≤ 2µ+ λ

a
lim sup
n→+∞

∫

Ω

(
Tk(ρn)− Tk(ρ)

)
divun dx

≤ 2µ+ λ

a
lim sup
n→+∞

∫

Ω

(
Tk(ρn)− Tk(ρ)

)
divun dx+

2µ+ λ

a
lim sup
n→+∞

∫

Ω

(
Tk(ρ)− Tk(ρ)

)
divun dx

≤ C lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖L2(Ω).

(2.25)
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Where C depends on the uniform bound on the sequence (‖divun‖L2(Ω))n∈N. Since γ + 1 > 2, we obtain
thanks to Hölder and Young inequalities

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx ≤ C +
1

2
lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖γ+1
Lγ+1(Ω)

which achieves the proof.

Renormalization equation associated with Tk. For any k ∈ N
∗, define

Lk(t) =

{
t(ln t− ln k − 1), if t ∈ [0, k),

−k, if t ∈ [k,+∞),
(2.26)

which belongs to C0([0,+∞)) ∩ C1((0,+∞)) and which is such that

tL′
k(t)− Lk(t) = Tk(t) ∀t ∈ [0,+∞).

Remark 2.5. Note that function Lk can be seen as a truncated version of the function L(t) = t ln t used
in (2.22) for large γ, up to the addition of the linear function t 7→ −(ln k + 1)t.

Proposition 2.10. Let Ω be a Lipschitz bounded domain of R3. Assume that γ ∈ (32 , 3]. Let (ρn,un)n∈N

be the sequence defined in Theorem 2.2 and let (ρ,u) ∈ L3(γ−1)(Ω) × H1
0(Ω) be its limit. Then, for all

k ∈ N
∗, the following equations hold:

div(Lk(ρn)un) + Tk(ρn)divun = 0, in D′(R3), ∀n ∈ N.

div(Lk(ρ)u) + Tk(ρ)divu = 0 in D′(R3).

(2.27)

(2.28)

Proof. Since Lk ∈ C0([0,+∞)) ∩ C1((0,+∞)) satisfies (2.5), and since (ρn,un) is a renormalized solution
of (1.1)-(1.2)-(1.3), in the sense of Definition 2.1, equation (2.27) holds true.

Let us prove that a similar equation is also satisfied for the limit couple (ρ,u). Using the renormalization
property (2.7) satisfied by (ρn,un) for the truncated function TM , M ∈ N

∗, we obtain:

div
(
TM (ρn)un

)
= −

[
ρn[TM ]′+(ρn)− TM (ρn)

]
divun in D′(R3).

which yields as n → +∞

div
(
TM (ρ)u

)
= −

[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu in D′(R3). (2.29)

For k ∈ N
∗ and δ > 0, we introduce the regularized function Lk,δ defined as

Lk,δ(t) = Lk(t+ δ), (2.30)

the derivative of which is bounded close to 0 unlike Lk. Applying Lemma 2.1 (and the second part of
Remark 2.4) to the pair (TM (ρ),u) (justified since TM (ρ) ∈ L∞(Ω) for M fixed) with the function Lk,δ

and the source term g = −
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu ∈ L1

loc(R
3), we get:

div
(
Lk,δ

(
TM (ρ)

)
u
)
+ Tk,δ

(
TM (ρ)

)
divu = −L′

k,δ

(
TM (ρ)

)[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu in D′(R3) (2.31)
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where
Tk,δ(t) = tL′

k,δ(t)− Lk,δ(t).

We now have to pass to the limits M → +∞, δ → 0+. Lemma 2.8 yields the strong convergence of TM (ρ)
to ρ as M → +∞. As a consequence, the left-hand side of (2.31) converges in D′(R3) to

div
(
Lk,δ(ρ)u

)
+ Tk,δ(ρ)divu.

Regarding the right-hand side

−L′
k,δ

(
TM (ρ)

)[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu,

since L′
k,δ(t) = 0 for t > k, we estimate its L1 norm as follows

∣∣∣∣
∫

Ω

L′
k,δ

(
TM (ρ)

)[
ρ[TM ]′+(ρ)− TM (ρ)

]
divudx

∣∣∣∣ ≤ max
t∈[0,k]

|L′
k,δ(t)|

∫

Ω

∣∣∣
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu

∣∣∣XΩM,k
dx

where ΩM,k =
{
x ∈ Ω, TM (ρ)(x) ≤ k

}
. We then have

max
t∈[0,k]

|L′
k,δ(t)|

∫

Ω

∣∣∣
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu

∣∣∣XΩM,k
dx

≤ max
t∈[0,k]

|L′
k,δ(t)| lim inf

n→+∞

∫

Ω

∣∣[ρn[TM ]′+(ρn)− TM (ρn)
]
divun

∣∣XΩM,k
dx

≤ max
t∈[0,k]

|L′
k,δ(t)| lim sup

n→+∞

∫

Ω

∣∣[ρn[TM ]′+(ρn)− TM (ρn)
]
divun

∣∣XΩM,k
dx

≤ C max
t∈[0,k]

|L′
k,δ(t)| lim sup

n→+∞
‖TM (ρn)XΩM,k∩{ρn≥M}‖L2(Ω)

, (2.32)

since the sequence (‖divun‖L2(Ω))n∈N is bounded. We already know that TM (ρn)XΩM,k∩{ρn≥M} is con-

trolled in L1(Ω) since

‖TM(ρn)XΩM,k∩{ρn≥M}‖L1(Ω)
≤ ‖ρnX{ρn≥M}‖L1(Ω)

≤ CM
1

3(γ−1)
−1‖ρn‖L3(γ−1)(Ω) ≤ CM

1
3(γ−1)

−1,

where the constant C only depends on the uniform bounds on the sequences (ρ⋆n)n∈N and (‖ρn‖L3(γ−1))n∈N.
Therefore, by an interpolation inequality, we obtain:

lim sup
n→+∞

‖TM (ρn)XΩM,k∩{ρn≥M}‖L2(Ω)

≤ C lim sup
n→+∞

‖TM(ρn)XΩM,k∩{ρn≥M}‖
γ−1
2γ

L1(Ω)‖TM (ρn)XΩM,k∩{ρn≥M}‖
γ+1
2γ

Lγ+1(Ω)

≤ CM
γ−1
2γ

(
1

3(γ−1)
−1
)
lim sup
n→+∞

(
‖
(
TM (ρn)− TM (ρ)

)
XΩM,k

‖
Lγ+1(Ω)

+ ‖TM(ρ)XΩM,k
‖
Lγ+1(Ω)

) γ+1
2γ

≤ CM
γ−1
2γ

(
1

3(γ−1)
−1
)
lim sup
n→+∞

(
‖
(
TM (ρn)− TM (ρ)

)
‖
Lγ+1(Ω)

+ k|Ω| 1
γ+1

) γ+1
2γ

Thanks to Lemma 2.9, we deduce that

lim sup
n→+∞

‖TM (ρn)XΩM,k∩{ρn≥M}‖L2(Ω)
≤ C(k,Ω)M

γ−1
2γ

(
1

3(γ−1)
−1
)
→ 0 as M → +∞.
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Injecting in (2.32), we get

max
t∈[0,k]

|L′
k,δ(t)|

∫

Ω

∣∣∣
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divu

∣∣∣XΩM,k
dx → 0 as M → +∞.

Note that to get this result, we have been forced to regularize the function Lk (see (2.30)) in order to
control its derivative close to 0. Hence, passing to the limit M → +∞ in (2.31) we get

div
(
Lk,δ(ρ)u) + Tk,δ(ρ)divu = 0, in D′(R3), ∀ k ∈ N

∗, δ > 0.

Now, observe that for all t ∈ [0,+∞)

Lk,δ(t) −→
δ→0+

Lk(t),

Tk,δ(t) = tL′
k,δ(t)− Lk,δ(t) −→

δ→0+
tL′

k(t)− Lk(t) = Tk(t).

Moreover, since for all t ∈ [0,+∞) and δ ∈ (0, 1), we have |Lk,δ(t)| ≤ k and

|Tk,δ(t)| = |Tk(t+ δ)− δL′
k(t+ δ)|

≤ k + δ| ln(t+ δ)− ln k|X{t+δ≤k} ≤ k + δ
(
| ln δ|+ t

δ
+ ln k

)
X{t+δ≤k} ≤ C(k),

we can pass to the limit δ → 0+ thanks to the Lebesgue Dominated Convergence Theorem to get

div
(
Lk(ρ)u) + Tk(ρ)divu = 0, in D′(R3),

for all k ∈ N
∗ which concludes the proof.

Strong convergence of the density

Proposition 2.11. Let Ω be a Lipschitz bounded domain of R3. Assume that γ ∈ (32 , 3]. Let (ρn,un)n∈N

be the sequence defined in Theorem 2.2 and let (ρ,u) ∈ L3(γ−1)(Ω)×H1
0(Ω) be its limit. Up to extraction,

the sequence (ρn)n∈N strongly converges towards ρ in Lq(Ω) for all q ∈ [1, 3(γ − 1)).

Proof. Integrating the renormalized continuity equations (2.27) and (2.28) and summing, one obtains:

∫

Ω

Tk(ρn)divun dx−
∫

Ω

Tk(ρ)divu dx = 0, ∀n ∈ N.

We then use this identity in inequality (2.25) to deduce that

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx

≤ 2µ+ λ

a
lim sup
n→+∞

∫

Ω

(
Tk(ρn)− Tk(ρ)

)
divun dx

=
2µ+ λ

a

∫

Ω

(Tk(ρ)− Tk(ρ)) divu dx+ lim sup
n→+∞

(∫

Ω

Tk(ρn)divun dx−
∫

Ω

Tk(ρ)divu dx
)

=
2µ+ λ

a

∫

Ω

(Tk(ρ)− Tk(ρ)) divu dx.
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Using Lemma 2.8 we infer that
∣∣∣∣
∫

Ω

(Tk(ρ)− Tk(ρ)) divu dx

∣∣∣∣ ≤ ‖divu‖L2(Ω)‖Tk(ρ)− Tk(ρ)‖L2(Ω)

≤ C‖Tk(ρ)− Tk(ρ)‖
γ−1
2γ

L1(Ω)‖Tk(ρ)− Tk(ρ)‖
γ+1
2γ

Lγ+1(Ω)

≤ C
(
‖Tk(ρ)− ρ‖L1(Ω) + ‖Tk(ρ)− ρ‖L1(Ω)

) γ−1
2γ ‖Tk(ρ)− Tk(ρ)‖

γ+1
2γ

Lγ+1(Ω)

≤ Ck
γ−1
2γ

(
1

3(γ−1)
−1
)
‖Tk(ρ)− Tk(ρ)‖

γ+1
2γ

Lγ+1(Ω)

≤ Ck
γ−1
2γ

(
1

3(γ−1)
−1
)(

lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖Lγ+1(Ω)

) γ+1
2γ

.

As a consequence of Lemma 2.9, we have

lim
k→+∞

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx = 0,

and thus

lim
k→+∞

lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖L1(Ω) = 0. (2.33)

We conclude to the strong convergence of the density by writing

‖ρ− ρn‖L1(Ω) ≤ ‖ρn − Tk(ρn)‖L1(Ω) + ‖Tk(ρn)− Tk(ρ)‖L1(Ω) + ‖Tk(ρ)− ρ‖L1(Ω).

Passing to the limit superior n → +∞ in this inequality, using again Lemma 2.8 and the previous estimate
(2.33) to then pass to the limit k → +∞ yields the strong convergence of the density in L1(Ω) and therefore
in Lq(Ω) for all q ∈ [1, 3(γ − 1)).

2.3 Elements for the construction of weak solutions

The previous subsections were concerned with the stability of weak solutions of Problem (1.1)-(1.2)-(1.3).
An important step is the effective construction of such weak solutions by means of successive approxima-
tions. This construction is sketched by Lions in [26] for the case γ > 5

3 and detailed by Novo and Novotný
in [27] for the case γ > 3

2 . The approximation procedure is usually decomposed into three steps:

• addition in the momentum equation of an artificial pressure term δ∇ρΓ with Γ sufficiently large,
namely Γ > 3;

• addition of a relaxation term α(ρ− ρ⋆) in the mass equation in order to ensure that the total mass
constraint (1.3) is satisfied at the approximate level;

• addition of a diffusion or regularization term (e.g. −ε∆ρ) in the mass equation which regularizes the
density.

As a consequence of the modification of the mass equation, the momentum equation can also involve
additional perturbation terms depending on α and ε, in order to ensure the preservation of the energy
inequality (see details in [27] or [28]). The parameters δ, α, ε being fixed, the existence of weak solutions
is obtained by a fixed point argument. Then, the proof consists in passing to the limit successively with
respect to ε, α and then finally with respect to δ.

In the next section, we present our numerical scheme which essentially reproduces at the discrete level
the previous three approximation terms. Nevertheless, the parameters ε, α, δ are no more independent in
the discrete case, they shall all depend on the mesh size and converge to 0 as the mesh size tends to 0. In
that sense, the convergence result that we obtain in the next sections can be seen as an alternative proof
of existence of weak solutions to the stationary problem (1.1)-(1.2)-(1.3).
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Figure 1: Notations for primal and dual cells. Primal cells are delimited with bold lines, dual cells are in
grey.

3 The discrete setting, presentation of the numerical scheme

3.1 Meshes and discretization spaces

Let Ω be an open bounded connected subset of Rd, d = 2 or 3. We assume that Ω is polygonal if d = 2
and polyhedral if d = 3.

Definition 3.1 (Staggered mesh). A staggered discretization of Ω, denoted by D, is given by a pair
D = (M, E), where:

• M, the so-called primal mesh, is a finite family composed of non empty simplices. The primal mesh
M is assumed to form a partition of Ω : Ω = ∪K∈MK. For any simplex K ∈ M, let ∂K = K \K be
the boundary of K, which is the union of cell faces. We denote by E the set of faces of the mesh, and
we suppose that two neighboring cells share a whole face: for all σ ∈ E, either σ ⊂ ∂Ω or there exists
(K,L) ∈ M2 with K 6= L such that K ∩L = σ; we denote in the latter case σ = K|L. We denote by
Eext and Eint the set of external and internal faces: Eext = {σ ∈ E , σ ⊂ ∂Ω} and Eint = E \ Eext. For
K ∈ M, E(K) stands for the set of faces of K. The unit vector normal to σ ∈ E(K) outward K is
denoted by nK,σ. In the following, the notation |K| or |σ| stands indifferently for the d-dimensional
or the (d− 1)-dimensional measure of the subset K of Rd or σ of Rd−1 respectively.

• We define a dual mesh associated with the faces σ ∈ E as follows. For K ∈ M and σ ∈ E(K), we
define DK,σ as the cone with basis σ and with vertex the mass center of K (see Figure 1). We thus
obtain a partition of K in m sub-volumes, where m is the number of faces of K, each sub-volume
having the same measure |DK,σ| = |K|/m. The volume DK,σ is referred to as the half-diamond cell
associated with K and σ. For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated with
σ by Dσ = DK,σ ∪DL,σ. For σ ∈ Eext ∩ E(K), we define Dσ = DK,σ. We denote by Ẽ(Dσ) the set
of faces of Dσ, and by ǫ = Dσ|Dσ′ the face separating two diamond cells Dσ and Dσ′ . As for the
primal mesh, we denote by Ẽint the set of dual faces included in the domain Ω and by Ẽext the set of
dual faces lying on the boundary ∂Ω. In this latter case, there exists σ ∈ Eext such that ǫ = σ.

Definition 3.2 (Size of the discretization). Let D = (M, E) be a staggered discretization of Ω. For every
K ∈ M, we denote hK the diameter of K ( i.e. the 1D measure of the largest line segment included in K).
The size of the discretization is defined by:

hM = max
K∈M

hK .
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Definition 3.3 (Regularity of the discretization). Let D = (M, E) be a staggered discretization of Ω. For
every K ∈ M, denote ̺K the radius of the largest ball included in K. The regularity parameter of the
discretization is defined by:

θM = max
{hK

̺K
, K ∈ M

}
∪
{hK

hL
,
hL

hK
, σ = K|L ∈ Eint

}
. (3.1)

Relying on Definition 3.1, we now define a staggered space discretization. The degrees of freedom for
the density (i.e. the discrete density unknowns) are associated with the cells of the mesh M:

{
ρK , K ∈ M

}
.

The discrete density unknowns are associated with piecewise constant functions on the cells of the primal
mesh.

Definition 3.4. Let D = (M, E) be a staggered discretization of Ω. We denote LM(Ω) the space of scalar
functions that are constant on each primal cell K ∈ M. For ρ ∈ LM(Ω) and K ∈ M, we denote ρK the
constant value of ρ on K. We denote LM,0(Ω) the subspace of LM(Ω) composed of zero average functions
over Ω.

The degrees of freedom for the velocity are associated with the faces of the mesh M or equivalently
with the cells of the dual mesh Dσ, σ ∈ E so the set of discrete velocity unknowns reads:

{uσ ∈ R
d, σ ∈ E}.

The discrete velocity unknowns are associated with the Crouzeix-Raviart finite element. For all K ∈ M,
the restriction of the discrete velocity belongs to P1(K) the space of polynomials of degree less than one
defined on K.

The space of discrete velocities is given in the following definition.

Definition 3.5. Let D = (M, E) be a staggered discretization of Ω as defined in Definition 3.1. We denote
HM(Ω) the space of functions u such that u|K ∈ P1(K) for all K ∈ M and such that:

1

|σ|

∫

σ

[u]σ dσ(x) = 0, ∀σ ∈ Eint, (3.2)

where [u]σ is the jump of u through σ which is defined on σ = K|L by [u]σ = u|L − u|K . We define
HM,0(Ω) ⊂ HM(Ω) the subspace of HM(Ω) composed of functions the degrees of freedom of which are zero
over ∂Ω, i.e. the functions u ∈ HM(Ω) such that 1

|σ|

∫
σ u dσ(x) = 0 for all σ ∈ Eext. Finally, we denote

HM(Ω) := HM(Ω)d and HM,0(Ω) := HM,0(Ω)
d.

For a discrete velocity field u ∈ HM(Ω) and σ ∈ E , the degree of freedom associated with σ is given
by:

uσ =
1

|σ|

∫

σ

udσ(x). (3.3)

Although u ∈ HM(Ω) is discontinuous across an internal face σ ∈ Eint, the definition of uσ is unambiguous
thanks to (3.2).
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3.2 The numerical scheme

Let Ω be a polyhedral domain of Rd. Let D = (M, E) be a staggered discretization of Ω as defined in
Definition 3.1. The continuity equation is discretized on the primal mesh, while the momentum balance is
discretized on the dual mesh. The scheme reads as follows:

Solve for ρ ∈ LM(Ω) and u ∈ HM,0(Ω):

divM(ρu) + hξ1
M (ρ− ρ⋆)− hξ2

M ∆ 1+η
η

,M(ρ) = 0,

divE(ρu⊗ u)− µ∆Eu− (µ+ λ)(∇ ◦ div)Eu+ a∇E(ρ
γ) + hξ3

M ∇E(ρ
Γ) = Π̃Ef ,

(3.4a)

(3.4b)

where η = 2γ−3
γ .

The discrete space differential operators involved in (3.4a) and (3.4b), as well as their main properties,
are described in the following lines. The positive constants Γ and (ξ1, ξ2, ξ3) will be determined so as to
ensure the convergence of the numerical solution towards a weak solution of (1.1)-(1.2)-(1.3).

Mass convection operator – Given discrete density and velocity fields ρ ∈ LM(Ω) and u ∈ HM,0(Ω),
the discretization of the mass convection term is given by:

divM(ρu)(x) =
∑

K∈M

1

|K|
( ∑

σ∈E(K)

FK,σ(ρ,u)
)
XK(x), (3.5)

where XK is the characteristic function of the subset K of Ω. The quantity FK,σ(ρ,u) stands for the mass
flux across σ outward K. By the impermeability boundary conditions, it vanishes on external faces and is
given on internal faces by:

FK,σ(ρ,u) = |σ| ρσ uσ · nK,σ, ∀σ ∈ Eint, σ = K|L. (3.6)

The density at the face σ = K|L is approximated by the upwind technique, i.e.

ρσ =

{
ρK if uσ · nK,σ ≥ 0,

ρL otherwise.
(3.7)

Stabilization terms in the mass equation – The discrete mass equation involves two stabilization
terms. The first stabilization term is there to ensure the total mass constraint at the discrete level (1.3):

hξ1
M (ρ(x)− ρ⋆) = hξ1

M

∑

K∈M

(ρK − ρ⋆)XK(x).

The second stabilization term in the discrete mass equation (3.4a) is defined as follows:

−∆ 1+η
η

,M(ρ)(x) =
∑

K∈M

1

|K|
( ∑

σ∈E(K)∩Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)

)
XK(x). (3.8)

Its aim is to provide a control on a discrete analogue of the W1, 1+η
η (Ω) semi-norm of ρ by some (negative)

power of the discretization parameter hM. This control appears to be necessary in the convergence analysis,
when passing to the limit in the equation of state, see Remark 5.1.
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Velocity convection operator – Given discrete density and velocity fields ρ ∈ LM(Ω) and u ∈
HM,0(Ω), the discretization of the mass convection term is given by:

divE(ρu⊗ u)(x) =
∑

σ∈Eint

1

|Dσ|
( ∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ,u) uǫ

)
XDσ

(x). (3.9)

Fσ,ǫ(ρ,u) is the mass flux across the edge ǫ of the dual cell Dσ. Its value is zero if ǫ ∈ Ẽext. Otherwise, it
is defined as a linear combination, with constant coefficients, of the primal mass fluxes at the neighboring
faces. For K ∈ M and σ ∈ E(K), let ξσK be given by:

ξσK =
|DK,σ|
|K| =

1

d+ 1
, (3.10)

so that
∑

σ∈E(K) ξ
σ
K = 1. Then the mass fluxes through the inner dual faces are calculated from the primal

mass fluxes FK,σ(ρ,u) as follows. We first incorporate the second stabilization term (see (3.8)) into the
primal mass fluxes by defining FK,σ(ρ,u) as follows:

FK,σ(ρ,u) = FK,σ(ρ,u) + hξ2
M |σ|

( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL), ∀σ ∈ Eint, σ = K|L. (3.11)

The dual mass fluxes Fσ,ǫ(ρ,u) are then computed to as to satisfy the following three conditions:

(H1) The discrete mass balance over the half-diamond cells is satisfied, in the following sense. For all
primal cell K in M, the set (Fσ,ǫ(ρ,u))ǫ⊂K of dual fluxes included in K solves the following linear
system

FK,σ(ρ,u) +
∑

ǫ∈Ẽ(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u) = ξσK
∑

σ′∈E(K)

FK,σ′(ρ,u), σ ∈ E(K). (3.12)

(H2) The dual fluxes are conservative, i.e. for any dual face ǫ = Dσ|Dσ′ , we have Fσ,ǫ(ρ,u) = −Fσ′,ǫ(ρ,u).

(H3) The dual fluxes are bounded with respect to the primal fluxes (FK,σ(ρ,u))σ∈E(K), in the sense that

|Fσ,ǫ(ρ,u)| ≤ max
{
|FK,σ′ (ρ,u)|, σ′ ∈ E(K)

}
, (3.13)

for K ∈ M, σ ∈ E(K), ǫ ∈ Ẽ(Dσ) with ǫ ⊂ K.

The system of equations (3.12) does not depend on the particular cell K since it only depends on the coef-
ficient ξσK = 1/(d+1). It has an infinite number of solutions, which makes necessary to impose in addition
the constraint (3.13); however, assumptions (H1)-(H3) are sufficient for the subsequent developments, in
the sense that any choice for the expression of the dual fluxes satisfying these assumptions yields stable
and consistent schemes (see [25, 24]).

This convection operator is built so that a discrete mass conservation equation similar to (3.4a) is also
satisfied on the cells of the dual mesh. Indeed, let (ρ,u) ∈ LM(Ω)×HM(Ω) and define a constant density
on the dual cells ρDσ

as follows:

|Dσ|ρDσ
= |DK,σ|ρK + |DL,σ|ρL for σ = K|L.

Then if (ρ,u) satisfy (3.4a), one has:

∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ,u) + hξ1
M|Dσ| (ρDσ

− ρ⋆) = 0, ∀σ ∈ Eint, (3.14)
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which is an analogue of (3.4a) where the stabilization diffusion term is hidden in the dual fluxes.

To complete the definition of the momentum convective term, we must give the expression of the
velocity uǫ at the dual face. As already said, a dual face lying on the boundary is also a primal face, and
the flux across that face is zero. Therefore, the values uǫ are only needed at the internal dual faces; we
choose them to be centered:

uǫ =
1

2
(uσ + uσ′), for ǫ = Dσ|D′

σ.

Diffusion operator – Let us define the shape functions associated with the Crouzeix-Raviart finite
element. These are the functions (ζσ)σ∈E where for all σ ∈ E , ζσ is the element of HM(Ω) which satisfies:

1

|σ′|

∫

σ′

ζσ dσ(x) =

{
1, if σ′ = σ,
0, if σ′ 6= σ.

Given a discrete velocity field u ∈ HM,0(Ω), the discretization of the diffusion terms is given by:

∆Eu(x) =
∑

σ∈Eint

1

|Dσ|
( ∑

K∈M

∫

K

∇u .∇ζσ dx
)
XDσ

(x),

(∇ ◦ div)Eu(x) =
∑

σ∈Eint

1

|Dσ|
( ∑

K∈M

∫

K

divu∇ζσ dx
)
XDσ

(x).

(3.15)

Pressure gradient operator – Given a discrete density field ρ ∈ LM(Ω), the pressure gradient term
is discretized as follows:

∇E(ρ
γ)(x) =

∑

σ∈Eint

σ=K|L

( |σ|
|Dσ|

(ργL − ργK) nK,σ

)
XDσ

(x). (3.16)

The discrete momentum equation (3.4b) also involves a third stabilization term, an artificial pressure term,
which reads:

hξ3
M ∇E(ρ

Γ)(x) = hξ3
M

∑

σ∈Eint

σ=K|L

( |σ|
|Dσ|

(ρΓL − ρΓK) nK,σ

)
XDσ

(x),

where Γ > γ is chosen large enough to ensure a control on the discrete weak formulation of the convective
term in the momentum equation when γ ∈ (32 , 3]. Note that, if d = 3 and γ > 3 or d = 2 and γ > 2, this
term is not needed.

Source term – The source term f ∈ L2(Ω) is discretized with the following projection operator:

Π̃Ef(x) =
∑

σ∈Eint

( 1

|Dσ|

∫

Dσ

f dx
)
XDσ

(x). (3.17)

3.3 Main result: convergence of the scheme

Definition 3.6 (Regular sequence of discretizations). A sequence (Dn)n∈N of staggered discretizations is
said to be regular if:

(i) there exists θ0 > 0 such that θMn
≤ θ0 for all n ∈ N,
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(ii) the sequence of space steps (hMn
)n∈N tends to zero as n tends to +∞.

For the clarity of the presentation, we state our convergence result in the same setting as for the
continuous problem, namely for d = 3 and γ ∈ (32 , 3]. We refer to the remark below for the “simpler” cases
d = 2, and d = 3 with γ > 3.

Theorem 3.1 (Convergence of the scheme). Let Ω be a polyhedral connected open subset of R
3. Let

f ∈ L2(Ω) and ρ⋆ > 0. Assume that γ ∈ (32 , 3]. Denoting η = 2γ−3
γ ∈ (0, 1], assume that Γ and (ξ1, ξ2, ξ3)

satisfy:

(i) ξ1 > 1,

(ii)
5

4Γ

(
3

1 + η
+ ξ3

)
<

η

1 + η
,

(iii)
1

η
+

5

4ηΓ

(
3

1 + η
+ ξ3

)
< ξ2 <

1 + η

η
− 5

4Γ

(
3

1 + η
+ ξ3

)
.

(3.18)

(3.19)

(3.20)

Let (Dn)n∈N be a regular sequence of staggered discretizations of Ω as defined in Definition 3.6. Then
there exists N ∈ N such that for all n ≥ N , there exists a solution (ρn,un) ∈ LMn

(Ω)×HMn,0(Ω) to the
numerical scheme (3.4) with the discretization Dn and the obtained density ρn is positive on Ω. Moreover,
there exist (ρ,u) ∈ L3(γ−1)(Ω)×H1

0(Ω) and a subsequence of (ρn,un)n≥N , denoted (ρn,un)n∈N such that:

• The sequence (un)n∈N converges to u in Lq(Ω) for all q ∈ [1, 6),

• The sequence (ρn)n∈N converges to ρ in Lq(Ω) for all q ∈ [1, 3(γ − 1)) and weakly in L3(γ−1)(Ω),

• The sequence (ργn)n∈N converges to ργ in Lq(Ω) for all q ∈ [1, 3(γ−1)
γ ) and weakly in L

3(γ−1)
γ (Ω),

• The pair (ρ,u) is a weak solution of Problem (1.1)-(1.2)-(1.3) with finite energy.

Remark 3.1 (Some remarks on Theorem 3.1).

• Let us mention that the convergence result of Theorem 3.1 can be extended to the cases d = 3, γ > 3
and d = 2, γ > 2 with the mass stabilization term defined as

−hξ2
M∆Mρ(x) = hξ2

M

∑

K∈M

1

|K|
( ∑

σ∈E(K)∩Eint

σ=K|L

|σ| |σ|
|Dσ|

(ρK − ρL)
)
XK(x),

and without the artificial pressure term. The required constraints on (ξ1, ξ2) are the following:

ξ1 > 1 if d = 3 and ξ1 > 0 if d = 2,

3

2
< ξ2 < 2.

In the case d = 2, 1 < γ ≤ 2, we expect a convergence result with the stabilization term proposed in
[7] combined with an artificial pressure term.

• The upper bound on ξ2 is required when passing to the limit in the effective viscous flux at the
discrete level (see Subsection 5.3.1 and (5.25)). The lower bound on ξ2 is required for the control
on the momentum convective term when deriving the discrete estimate on the density (see (4.19)),
which explains why this constraint was not introduced in [7] for the Stokes equations.
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The following sections are devoted to the proof of Theorem 3.1. In Section 4.1, we introduce some
notations and properties of the discretization. In Sections 4.2 to 4.5, we derive a priori estimates on
the solution of the scheme and prove its existence provided a small enough space step hM. Finally, in
Section 5, we prove Theorem 3.1 by successively passing to the limit in the discrete mass and momentum
equations, and then in the equation of state.

4 Mesh independent estimates and existence of a discrete solu-

tion

4.1 Discrete norms and properties

We gather in this section some preliminary mathematical results which are useful for the analysis of the
numerical scheme. Similar results have been previously used by Gallouët et al. in their study [13] which
also relies on a mixed FV-FE discretization. The interested reader is also referred to the books [5], [6], [4]
and to the appendix of [16].

We start with defining the piecewise smooth first order differential operators associated with the
Crouzeix-Raviart non-conforming finite element representation of velocities u ∈ HM(Ω) :

∇Mu(x) =
∑

K∈M

∇u(x)XK(x),

divM u(x) =
∑

K∈M

divu(x)XK(x),

curlMu(x) =
∑

K∈M

curlu(x)XK(x).

(4.1)

(4.2)

(4.3)

Note that on each element K ∈ M, ∇u|K ∈ R
d is actually a constant and the divergence defined in (4.2)

matches the finite volume divergence defined in (3.5) for ρ ≡ 1.

We then define for q ∈ [1,∞) the broken Sobolev W1,q semi-norm ‖.‖1,q,M associated with the Crouzeix-
Raviart finite element representation of the discrete velocities. For any u ∈ HM(Ω) it is given by:

‖u‖q1,q,M =

∫

Ω

|∇Mu|q dx.

Lemma 4.1 (Discrete Sobolev inequality). Let D = (M, E) be a staggered discretization of Ω such that
θM ≤ θ0 (where θM is defined by (3.1)) for some positive constant θ0. Then, for all q ∈ [1,+∞) if d = 2
and for all q ∈ [1, 6] if d = 3, there exists C = C(q, d, θ0) > 0 such that:

‖u‖
Lq(Ω) ≤ C ‖u‖1,2,M, ∀u ∈ HM,0(Ω).

A consequence of this Sobolev embedding is a discrete Poincaré inequality. Note that the semi-norm
‖u‖1,2,M is in fact a norm on the space HM,0(Ω).

Lemma 4.2 (Discrete Poincaré inequality). Let D = (M, E) be a staggered discretization of Ω such that
θM ≤ θ0 (where θM is defined by (3.1)) for some positive constant θ0. Then there exists C = C(d, θ0)
such that

‖u‖
L2(Ω) ≤ C ‖u‖1,2,M, ∀u ∈ HM,0(Ω).
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It will be convenient in the analysis of the scheme to handle several representations of the discrete
velocities. We define an interpolation operator ΠE which associates a piecewise constant function over the
cells of the dual mesh to any function u ∈ HM(Ω) as follows:

ΠEu(x) =
∑

σ∈Eint

uσ XDσ
(x). (4.4)

The constant value of ΠEu over the cell Dσ is uσ defined in (3.3). The mapping u 7→ ΠEu is a one-to-
one mapping which is continuous with respect to the Lq-norm, for all q ∈ [1,+∞]. Indeed, we have the
following result.

Lemma 4.3. Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0 (where θM is defined
by (3.1)) for some positive constant θ0. Then, for all q ∈ [1,+∞], there exists a constant C = C(q, d, θ0)
such that:

‖ΠEu‖Lq(Ω) ≤ C ‖u‖
Lq(Ω).

We also define a finite-volume type gradient for the velocities associated with the dual mesh. This
gradient is somehow a vector version of the gradient ∇E defined in (3.16) for scalar function in LM(Ω).
For u ∈ HM(Ω) and K ∈ M, denote uK =

∑
σ∈E(K) ξ

σ
K uσ where ξσK is defined in (3.10). The finite-

volume gradient of u is defined by:

∇Eu(x) =
∑

σ∈Eint

σ=K|L

( |σ|
|Dσ|

(uL − uK)⊗ nK,σ

)
XDσ

(x). (4.5)

We also introduce the following other discrete W1,q semi-norm given for u ∈ HM(Ω) by:

‖u‖q1,q,E =
∑

K∈M

hd−q
K

∑

σ,σ′∈E(K)

|uσ − uσ′ |q.

This semi-norm may be shown to be equivalent, over a regular sequence of discretizations, to the usual
finite volume W1,q semi-norm associated with the piecewise constant function ΠEu. It is possible to prove
that this semi-norm, as well as the semi-norm defined by the Lq norm of ∇Eu are controlled on a regular
discretization by the finite-element W1,q semi-norm. Indeed, we have the following lemma.

Lemma 4.4. Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0 (where θM is defined by
(3.1)) for some positive constant θ0. Then for all q ∈ [1,+∞) there exist two constants C1 = C1(q, d, θ0)
and C2 = C2(q, d, θ0) such that:

‖∇Eu‖Lq(Ω)d ≤ C1 ‖u‖1,q,E ≤ C2 ‖u‖1,q,M, ∀u ∈ HM(Ω).

Lemma 4.5 (Inverse inequalities). Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0
(where θM is defined by (3.1)) for some positive constant θ0. Let u be a function defined on Ω such that for
all K ∈ M, u|K belongs to a finite dimensional space of functions which is stable by affine transformation.
Then, for all q, p ∈ [1,+∞], there exists C = C(q, p, θ0, d) such that (with 1/∞ = 0):

‖u‖Lq(K) ≤ C h
d( 1

q
− 1

p )
K ‖u‖Lp(K), ∀K ∈ M. (4.6)

Hence, for all p ∈ [1,+∞), there exists C = C(p, θ0) such that :

‖u‖L∞(Ω) ≤ C h
− d

p

M ‖u‖Lp(Ω). (4.7)
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For q ∈ [1,+∞), we introduce a discrete semi-norm on LM(Ω) similar to the usual W1,q semi-norm
used in the finite volume context:

|ρ|qq,M := ‖∇E(ρ)‖qLq(Ω) =
∑

σ∈Eint

σ=K|L

|Dσ|
( |σ|
|Dσ|

)q
|ρK − ρL|q.

It will be convenient in the analysis of the scheme to handle another representation of the discrete
densities associated with the upwind discretization of the mass flux. For u ∈ HM,0(Ω) we define an
interpolation operator PE which associates a piecewise constant function over the cells of the dual mesh
to any function ρ ∈ LM(Ω) as follows:

PEρ(x) =
∑

σ∈Eint

ρσ XDσ
(x). (4.8)

The constant value of PEρ over the cell Dσ, σ = K|L ∈ Eint is ρσ the upwind value with respect to uσ,
i.e. ρσ = ρK is uσ · nK,σ ≥ 0 and ρσ = ρL otherwise.

Lemma 4.6. Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0 (where θM is defined
by (3.1)) for some positive constant θ0. For all q ∈ [1,+∞], there exists a constant C = C(q, θ0) such
that:

‖PEρ‖Lq(Ω) ≤ C‖ρ‖Lq(Ω), ∀ρ ∈ LM(Ω).

4.2 Positivity of the density and discrete renormalization property

We begin this subsection with the next proposition which states the positivity of the discrete density
ρ ∈ LM(Ω) if (ρ,u) is a solution of the discrete mass balance (3.4a).

Proposition 4.7 (Positivity of the density). Let D = (M, E) be a staggered discretization of Ω. Let
(ρ,u) ∈ LM(Ω)×HM(Ω) be a solution of the discrete mass balance (3.4a). For K ∈ M, denote div(u)K
the constant value of divM u over K. Then

ρK ≥ ρ̄ :=
ρ⋆

1 + h−ξ1
M max

(
0, max

K∈M
div(u)K

) > 0 ∀K ∈ M.

We skip the proof. A similar proof can be found in [15] (Appendix A).

Next, we state a discrete analogue of the renormalization property (2.6) satisfied at the continuous
level. The proof is given in Appendix A.

Proposition 4.8 (Discrete renormalization property). Let D = (M, E) be a staggered discretization of Ω.
Let (ρ,u) ∈ LM(Ω) ×HM,0(Ω) satisfy the discrete mass balance (3.4a). We have ρ > 0 a.e. in Ω ( i.e.
ρK > 0, ∀K ∈ M). Then, for any b ∈ C1([0,+∞)):

div
(
b(ρ)u

)
K
+
(
b′(ρK)ρK − b(ρK)

)
div(u)K +R1

K +R2
K +R3

K = 0 ∀K ∈ M, (4.9)

where

div
(
b(ρ)u

)
K

=
1

|K|
∑

σ∈E(K)

|σ| b(ρσ)uσ · nK,σ,
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and

R1
K =

1

|K|
∑

σ∈E(K)

|σ|rK,σuσ · nK,σ and rK,σ = b′(ρK)(ρσ − ρK) + b(ρK)− b(ρσ),

R2
K = hξ2

M b′(ρK)
1

|K|
∑

σ∈E(K)

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL),

R3
K = hξ1

Mb′(ρK)(ρK − ρ⋆).

Multiplying by |K| and summing over K ∈ M, it holds

∫

Ω

(
b′(ρ)ρ− b(ρ)

)
divM udx+R1

E +R2
E +R3

M = 0, (4.10)

with
R1

E =
∑

σ∈Eint

σ=K|L

|σ|(rK,σ − rL,σ)uσ · nK,σ,

R2
E = hξ2

M

∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)(b

′(ρK)− b′(ρL)),

R3
M = hξ1

M

∑

K∈M

|K|b′(ρK)(ρK − ρ⋆),

and if b is convex then R1,2
E ≥ 0 and R3

M ≥ 0.

Remark 4.1. For b(ρ) =
1

β − 1
ρβ with β > 1, the previous result gives

∫

Ω

ρβ divM u dx+RE,1(ρ,u) +RE,2(ρ,u) ≤ 0, (4.11)

with

R1
E(ρ,u) =

β

2

∑

σ∈Eint

σ=K|L

|σ| min(ρβ−2
K , ρβ−2

L ) (ρL − ρK)2 |uσ · nK,σ| ≥ 0,

R2
E(ρ,u) = hξ2

M

β

β − 1

∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)(ρ

β−1
K − ρβ−1

L ) ≥ 0.

Remark 4.2. As explained in the continuous case, we can extend the renormalization result of Proposition
4.8 to functions b ∈ C0([0,+∞)) ∩ C1((0,+∞)), under the additional assumption that for all t ≤ 1:

|b′(t)| ≤ Ct−λ0 for some λ0 < 1.

4.3 Estimate on the discrete velocity

In order to derive estimates on the discrete velocity and density, we begin with writing a discrete counter-
part of the weak formulation of the momentum balance. The following lemma states discrete counterparts
to classical Stokes formulas. We refer to Sections 3.2 and 4.1 for the definitions of the operators.
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Lemma 4.9. Let D = (M, E) be a staggered discretization of Ω. The following discrete integration by
parts formulas are satisfied for all (p,u) ∈ LM(Ω)×HM,0(Ω). One has for all v ∈ HM,0(Ω):

−
∫

Ω

∆Eu · ΠEv dx =

∫

Ω

∇Mu : ∇Mv dx,

−
∫

Ω

(∇ ◦ div)Eu · ΠEv dx =

∫

Ω

divM udivM v dx,

∫

Ω

∇E(p) · ΠEv dx = −
∫

Ω

p divM v dx.

(4.12)

(4.13)

(4.14)

Thanks to these formulas we easily show the next lemma which corresponds to a discrete counterpart
of the weak formulation of the momentum equation.

Lemma 4.10 (Weak formulation of the momentum balance - first form). Let D = (M, E) be a staggered
discretization of Ω. A pair (ρ,u) ∈ LM(Ω) × HM(Ω) satisfies the discrete momentum balance (3.4b) if
and only if:
∫

Ω

divE(ρu⊗ u) · ΠEv dx+ µ

∫

Ω

∇Mu : ∇Mv dx+ (µ+ λ)

∫

Ω

divM u divM v dx

− a

∫

Ω

ργ divM v dx− hξ3
M

∫

Ω

ρΓ divM v dx =

∫

Ω

f · ΠEv dx, ∀v ∈ HM,0(Ω). (4.15)

From this point, we assume that Γ and (ξ1, ξ2, ξ3) satisfy the conditions (3.18)-(3.19)-(3.20).

Proposition 4.11 (Estimate on the discrete velocity). Let (ρ,u) ∈ LM(Ω) ×HM,0(Ω) be a solution of
the numerical scheme (3.4). Then, we have ρ > 0 a.e. in Ω ( i.e. ρK > 0, ∀K ∈ M), and if hM ≤ h0

(with h0 depending on µ, ρ⋆,Ω, θ0), there exists C1 = C1(f , µ, ρ
⋆,Ω, ξ1, θ0) such that:

‖u‖21,2,M ≤ C1. (4.16)

Proof. We take v = u as a test function in (4.15):
∫

Ω

divE(ρu⊗ u) · ΠEu dx+ µ‖u‖21,2,M + (µ+ λ)‖divM u‖2L2(Ω)

− a

∫

Ω

ργ divM u dx− hξ3
M

∫

Ω

ρΓ divM u dx =

∫

Ω

f ·ΠEu dx.

Applying Remark 4.1 on discrete renormalization with β = γ > 1 and β = Γ > 1, the last two terms in
the left hand side of this equality are seen to be non-negative. We thus obtain:

∫

Ω

divE(ρu⊗ u) · ΠEudx+ µ‖u‖21,2,M ≤ ‖f‖
L2(Ω) ‖ΠEu‖L2(Ω). (4.17)

Recalling that in the definition of the convection term, uǫ =
1
2 (uσ + uσ′) for ǫ = Dσ|Dσ′ , we get:

∫

Ω

divE(ρu⊗ u) · ΠEu dx =

1

2

∑

σ∈Eint

( ∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ,u)
)
|uσ|2 +

1

2

∑

σ∈Eint

( ∑

ǫ∈Ẽ(Dσ)
ǫ=Dσ |Dσ′

Fσ,ǫ(ρ,u) uσ · uσ′

)
,
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and the last term in the right hand side vanishes thanks to the conservativity of the dual fluxes (assumption
(H2)). Using the mass conservation equation satisfied on the dual mesh (3.14) in the first term, we get
(denoting ρ̃ the piecewise constant scalar function which is equal to ρDσ

on every dual cell Dσ, and which
satisfies ρ̃ > 0 (because ρ > 0) and

∫
Ω ρ̃dx =

∫
Ω ρ dx = |Ω|ρ⋆):

∣∣∣
∫

Ω

divE(ρu ⊗ u) ·ΠEu dx
∣∣∣ =

1

2
hξ1
M

∣∣∣
∫

Ω

(ρ̃− ρ⋆) |ΠEu|2 dx
∣∣∣ ≤ hξ1

M |Ω| ρ⋆ ‖ΠEu‖2L∞(Ω).

Injecting in (4.17) yields:

µ‖u‖21,2,M ≤ ‖f‖
L2(Ω) ‖ΠEu‖L2(Ω) + hξ1

M|Ω| ρ⋆‖ΠEu‖2L∞(Ω).

Thanks to the continuity of operator ΠE : ‖ΠEu‖Lq(Ω) ≤ C‖u‖
Lq(Ω), the inverse inequality ‖u‖

L∞(Ω) ≤
h
− 1

2

M ‖u‖
L6(Ω), and the discrete Sobolev inequality ‖u‖

L6(Ω) ≤ C‖u‖1,2,M (with C only depending on Ω

and θ0), we obtain:

µ‖u‖21,2,M ≤ C
(
‖f‖

L2(Ω) ‖u‖1,2,M + hξ1−1
M |Ω| ρ⋆‖u‖21,2,M

)
.

Applying Young’s inequality, we get that for all κ > 0:

(µ− Cκ− Chξ1−1
M |Ω| ρ⋆) ‖u‖21,2,M ≤ C

4κ
‖f‖2

L2(Ω).

Since ξ1 > 1, taking hM and κ small enough yields:

‖u‖21,2,M ≤ C1,

where C1 only depends on f , µ, ρ⋆, Ω, ξ1 and θ0.

4.4 Estimates on the discrete density

One remarkable property of the staggered discretization is the existence of a discrete analogue to the
Bogovskii operator, which is also equivalent to an Lq inf-sup property satisfied by discrete functions (see
for instance [14] for a proof which concerns the MAC scheme).

Lemma 4.12 (Discrete Lq inf-sup property). Let D = (M, E) be a staggered discretization of Ω such that
θM ≤ θ0 (where θM is defined by (3.1)) for some positive constant θ0. Then, there exists a linear operator

BM : LM,0(Ω) −→ HM,0(Ω)

depending only on Ω and on the discretization such that the following properties hold:

(i) For all p ∈ LM,0(Ω),

∫

Ω

r divM(BMp) dx =

∫

Ω

r p dx, ∀r ∈ LM(Ω).

(ii) For all q ∈ (1,+∞), there exists C = C(q, d,Ω, θ0), such that

‖BMp‖1,q,M ≤ C‖p‖Lq(Ω).
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Before deriving the control of the discrete pressure, we first present a second form of the weak formu-
lation of the momentum equation which will be more convenient to handle.

Lemma 4.13 (Weak formulation of the momentum balance - second form). The discrete weak formulation
of the momentum balance (4.15) can be rewritten in the following form:

−
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx

+ µ

∫

Ω

∇Mu : ∇Mv dx+ (µ+ λ)

∫

Ω

divM udivM v dx

− a

∫

Ω

ργ divM v dx− hξ3
M

∫

Ω

ρΓ divM v dx+Rconv(ρ,u,v) =

∫

Ω

f · ΠEv dx, (4.18)

where

Rconv(ρ,u,v) =

∫

Ω

divE(ρu⊗ u) ·ΠEv dx+

∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx.

The remainder term satisfies the following estimate for some constant C = C(Ω, γ,Γ, θ0):

∣∣Rconv(ρ,u,v)
∣∣ ≤ C h

1
2−

1
Γ ( 3

1+η
+ξ3)

M ‖hξ3
MρΓ‖

1
Γ

L1+η(Ω)‖u‖
2
1,2,M ‖v‖1,2,M

+ C h
ξ2−

1
η
− 1

ηΓ ( 3
1+η

+ξ3)

M ‖hξ3
MρΓ‖

1
ηΓ

L1+η(Ω)‖u‖1,2,M ‖v‖1,2,M.

(4.19)

Proof. This result is proved in Appendix B.

Remark 4.3. Note that in the previous inequality (4.19), under the conditions (3.19)-(3.20) (since η
1+η ≤

1
2 ), we guarantee that:

1

2
− 1

Γ

(
3

1 + η
+ ξ3

)
>

η

1 + η
− 5

4Γ

(
3

1 + η
+ ξ3

)
,

ξ2 −
1

η
− 1

ηΓ

(
3

1 + η
+ ξ3

)
> ξ2 −

1

η
− 5

4ηΓ

(
3

1 + η
+ ξ3

)
,

so that the exponents of hM appearing in (4.19) are positive under the assumptions (3.19)-(3.20).

We may now prove the following result which states mesh independent estimates satisfied by the discrete
density when (ρ,u) ∈ LM(Ω)×HM,0(Ω) is a solution of the numerical scheme (3.4).

Proposition 4.14. Let (ρ,u) ∈ LM(Ω) ×HM,0(Ω) be a solution of the numerical scheme (3.4). Then,
we have the following estimates:

• There exists C2 = C2(f , µ, λ, ρ
⋆,Ω, γ,Γ, ξ1, ξ2, ξ3, θ0) such that:

‖ρ‖L3(γ−1)(Ω) + ‖hξ3
MρΓ‖L1+η(Ω) ≤ C2. (4.20)

• There exists C3 = C3(f , µ, λ, ρ
⋆,Ω, γ,Γ, ξ1, ξ2, ξ3, θ0) such that:

∑

σ∈Eint

σ=K|L

|σ| (ρL − ρK)2 |uσ · nK,σ|+ hξ2
M |ρ|

1+η
η

1+η
η

,M
≤ C3 h

− 5
4Γ(

3
1+η

+ξ3)
M . (4.21)
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Remark 4.4. Note that from (4.20) we can easily deduce by interpolation between Lebesgue spaces that
for all p with 1 ≤ p < 1 + η, there exists r ∈ [0, 1) depending on p and γ (with r = 0 if p = 1) such that:

‖hξ3
MρΓ‖Lp(Ω) ≤ hξ3

M‖ρΓ‖1−r

L1(Ω)‖ρΓ‖
r

L1+η(Ω) ≤ h
ξ3(1−r)
M ‖ρΓ‖1−r

L1(Ω)‖h
ξ3
MρΓ‖rL1+η(Ω) ≤ C4 h

ξ3(1−r)
M , (4.22)

with C4 = C4(f , µ, λ, ρ
⋆,Ω, γ,Γ, ξ1, ξ2, ξ3, θ0, p).

Proof. Let us set P (ρ) = aργ + hξ3
MρΓ. We apply Lemma 4.12 to P (ρ)η− < P (ρ)η > and we define

v ∈ HM,0(Ω) by v = BM(P (ρ)η− < P (ρ)η >). There exists C = C(Ω, γ, θ0) such that

‖v‖1,2,M ≤ C‖P (ρ)η− < P (ρ)η >‖L2(Ω)

≤ C
(
‖P (ρ)‖ηL2η(Ω) + ‖P (ρ)‖ηLη(Ω)

)

≤ C‖P (ρ)‖ηL1+η(Ω)

since η = 2γ−3
γ ≤ 1 for γ ≤ 3. With the same arguments, we have

‖v‖1, 1+η
η

,M ≤ C‖P (ρ)‖ηL1+η(Ω).

Taking v as a test function in (4.18), we obtain:

∫

Ω

(P (ρ))1+η dx =< P (ρ)η >

(∫

Ω

P (ρ) dx

)

−
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx+ µ

∫

Ω

∇Mu : ∇Mv dx

+ (µ+ λ)

∫

Ω

divM u divM v dx−
∫

Ω

f ·ΠEv dx+Rconv(ρ,u,v)

= T1 + · · ·+ T6. (4.23)

We estimate the Ti as follows. First for T1 we have C = C(a,Ω, γ, θ0) such that:

|T1| ≤ C
( ∫

Ω

P (ρ)
)
‖P (ρ)‖ηL1+η(Ω)

≤ C
(
‖ρ‖γ(1−r1)

L1(Ω) ‖ρ‖γr1
Lγ(1+η)(Ω)

+ hξ3
n ‖ρ‖Γ(1−r2)

L1(Ω) ‖ρ‖Γr2LΓ(1+η)(Ω)

)
‖P (ρ)‖ηL1+η(Ω)

≤ C
(
‖ργ‖r1L1+η(Ω) + hξ3(1−r2)

n ‖hξ3
n ρΓ‖r2L1+η(Ω)

)
‖P (ρ)‖ηL1+η(Ω)

where we have used an interpolation inequality with

r1 =
(γ − 1)(1 + η)

γ(1 + η)− 1
< 1, r2 =

(Γ− 1)(1 + η)

Γ(1 + η)− 1
< 1.

Hence, by a Young inequality, we have C = C(Ω, γ,Γ, ξ3, θ0) such that:

|T1| ≤ C +
1

5
‖P (ρ)‖1+η

L1+η(Ω).
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The second term is controlled as follows, with C = C(Ω, γ, θ0):

|T2| =
∣∣∣
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx
∣∣∣

≤ C ‖PEρ‖Lγ(1+η)(Ω) ‖ΠEu‖2L6(Ω) ‖v‖1, 1+η
η

,M

≤ C ‖P (ρ)‖1/γL1+η(Ω) ‖u‖
2
L6(Ω) ‖P (ρ)‖ηL1+η(Ω)

≤ C +
1

5
‖P (ρ)‖1+η

L1+η(Ω).

Next, observing that ‖divM v‖L2(Ω) ≤
√
3 ‖v‖1,2,M for all v ∈ HM(Ω), we have C = C(Ω, γ, θ0) such that:

|T3|+ |T4| ≤ (µ+ 3(µ+ λ)) ‖u‖1,2,M ‖v‖1,2,M ≤ C C1 (µ+ 3(µ+ λ)) ‖P (ρ)‖ηL1+η(Ω).

By the discrete Poincaré inequality, the term T5 satisfies with C = C(Ω, γ, θ0):

|T5| ≤ ‖f‖
L2(Ω) ‖ΠEv‖L2(Ω) ≤ C ‖f‖

L2(Ω) ‖v‖L2(Ω) ≤ C ‖f‖
L2(Ω) ‖v‖1,2,M ≤ C ‖f‖

L2(Ω) ‖P (ρ)‖ηL1+η(Ω).

Hence we get:

|T3|+ |T4|+ |T5| ≤ C +
1

5
‖P (ρ)‖1+η

L1+η(Ω).

The last term T6 is the remainder term Rconv(ρ,u,v) in the weak formulation of the momentum balance
(4.18). We have thanks to (4.19), with C = (Ω, γ,Γ, θ0):

|T6| = |Rconv(ρ,u,v)| ≤ C h
1
2−

1
Γ ( 3

1+η
+ξ3)

M ‖hξ3
MρΓ‖

1
Γ

L1+η(Ω)‖u‖
2
1,2,M ‖v‖1,2,M

+ C h
ξ2−

1
η
− 1

ηΓ ( 3
1+η

+ξ3)

M ‖hξ3
MρΓ‖

1
ηΓ

L1+η(Ω)‖u‖1,2,M ‖v‖1,2,M.

As a consequence of Remark 4.3, there exists ν > 0 such that

|T6| ≤ Chν
M ‖u‖21,2,M ‖hξ3

MρΓ‖
1
Γ

L1+η(Ω)‖v‖1,2,M + Chν
M ‖u‖1,2,M‖hξ3

MρΓ‖
1
ηΓ

L1+η(Ω)‖v‖1,2,M
≤ Chν

M ‖u‖21,2,M ‖hξ3
MρΓ‖

1
Γ

L1+η(Ω)‖P (ρ)‖ηL1+η(Ω) + Chν
M ‖u‖1,2,M‖hξ3

MρΓ‖
1
ηΓ

L1+η(Ω)‖P (ρ)‖ηL1+η(Ω)

≤ Chν
M ‖u‖21,2,M ‖P (ρ)‖η+

1
Γ

L1+η(Ω) + Chν
M ‖u‖1,2,M ‖P (ρ)‖η+

1
ηΓ

L1+η(Ω)

≤ C +
1

5
‖P (ρ)‖1+η

L1+η(Ω),

since 1
Γ and 1

ηΓ are both less than 1 (consequence of (3.19)). Gathering the bounds on T1,..,T6 and coming

back to (4.23) we get: ∫

Ω

(P (ρ))1+η dx ≤ C +
4

5

∫

Ω

(P (ρ))1+η dx.

This achieves the proof of (4.20).

It remains to prove (4.21). Taking β = 2 in the discrete renormalization identity (4.11), we get:

∑

σ∈Eint

σ=K|L

|σ| (ρL − ρK)2 |uσ · nK,σ|+ hξ2
M|ρ|

1+η
η

1+η
η

,M
≤ −

∫

Ω

ρ2 divM udx

with
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∣∣∣∣
∫

Ω

ρ2 divM u dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω

ρ
5
4 ρ

3
4 divM u dx

∣∣∣∣

≤ ‖ρ‖
5
4

L∞(Ω)‖ρ‖
3
4

L
3
2 (Ω)

‖divM u‖L2(Ω)

≤ C(Ω, γ,Γ, θ0)h
− 5

4Γ

(
3

1+η
+ξ3

)
M ‖hξ3

MρΓ‖
5
4Γ

L1+η(Ω)‖ρ‖
3
4

L3(γ−1)(Ω)
‖divM u‖L2(Ω).

This achieves the proof of (4.21).

4.5 Existence of a solution to the numerical scheme

The existence of a solution to the scheme (3.4), which consists in an algebraic non-linear system, is obtained
by a topological degree argument. Its proof is based on an abstract theorem stated for instance in [12]
(Theorem 2.5) which relies on linking by a homotopy the problem at hand to a linear system.

Let N = card(M) and M = d card(Eint); we identify LM(Ω) with R
N and HM,0(Ω) with R

M . Let
V = R

N × R
M . We consider the function F : V × [0, 1] → V given by:

F(ρ,u, δ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ
1

|K|
∑

σ∈E(K)

FK,σ(ρ,u) + hξ1
M (ρK − ρ⋆), K ∈ M

δ
1

|Dσ|
∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ,u)uǫ + δ a(∇E(ρ
γ))|Dσ

+ δ hξ3
M (∇E(ρ

Γ))|Dσ

−µ (∆Eu)|Dσ
− (µ+ λ)

(
(∇ ◦ div)Eu

)
|Dσ

− (Π̃Ef)|Dσ
, σ ∈ Eint.

(4.24)

Solving the problem F(ρ,u, δ) = 0 is equivalent to solving the following system analogous to (3.4):

Solve for ρ ∈ LM(Ω) and u ∈ HM,0(Ω):

δ divM(ρu) + hξ1
M (ρ− ρ⋆)− δ hξ2

M ∆ 1+η
η

,M(ρ) = 0,

δ divE(ρu⊗ u)− µ∆Eu− (µ+ λ)(∇ ◦ div)Eu+ δ a∇E(ρ
γ) + δ hξ3

M∇E(ρ
Γ) = Π̃Ef .

(4.25a)

(4.25b)

Note that system (3.4) corresponds to F(ρ,u, 1) = 0. An easy verification shows that any solution
(ρ,u) of the problem F(ρ,u, δ) = 0 for δ in [0, 1], satisfies the same estimates as stated in Propositions 4.7
(positivity of ρ) and 4.11 (estimate on ‖u‖1,2,M) uniformly in δ. However, the positivity of the density is
not sufficient to apply the topological degree theorem .We need to prove that there exists a positive lower
bound on ρ, if (ρ,u) is a solution of (4.25), which is uniform with respect to δ ∈ [0, 1]. For the lower
bound, we use Proposition 4.7 and the fact that ‖u‖1,2,M ≤ C1 uniformly with respect to δ ∈ [0, 1] which
implies that the quantity max

K∈M
div(u)K is also controlled uniformly with respect to δ ∈ [0, 1] as follows:

∣∣∣ max
K∈M

div(u)K

∣∣∣ ≤
√
3 min
K∈M

|K|−1C1.

Hence a positive lower bound on ρ, if (ρ,u) is a solution of (4.25), which is uniform with respect to
δ ∈ [0, 1], is given by:

ρ̄min =
ρ⋆

1 + h−ξ1
M

√
3 min
K∈M

|K|−1 C1

. (4.26)
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We also obtain a uniform upper bound on ρ by remarking that:

‖ρ‖L∞(Ω) ≤
1

min
K∈M

|K|−1
‖ρ‖L1(Ω) =

1

min
K∈M

|K|−1
|Ω| ρ⋆ =: ρ̄max.

We then have the next theorem (see details in [12] previously cited).

Theorem 4.15 (Existence of a solution). Let D = (M, E) be a staggered discretization of Ω in the sense
of Definition 3.1. The non-linear system (3.4) admits at least one solution (ρ,u) in LM(Ω) ×HM,0(Ω),
and any possible solution satisfies the estimates of Propositions 4.7, 4.11 and 4.14.

5 Proof of the convergence result

Let (Dn)n∈N be a regular sequence of staggered discretizations of Ω as defined in Definition 3.6. We denote
hn instead of hMn

in order to ease the notations. Similar simplifications will be used thereafter.

Theorem 4.15 applies and without loss of generality (assuming hn is small enough for all n ∈ N), we
can assume that for all n ∈ N there exists a solution (ρn,un) ∈ LMn

(Ω) × HMn,0(Ω) to the numerical
scheme (3.4) with the discretization Dn. In addition, the obtained density ρn is positive a.e. in Ω. Since
θMn

≤ θ0 for all n ∈ N, the sequence (ρn,un)n∈N satisfies the following estimates. There exist C0 > 0,
p ∈ (1, 1 + η) and r ∈ (0, 1) such that:

‖un‖1,2,Mn
+ ‖ρn‖L3(γ−1)(Ω) + ‖hξ3

n ρΓn‖L1+η(Ω) + h
ξ2+

5
4Γ (

3
1+η

+ξ3)
n |ρn|

1+η
η

1+η
η

,Mn

+ h−ξ3(1−r)
n ‖hξ3

n ρΓn‖Lp(Ω) + h
5
4Γ (

3
1+η

+ξ3)
n

∑

σ∈En,int

σ=K|L

|σ| (ρL − ρK)2 |uσ · nK,σ| ≤ C0, ∀n ∈ N. (5.1)

In order to ease the notations, the subscript n has been omitted in the above summation on the internal
faces of En.

Thanks to these estimates, there is a subsequence of (Dn)n∈N, still denoted (Dn)n∈N such that (ρn)n∈N

weakly converges in L3(γ−1)(Ω) to some ρ ∈ L3(γ−1)(Ω), and (ργn)n∈N weakly converges in L
3(γ−1)

γ (Ω) to

some ργ ∈ L
3(γ−1)

γ (Ω). The compactness of the sequence of velocities relies on the following theorem which
is a compactness result for the discrete H1

0-norm similar to Rellich’s theorem. We refer to [13] (Theorem
3.3) for a proof. See also [30].

Theorem 5.1 (Discrete Rellich theorem). Let (Dn)n∈N be a sequence of staggered discretizations of Ω
satisfying θMn

≤ θ0 for all n ∈ N. For all n ∈ N, let un ∈ HMn,0(Ω) and assume that there exists C ∈ R

such that ‖un‖1,2,Mn
≤ C, ∀n ∈ N. We suppose that hn → 0 as n → +∞. Then:

1. There exists a subsequence of (un)n∈N, still denoted (un)n∈N, which converges in L2(Ω) towards a
function u ∈ L2(Ω).

2. The limit function u belongs to H1
0(Ω) with ‖∇u‖

L2(Ω)3 ≤ C.

3. The sequence (∇Mn
un)n∈N weakly converges to ∇u in L2(Ω)3.

Hence, upon extracting a new subsequence from (Dn)n∈N, we may assume that there exists u ∈ H1
0(Ω)

such that the sequence (un)n∈N converges to u in L2(Ω). By the discrete Sobolev inequality of Lemma
4.1, we can actually assume that (un)n∈N converges to u in Lq(Ω) for all q ∈ [1, 6) and weakly in L6(Ω).

Following the same steps as in the continuous setting, we first pass to the limit n → +∞ in the mass
and momentum equations in Sections 5.1 and 5.2 and then pass to the limit in the equation of state in
Section 5.3, by proving the strong convergence of the density.
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5.1 Passing to the limit in the mass conservation equation

Proposition 5.2. Under the assumptions of Theorem 3.1, the limit pair (ρ,u) ∈ L3(γ−1)(Ω) ×H1
0(Ω) of

the sequence (ρn,un)n∈N satisfies the mass equation in the weak sense:

−
∫

Ω

ρu ·∇φdx = 0, ∀φ ∈ C∞
c (Ω). (5.2)

Let us first state the following lemma which will be useful in the proof of Proposition (5.2).

Lemma 5.3. Let φ ∈ C∞
c (Ω). For n ∈ N define φn ∈ LMn

(Ω) by φn|K = φK the mean value of φ over

K, for K ∈ Mn. Denote φσ = |σ|−1
∫
σ φ(x) dσ(x) for all σ ∈ En and define a discrete gradient of φn by:

∇Mn
φn(x) =

∑

K∈Mn

(∇φ)K XK(x), with (∇φ)K =
1

|K|
∑

σ∈E(K)

|σ|φσ nK,σ.

Then for all q in [1,∞], there exists C = C(Ω, q, φ, θ0) such that:

‖∇Mn
φn −∇φ‖

Lq(Ω) ≤ C hn. (5.3)

Proof. Let q ∈ [1,+∞). We have ‖∇Mn
φn −∇φ‖q

Lq(Ω) =
∑

K∈Mn
‖∇Mn

φn −∇φ‖q
Lq(K) with for K ∈

Mn:

‖∇Mn
φn −∇φ‖q

Lq(K) =

∫

K

∣∣∣
1

|K|
∑

σ∈E(K)

|σ|φσ nK,σ −∇φ(x)
∣∣∣
q

dx

=

∫

K

∣∣∣
1

|K|
∑

σ∈E(K)

∫

σ

φ(y) dσ(y)nK,σ −∇φ(x)
∣∣∣
q

dx

=

∫

K

∣∣∣
1

|K|

∫

∂K

φ(y) dσ(y)nK −∇φ(x)
∣∣∣
q

dx

≤
∫

K

( 1

|K|

∫

K

|∇φ(y)−∇φ(x)| dy
)q

dx.

By a Taylor expansion, we have for all y, x ∈ K, |∇φ(y) − ∇φ(x)| ≤ hn |φ|W2,∞(Ω). Thus we have:

‖∇Mn
φn −∇φ‖q

Lq(K) ≤ hq
n |φ|qW2,∞(Ω) |K| which concludes the proof for q ∈ [1,+∞). The proof is similar

for q = +∞.

We can now give the proof of Proposition (5.2).

Proof of Proposition (5.2). To prove this result we pass to the limit n → +∞ in the weak formulation of
the discrete mass balance. Let φ ∈ C∞

c (Ω) and for n ∈ N define φn ∈ LMn
(Ω) by φn|K = φK the mean

value of φ over K, for K ∈ Mn. Multiplying the discrete mass balance (3.4a) by |K|φK XK , summing
over K ∈ Mn and performing a discrete integration by parts (i.e. reordering the sum) yields:

−
∫

Ω

(PEn
ρn) (ΠEn

un) ·∇En
φn dx+Rn

1 +Rn
2 = 0, (5.4)
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with
Rn

1 = hξ1
n

∑

K∈Mn

|K|(ρK − ρ⋆)φK ,

Rn
2 = hξ2

n

∑

K∈Mn

( ∑

σ∈E(K)

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)

)
φK ,

where ∇E is the discrete gradient defined in (3.16) and PE is defined in (4.8).

In order to prove Proposition 5.2, we want to pass to the limit in the first term of (5.4). It is possible
to prove that ΠEn

un → u strongly in L2(Ω). However, the discrete gradient ∇En
φn is known to converge

only weakly towards ∇φ because locally on a dual cell Dσ it is supported by only one direction, that of
the normal vector nK,σ Thus, it is not possible to pass to the limit in (5.4). Instead, we use the discrete
gradient ∇Mn

φn introduced in Lemma 5.3, which is known to converge strongly towards ∇φ.

We have:

−
∫

Ω

(PEn
ρn) (ΠEn

un) ·∇En
φn dx = −

∑

σ∈En,int

σ=K|L

|σ| ρσ (φL − φK)uσ · nK,σ

= −
∑

σ∈En,int

σ=K|L

|σ| 1
2 (ρK + ρL) (φL − φK)uσ · nK,σ +Rn

3 , (5.5)

with
Rn

3 =
∑

σ∈En,int

σ=K|L

|σ| (12 (ρK + ρL)− ρσ) (φL − φK)uσ · nK,σ.

Reordering the sum in the first term of (5.5) we get:

−
∫

Ω

(PEn
ρn) (ΠEn

un) ·∇En
φn dx = −1

2

∑

K∈Mn

ρK

( ∑

σ∈E(K)
σ=K|L

|σ| (φL − φK)uσ · nK,σ

)
+Rn

3 ,

= −1

2

∑

K∈Mn

ρK uK ·
( ∑

σ∈E(K)
σ=K|L

|σ| (φL − φK)nK,σ

)
+Rn

3 +Rn
4 , (5.6)

where here, uK is the mean value of un over K and

Rn
4 =

1

2

∑

K∈Mn

ρK

( ∑

σ∈E(K)
σ=K|L

|σ| (φL − φK) (uK − uσ) · nK,σ

)
.

Back to (5.6), we have:

−
∫

Ω

(PEn
ρn) (ΠEn

un) ·∇En
φn dx

= −
∑

K∈Mn

ρK uK ·
( ∑

σ∈E(K)
σ=K|L

|σ| 1
2 (φL + φK)nK,σ

)
+Rn

3 +Rn
4 +Rn

5

= −
∑

K∈Mn

ρK uK ·
( ∑

σ∈E(K)

|σ|φσ nK,σ

)
+Rn

3 +Rn
4 +Rn

5 +Rn
6

= −
∫

Ω

ρn un ·∇Mn
φdx+Rn

3 +Rn
4 +Rn

5 +Rn
6 . (5.7)
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where :

Rn
5 =

∑

K∈Mn

ρK uK φK ·
( ∑

σ∈E(K)

|σ|nK,σ

)
,

Rn
6 =

∑

K∈Mn

ρK uK ·
( ∑

σ∈E(K)
σ=K|L

|σ| (φσ − 1
2 (φL + φK))nK,σ

)
.

Replacing (5.7) in (5.4) we get:

−
∫

Ω

ρn un ·∇Mn
φdx+Rn

1 +Rn
2 +Rn

3 +Rn
4 +Rn

5 +Rn
6 = 0. (5.8)

Since un → u strongly in Lq(Ω) for all q ∈ [1, 6), and ∇Mn
φn → ∇φ (by (5.3)) in L6(Ω)3 as n → +∞,

we have un ·∇Mn
φn → u ·∇φ strongly in L3−δ(Ω) for all δ ∈ (0, 2]. Furthermore, we have ρn ⇀ ρ weakly

in L3(γ−1)(Ω) with 3(γ − 1) > 3
2 (since γ > 3

2 ), which yields:

lim
n→+∞

∫

Ω

ρn un ·∇Mn
φn dx =

∫

Ω

ρu ·∇φdx.

It remains to prove that
∑6

i=1 R
n
i → 0 as n → +∞. In the following, in order to ease the notations, we

denote An . Bn when there is a constant C, independent of n, such that An ≤ C Bn. We easily prove
that Rn

1 → 0 and Rn
2 → 0 as n → +∞. Indeed, one has:

|Rn
1 | ≤ 2 hξ1

n |Ω|ρ⋆ ‖φ‖L∞(Ω),

which proves that Rn
1 → 0 since ξ1 > 0. For Rn

2 , reordering the sum, we get:

|Rn
2 | ≤ hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η |φK − φL|

. ‖∇φ‖
L∞(Ω) h

ξ2
n

∑

σ∈En,int

σ=K|L

|Dσ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η .

Applying Hölder’s inequality (with coefficients 1 + η and (1 + η)/η) to the sum, we get:

|Rn
2 | . ‖∇φ‖

L∞(Ω) |Ω|
η

η+1 hξ2
n |ρ|

1
η

1+η
η

,Mn

. h
η

1+η
(ξ2−

5
4ηΓ ( 3

1+η
+ξ3))

n

(
h

η
1+η

(ξ2+
5
4Γ ( 3

1+η
+ξ3))

n |ρ| 1+η
η

,Mn

) 1
η

.

Thanks to (5.1) and to assumption (3.20), we have Rn
2 → 0 as n → +∞. Let us now turn to Rn

3 . Recalling
the upwind definition of ρσ, we get:

|Rn
3 | ≤

1

2

∑

σ∈En,int

σ=K|L

|σ| |ρK − ρL| |φL − φK | |uσ · nK,σ|.

Applying the Cauchy-Schwarz inequality, we infer that:

|Rn
3 | ≤

1

2

( ∑

σ∈En,int

σ=K|L

|σ| |ρK − ρL|2 |uσ · nK,σ|
) 1

2
( ∑

σ∈En,int

σ=K|L

|σ| |φL − φK |2 |uσ · nK,σ|
) 1

2

. h
− 5

8Γ

(
3

1+η
+ξ3

)
n

( ∑

σ∈En,int

σ=K|L

|σ| |φL − φK |2 |uσ · nK,σ|
) 1

2
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by estimate (5.1). By Taylor’s inequality applied to the smooth function φ and the regularity of the

discretization, we have |φL − φK |2 . hn |Dσ|/|σ| ‖∇φ‖2
L∞(Ω). Hence:

|Rn
3 | . h

5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n

( ∑

σ∈En,int

σ=K|L

|Dσ| |uσ|
) 1

2

= h
5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n ‖ΠEn

un‖
1
2

L1(Ω)

. h
5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n ‖un‖

1
2

L1(Ω)

. h
5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n

since ‖un‖L6(Ω), and thus ‖un‖L1(Ω), is controlled by ‖un‖1,2,Mn
which is bounded by C0. Since (Γ, ξ3)

satisfy (3.19) we get Rn
3 → 0 as n → +∞.

We now turn to Rn
4 . By a Taylor inequality on the smooth function φ and the regularity of the discretiza-

tion, we have: |φL − φK | . hn ‖∇φ‖
L∞(Ω). Hence:

|Rn
4 | . hn

∑

K∈Mn

ρK
∑

σ∈E(K)

|σ| |uK − uσ|. (5.9)

The vectors uK and uσ are the mean values of u over K and σ ∈ E(K) respectively. By the Cauchy-
Schwarz inequality, we can prove that:

|uK − uσ|2 ≤ 1

|σ|
1

|K|

∫

σ

∫

K

|un(y)− un(x)|2 dxdσ(y).

Since un is smooth over K we have for x, y ∈ K:

|un(y)− un(x)|2 ≤ |y − x|2
∫ 1

0

|∇un(ty + (1 − t)x)|2 dt.

Bounding |y−x| by hK we obtain, using Fubini’s theorem that |uK −uσ|2 ≤ h2
K

|K|‖∇un‖2L2(K)3 . Injecting

in (5.9), and invoking the regularity of the discretization we get:

|Rn
4 | . hn

∑

K∈Mn

|K| 12 ρK‖∇un‖L2(K)3

. hn ‖ρn‖1−
3(γ−1)

2

L∞(Ω)

∑

K∈Mn

|K| 12 ρ
3(γ−1)

2

K ‖∇un‖L2(K)3

. hn ‖ρn‖
5−3γ

2

L∞(Ω)‖ρn‖
3(γ−1)

2

L3(γ−1)(Ω)
‖un‖1,2,Mn

.

Thus, by the inverse inequality ‖ρn‖L∞(Ω) . h
− 1

γ−1
n ‖ρn‖L3(γ−1)(Ω) and since the sequence (ρn)n∈N is

bounded in L3(γ−1)(Ω) and the sequence (‖un‖1,2,Mn
)n∈N is bounded we get:

|Rn
4 | . h

1− 1
γ−1

5−3γ
2

n = h
5γ−7

2(γ−1)
n .

Since, γ > 3
2 > 7

5 , we deduce that Rn
4 → 0 as n → +∞.

The fifth remainder term satisfies Rn
5 = 0 since

∑
σ∈E(K) |σ|nK,σ = 0 for all K ∈ Mn. Let us conclude

with the control of Rn
6 . Denoting φ̂σ = 1

2 (φL + φK) for σ = K|L, we may write Rn
6 = Rn

6,1 +Rn
6,2 with:

Rn
6,1 =

∑

K∈Mn

ρK

( ∑

σ∈E(K)

|σ| (φσ − φ̂σ) (uK − uσ) · nK,σ

)
,

Rn
6,2 =

∑

K∈Mn

ρK

( ∑

σ∈E(K)

|σ| (φσ − φ̂σ)uσ · nK,σ

)
.
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The term Rn
6,1 can be controlled the same way as Rn

4 and we obtain Rn
6,1 → 0 as n → +∞. Reordering

the sum in Rn
6,2 we get:

Rn
6,2 =

∑

σ∈En,int

σ=K|L

|σ| (ρK − ρL) (φσ − φ̂σ)uσ · nK,σ.

Hence Rn
6,2 can be controlled the same way as Rn

3 and we obtain Rn
6,2 → 0 as n → +∞ and this concludes

the proof of (5.2).

5.2 Passing to the limit in the momentum equation

Proposition 5.4. Under the assumptions of Theorem 3.1, the limit triple (ρ,u, ργ) ∈ L3(γ−1)(Ω)×H1
0(Ω)×

L
3(γ−1)

γ (Ω) of the sequence (ρn,un, ρ
γ
n)n∈N satisfies the momentum equation in the weak sense:

−
∫

Ω

ρu⊗ u : ∇v dx+ µ

∫

Ω

∇u : ∇v dx+ (µ+ λ)

∫

Ω

divudiv v dx

− a

∫

Ω

ργ div v dx =

∫

Ω

f · v dx, ∀v ∈ C∞
c (Ω)3. (5.10)

Moreover, we have the following energy inequality satisfied at the limit:

µ

∫

Ω

|∇u|2 dx+ (λ+ µ)

∫

Ω

(divu)2 dx ≤
∫

Ω

f · udx. (5.11)

For D = (M, E) a staggered discretization of Ω, we define IM the following Fortin operator associated
with the Crouzeix-Raviart finite element:

IM :






W1,q(Ω) −→ HM(Ω)

v 7−→ IMv =
∑

σ∈E

vσ ζσ, with vσ = |σ|−1

∫

σ

v dσ(x) for σ ∈ E . (5.12)

The following lemma states the main properties of operator IM. We refer to the appendix of [16] for a
proof.

Lemma 5.5 (Properties of the operator IM). Let D = (M, E) be a staggered discretization of Ω such that
θM ≤ θ0 (where θM is defined by (3.1)) for some positive constant θ0. For any q ∈ [1,+∞), there exists
C = C(θ0, q) such that:

(i) Stability:
‖IMu‖1,q,M ≤ C |u|

W1,q(Ω), ∀u ∈ W
1,q
0 (Ω).

(ii) Approximation: For all K ∈ M:

‖u− IMu‖Lq(K) + hK ‖∇(u− IMu)‖Lq(K)3 ≤ C h2
K |u|W2,q(K), ∀u ∈ W2,q(Ω) ∩W

1,q
0 (Ω).

(iii) Preservation of the divergence:

∫

Ω

p divM(IMu) dx =

∫

Ω

p divudx, ∀p ∈ LM(Ω), u ∈ W
1,q
0 (Ω).

39



Lemma 5.6. Let v ∈ C∞
c (Ω)3. Let (Dn)n∈N be a regular sequence of staggered discretizations as defined

in Definition 3.6. For n ∈ N define vn ∈ HMn,0(Ω) by vn = IMn
v. Then, for any q ∈ [1,+∞), there

exists C = C(Ω, q,v, θ0) such that:

‖vn − v‖
Lq(Ω) ≤ C h2

n,

‖∇Mn
vn −∇v‖

Lq(Ω)3 ≤ C hn,

‖ΠEn
vn − v‖

Lq(Ω) ≤ C hn.

(5.13)

(5.14)

(5.15)

In addition, denoting vσ = |σ|−1
∫
σ v dσ(x) for all σ ∈ En we define a discrete gradient of vn by:

∇Mn
vn(x) =

∑

K∈Mn

(∇v)K XK(x), with (∇v)K =
1

|K|
∑

σ∈E(K)

|σ|vσ ⊗ nK,σ.

Then for all q in [1,∞], there exists C = C(Ω, q,v, θ0) such that:

‖∇Mn
vn −∇v‖

Lq(Ω)3 ≤ C hn. (5.16)

Proof. The estimates (5.13) and (5.14) are direct consequences of the approximation properties of the
interpolation operator IMn

. The proof of (5.16) is similar to that of Lemma 5.3. To prove (5.15) we write:

‖ΠEn
vn − vn‖qLq(Ω) =

∑

K∈Mn

∑

σ∈E(K)

∫

DK,σ

|vσ − vn(x)|q dx

=
∑

K∈Mn

∑

σ∈E(K)

∫

DK,σ

∣∣∣vσ −
∑

σ′∈E(K)

vσ′ ζσ′(x)
∣∣∣
q

dx

=
∑

K∈Mn

∑

σ∈E(K)

∫

DK,σ

∣∣∣
∑

σ′∈E(K)

(vσ − vσ′) ζσ′ (x)
∣∣∣
q

dx

. hq
n

∑

K∈Mn

h3−q
K

∑

σ,σ′∈E(K)

|vσ − vσ′ |2.

Hence we have ‖ΠEn
vn − vn‖Lq(Ω) . hn ‖vn‖1,q,En

. hn ‖vn‖1,q,Mn
. hn|v|W1,q(Ω)3 . Combining this

with (5.13) yields the result.

We can now give the proof of Proposition (5.4).

Proof of Proposition 5.4. To prove this result, we pass to the limit n → +∞ in the weak formulation of
the discrete momentum balance. Let v ∈ C∞

c (Ω)3 and for n ∈ N, define vn = IMn
v ∈ HMn,0(Ω). We

have ‖vn‖1,q,Mn
≤ C ‖v‖

W
1,q
0 (Ω) for all q ∈ [1,+∞) by Lemma 5.5. Taking the test function vn in the

weak formulation of the discrete momentum balance (4.18), we get for all n ∈ N:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

+ µ

∫

Ω

∇Mn
un : ∇Mn

vn dx+ (µ+ λ)

∫

Ω

divMn
un divMn

vn dx

− a

∫

Ω

ργn divMn
vn dx−

∫

Ω

hξ3
n ρΓn divMn

vn +Rconv(ρn,un,vn) =

∫

Ω

f ·ΠEn
vn dx. (5.17)
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The term involving the artificial pressure tends to zero as n → +∞ since (hξ3
n ρΓn)n∈N converges strongly

to 0 in Lp(Ω) for some 1 < p < 1+η (see (5.1)) and (divMn
vn)n∈N is bounded in Lq(Ω) for all q ∈ (1,+∞).

On the other hand, Lemma 4.13 gives

∣∣Rconv(ρn,un,vn)
∣∣ ≤ C h

1
2−

1
Γ

(
3

1+η
+ξ3

)
n ‖hξ3

n ρΓ‖
1
Γ

L1+η(Ω)‖un‖21,2,Mn
‖vn‖1,2,Mn

+ C h
ξ2−

1
η
− 1

ηΓ

(
3

1+η
+ξ3

)
n ‖hξ3

n ρΓn‖
1
ηΓ

L1+η(Ω)‖un‖1,2,Mn
‖vn‖1,2,Mn

,

with C independent of n, so Rconv(ρn,un,vn) → 0 as n → +∞ using Remark 4.3. We also easily obtain
the convergence of the diffusion and pressure terms. Since (∇Mn

un)n∈N (resp. (divMn
un)n∈N) weakly

converges to ∇u (resp. divu) in L2(Ω)3, (ργn)n∈N weakly converges to ργ in L1+η(Ω) and (∇Mn
vn)n∈N

(resp. (divMn
vn)n∈N)) strongly converges to ∇v (resp. div v) in Lq(Ω)3 for all q ∈ (1,+∞) we obtain:

lim
n→+∞

(
µ

∫

Ω

∇Mn
un : ∇Mn

vn dx+ (µ+ λ)

∫

Ω

divMn
un divMn

vn dx

− a

∫

Ω

ργn divMn
vn dx−

∫

Ω

f ·ΠEn
vn dx

)

= µ

∫

Ω

∇u : ∇v dx+ (µ+ λ)

∫

Ω

divudiv v dx− a

∫

Ω

ργ div v dx−
∫

Ω

f · v dx

where the convergence of the source term is given by (5.15).

Let us now prove the convergence of the convective term. We have:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

= −
∑

σ∈En,int

σ=K|L

|σ| ρσ uσ ⊗ uσ : (vL − vK)⊗ nK,σ

= −
∑

σ∈En,int

σ=K|L

|σ| 1
2 (ρK + ρL)uσ ⊗ uσ : (vL − vK)⊗ nK,σ +Rn

1 , (5.18)

with
Rn

1 =
∑

σ∈En,int

σ=K|L

|σ| (12 (ρK + ρL)− ρσ)uσ ⊗ uσ : (vL − vK)⊗ nK,σ.

Reordering the sum in the first term of (5.18) we get:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

= −1

2

∑

K∈Mn

ρK
∑

σ∈E(K)
σ=K|L

|σ|uσ ⊗ uσ : (vL − vK)⊗ nK,σ +Rn
1

= −1

2

∑

K∈Mn

ρK uK ⊗ uK :
∑

σ∈E(K)
σ=K|L

|σ| (vL − vK)⊗ nK,σ +Rn
1 +Rn

2 , (5.19)
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where uK is the mean value of un over K and

Rn
2 =

1

2

∑

K∈Mn

ρK
∑

σ∈E(K)
σ=K|L

|σ| (uK ⊗ uK − uσ ⊗ uσ) : (vL − vK)⊗ nK,σ.

Back to (5.19) we get:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

= −
∑

K∈Mn

ρK uK ⊗ uK :
∑

σ∈E(K)
σ=K|L

|σ| 1
2 (vL + vK)⊗ nK,σ +Rn

1 +Rn
2 +Rn

3

= −
∑

K∈Mn

ρK uK ⊗ uK :
∑

σ∈E(K)

|σ|vσ ⊗ nK,σ +Rn
1 +Rn

2 +Rn
3 +Rn

4

= −
∫

Ω

ρn un ⊗ un : ∇Mn
vn dx+Rn

1 +Rn
2 +Rn

3 +Rn
4 ,

with

Rn
3 =

∑

K∈Mn

ρK uK ⊗ uK : vK ⊗
( ∑

σ∈E(K)

|σ|nK,σ

)
,

Rn
4 =

∑

K∈Mn

ρK uK ⊗ uK :
∑

σ∈E(K)
σ=K|L

|σ| (vσ − 1
2 (vL + vK))⊗ nK,σ.

Since un → u in Lq(Ω) for all q ∈ [1, 6), and ∇Mn
vn → ∇v in Lr(Ω)3 for all r ∈ (1,+∞), we have

un ⊗ un : ∇Mn
vn → u ⊗ u : ∇v in L3−δ(Ω) for all δ ∈ (0, 2]. Furthermore, we have ρn ⇀ ρ weakly in

L3(γ−1)(Ω) with 3(γ − 1) > 3
2 (since γ > 3

2 ), which yields:

lim
n→+∞

−
∫

Ω

ρn un ⊗ un : ∇Mn
vn dx = −

∫

Ω

ρu⊗ u : ∇v dx.

Let us now prove that
∑4

i=1 R
n
i → 0 as n → +∞. We begin with Rn

1 . Recalling the upwind definition of
ρσ and the fact that a⊗ b : c⊗ d = (a · c) (b · d) for a, b, c,d ∈ R

3 we get:

|Rn
1 | ≤

1

2

∑

σ∈En,int

σ=K|L

|σ| |ρK − ρL| |uσ · nK,σ| |vL − vK | |uσ|.

As a consequence we have

|Rn
1 | ≤

1

2

( ∑

σ∈En,int

σ=K|L

|σ| |ρK − ρL|2 |uσ · nK,σ|
) 1

2
( ∑

σ∈En,int

σ=K|L

|σ| |vL − vK |2 |uσ|3
) 1

2

. h
− 5

8Γ

(
3

1+η
+ξ3

)
n

( ∑

σ∈En,int

σ=K|L

|σ| |vL − vK |2 |uσ|3
) 1

2

by estimate (5.1). By Taylor’s inequality applied to the smooth function v and the regularity of the

discretization, we have |vL − vK |2 . hn |Dσ|/|σ| ‖∇v‖2L∞(Ω)3 . Hence:

|Rn
1 | . h

5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n ‖ΠEn

un‖
3
2

L3(Ω) . h
5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n ‖un‖

3
2

L6(Ω) . h
5
8Γ

(
4
5Γ−

3
1+η

−ξ3

)
n
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since ‖un‖L6(Ω) is controlled by ‖un‖1,2,Mn
which is bounded by C0. Since (Γ, ξ3) satisfy (3.19), we get

Rn
1 → 0 as n → +∞. We now turn to Rn

2 . We write

uK ⊗ uK − uσ ⊗ uσ = (uK − uσ)⊗ uK + uσ ⊗ (uK − uσ).

Hence, |Rn
2 | ≤ |Rn

2,1|+ |Rn
2,2| with:

|Rn
2,1| =

1

2

∑

K∈Mn

ρK
∑

σ∈E(K)
σ=K|L

|σ| |uK − uσ| |uK | |vL − vK |,

|Rn
2,2| =

1

2

∑

K∈Mn

ρK
∑

σ∈E(K)
σ=K|L

|σ| |uK − uσ| |uσ| |vL − vK |.

We only treat |Rn
2,1|, since the treatment of |Rn

2,2| is similar. By a Taylor inequality on the smooth function
v and the regularity of the discretization, we have: |vL − vK | . hn ‖∇v‖L∞(Ω)3 . Hence:

|Rn
2,1| . hn

∑

K∈Mn

ρK |uK |
∑

σ∈E(K)

|σ| |uK − uσ|. (5.20)

Proceeding as in the proof of Proposition 5.2 (see the computation after (5.9)) we get:

|Rn
2,1| . hn

∑

K∈Mn

|K| 12 ρK |uK | ‖∇un‖L2(K)3

. hn ‖ρn‖1−
3(γ−1)

2

L∞(Ω) ‖un‖L∞(Ω)

∑

K∈Mn

|K| 12 ρ
3(γ−1)

2

K ‖∇un‖L2(K)3

. hn ‖ρn‖
5−3γ

2

L∞(Ω) ‖un‖L∞(Ω).

We have the inverse inequalities ‖ρn‖L∞(Ω) . h
− 1

γ−1
n ‖ρn‖L3(γ−1)(Ω) and ‖un‖L∞(Ω) . h

− 1
2

n ‖un‖L6(Ω). Thus,

since (ρn)n∈N is bounded in L3(γ−1)(Ω) and since the sequence (‖un‖L6(Ω))n∈N is bounded we get:

|Rn
2,1| . h

1− 1
γ−1

5−3γ
2 − 1

2
n = h

2γ−3
γ−1
n .

Since, γ > 3
2 , we get Rn

2,1 → 0 as n → +∞. As said previously, the same holds for Rn
2,2. The third

remainder term satisfies Rn
3 = 0 since

∑
σ∈E(K) |σ|nK,σ = 0 for all K ∈ Mn. Let us conclude with the

control of Rn
4 . Denoting v̂σ = 1

2 (vL + vK) for σ = K|L, we may write Rn
4 = Rn

4,1 +Rn
4,2 with:

Rn
4,1 =

∑

K∈Mn

ρK

( ∑

σ∈E(K)

|σ| (uK ⊗ uK − uσ ⊗ uσ) : (vσ − v̂σ)⊗ nK,σ

)
,

Rn
4,2 =

∑

K∈Mn

ρK

( ∑

σ∈E(K)

|σ|uσ ⊗ uσ : (vσ − v̂σ)⊗ nK,σ

)
.

The term Rn
4,1 can be controlled in the same way as Rn

2 and we obtain Rn
4,1 → 0 as n → +∞. Reordering

the sum in Rn
4,2 we get:

Rn
4,2 =

∑

σ∈En,int

σ=K|L

|σ| (ρK − ρL) uσ ⊗ uσ : (vσ − v̂σ)⊗ nK,σ.
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Hence Rn
4,2 can be controlled in the same way as Rn

1 and we obtain Rn
4,2 → 0 as n → +∞. This concludes

the proof of (5.10).

It remains to prove (5.11). We proceed as in the proof of Proposition 4.11. Taking un as a test function
in the first form of the discrete weak formulation of the momentum equation and using (4.11) with β = γ
and β = Γ we get:

1

2
hξ1
n

∫

Ω

(ρ̃n − ρ⋆) |ΠEn
un|2 dx+ µ

∫

Ω

|∇Mn
un|2 dx

+ (µ+ λ)

∫

Ω

(divMn
un)

2 dx ≤
∫

Ω

f · ΠEn
un dx, ∀n ∈ N,

where ρ̃n is the piecewise constant scalar function which is equal to ρDσ
on every dual cell Dσ, and which

satisfies ρ̃n > 0 (because ρn > 0) and
∫
Ω
ρ̃n dx =

∫
Ω
ρn dx = |Ω|ρ⋆. Since (ρn)n∈N is bounded in L

3
2 (Ω)

and (ΠEn
un)n∈N in L6(Ω), the first term tends to zero as n → +∞. Thus, passing to the limit n → +∞

in the above inequality and recalling that ∇Mn
un ⇀ ∇u weakly in L2(Ω)3 and ΠEn

un → u strongly in
(say) L2(Ω) yields (5.11).

5.3 Passing to the limit in the equation of state

5.3.1 Weak compactness of the effective viscous flux

As in the continuous case, the equation of state is satisfied at the limit as a consequence of the compactness
of the so-called effective viscous flux. Indeed, we have the following result.

Proposition 5.7. Under the assumptions of Theorem 3.1, let (ρ,u, ργ) ∈ L3(γ−1)(Ω)×H1
0(Ω)×L

3(γ−1)
γ (Ω)

be the limit triple of the sequence (ρn,un, ρ
γ
n)n∈N. For k ∈ N

∗, define

Tk(t) =

{
t if t ∈ [0, k),

k if t ∈ [k,+∞).

The sequence (Tk(ρn))n∈N is bounded in L∞(Ω) and, up to extracting a subsequence, it converges for the
weak-* topology in L∞(Ω) towards some function denoted Tk(ρ). Then (up to extracting a subsequence)
the following identity holds:

lim
n→+∞

∫

Ω

(
(2µ+ λ) divMn

un − aργn
)
Tk(ρn)φdx =

∫

Ω

(
(2µ+ λ) divu− aργ

)
Tk(ρ)φdx, ∀φ ∈ C∞

c (Ω).

Remark 5.1. As in the continuous case, this result is obtained by taking the test function v = φw̃n

in the discrete momentum equation (4.18), where w̃n is computed from Tk(ρn) by applying Lemma 2.6,
i.e. w̃n = ATk(ρn), and satisfies div w̃n = Tk(ρn), curl w̃n = 0. Unfortunately, the discrete gradient,
divergence and rotational operators associated with the Crouzeix-Raviart approximation do not satisfy a
discrete equivalent of the global identity (2.12), namely

∫

Ω

∇u : ∇v dx =

∫

Ω

divu div v dx+

∫

Ω

curlu curlv dx.

Instead, one needs to apply (2.11) locally on each control volume K ∈ Mn. The accumulating boundary
terms must then be controlled through an estimate of w̃n in W2,2(Ω). Moreover, it also appears in the
analysis that the control of some remainder terms involving the pressure (which is controlled in L1+η(Ω))
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requires an estimate of w̃n in W2, 1+η
η (Ω). Since 1+η

η ≥ 2, this latter control is more restrictive. Such
control is what motivates the introduction of the stabilization term

T 2
stab = −hξ2

M∆ 1+η
η

,M(ρ)

in the numerical scheme. For the MAC scheme, studied for instance in [15], we directly have an equivalent
of (2.12) and T 2

stab is useless.

The function w̃n defined in Remark 5.1 is not in W2, 1+η
η (Ω) because Tk(ρn) is not in W1, 1+η

η (Ω). We
rather define wn = A(iMn

Tk(ρn)) so that divwn = iMn
Tk(ρn) and curlwn = 0 where iM Tk(ρ) is a

regularization of Tk(ρ), the W1, 1+η
η semi-norm of which is controlled by |ρ| 1+η

η
,M. The operator iM is

specified in the following definition and its properties in Lemma 5.8.

Definition 5.1. Let D = (M, E) be a staggered discretization of Ω and S be the set of vertices of the
primal mesh M. For s ∈ S, we denote by Ns ⊂ M the set of the elements K ∈ M of which s is a vertex.
Let p ∈ LM(Ω). We denote iM p the function defined as follows:

• iM p ∈ C0(Ω),

• for all K ∈ M, the restriction of iM p to K is affine,

• for all s ∈ S, (iM p)(s) =
1

card(Ns)

∑

K∈Ns

pK .

Lemma 5.8. Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0, with θM defined by
(3.1). For all r ∈ [1,+∞] there exists C = C(r, θ0) such that:

‖iM p‖Lr(Ω) ≤ C‖p‖Lr(Ω), ∀p ∈ LM(Ω). (5.21)

Moreover, for all p ∈ LM(Ω) we have iM p ∈ W1,q(Ω) for all q ∈ [1,+∞) and there exists a constant
C = C(q, θ0) such that :

‖iM p− p‖Lq(Ω) + hM |iM p|W1,q(Ω) ≤ C hM |p|q,M ∀p ∈ LM(Ω). (5.22)

Proof. The proof is similar to that of [7, Lemma 5.8]. We skip the details.

We also have the following technical result which will be useful hereinafter. The proof can be found in
[13, Lemma 2.4].

Lemma 5.9. Let D = (M, E) be a staggered discretization of Ω such that θM ≤ θ0 (where θM is defined
by (3.1)) for some positive constant θ0. Let (nσ)σ∈Eint be a family of real numbers such that for all σ ∈ Eint,
|nσ| ≤ 1, and let u ∈ HM(Ω). Then, for any q ∈ (1,∞) there exists C = C(q, θ0) such that:

∑

σ∈Eint

∣∣∣∣
∫

σ

nσ [u]σ f dσ(x)

∣∣∣∣ ≤ C hM ‖u‖1,q′,M |f |W1,q(Ω), ∀f ∈ W1,q
0 (Ω),

where q′ = q−1
q , ‖u‖21,q′,M =

∑
K∈M

∫
K |∇u|q′ dx.
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We may now give the proof Proposition 5.7 which is similar to that of [7, Prop. 5.9 and 5.10]. The
main difference is that we here have to handle the additional convective term in the momentum balance.

Proof of Proposition 5.7. Let k ∈ N
∗. Since (Tk(ρn))n∈N is bounded in L∞(Ω) (by k) we have by (5.21):

‖iMn
Tk(ρn)‖L∞(Ω) . 1. (5.23)

Furthermore, by (5.22) and (5.1) (observing that |Tk(r1) − Tk(r2)| ≤ |r1 − r2| for all r1, r2 ≥ 0) we have
for all n ∈ N:

‖iMn
Tk(ρn)‖

W
1,

1+η
η (Ω)

. h−ξ
n , ‖iMn

Tk(ρn)− Tk(ρn)‖
L

1+η
η (Ω)

. h1−ξ
n , (5.24)

where, by assumption (3.20) on ξ2,

ξ =
η

1 + η

[
ξ2 +

5

4Γ

(
3

1 + η
+ ξ3

)]
< 1. (5.25)

Let (wn)n∈N be the sequence of functions defined from (iMn
Tk(ρn))n∈N by Lemma 2.6. We have

div wn = iMn
Tk(ρn), curl wn = 0, ‖wn‖W1,q(Ω) . 1, ∀q ∈ (1,+∞).

Moreover, by the Sobolev injection W1,q(Ω) ⊂ L∞(Ω) for q > 3, the sequence (wn)n∈N is bounded in
L∞(Ω) and up to extracting a subsequence, as n → +∞, it strongly converges in Lq(Ω) and weakly in
W1,q(Ω) for all q ∈ (1,+∞) towards some function w satisfying:

div w = Tk(ρ) and curl w = 0.

Inequality (5.24) and the properties of operator A yield

‖wn‖
W

2,
1+η
η (Ω)

. ‖iMn
Tk(ρn)‖

W
1,

1+η
η (Ω)

. h−ξ
n . (5.26)

Let φ ∈ C∞
c (Ω) and take vn = IMn

(φwn) ∈ HMn,0(Ω) as a test function in the discrete weak
formulation of the momentum balance (4.18). We get for all n ∈ N:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

+ µ

∫

Ω

∇Mn
un : ∇Mn

vn dx+ (µ+ λ)

∫

Ω

divMn
un divMn

vn dx

− a

∫

Ω

ργn divMn
vn dx+Rn

1 =

∫

Ω

f ·ΠEn
vn dx, (5.27)

where

Rn
1 = −

∫

Ω

hξ3
n ρΓn divMn

vn dx+Rconv(ρn,un,vn).

By Lemma 4.13, we have:

∣∣Rconv(ρn,un,vn)
∣∣ ≤ C h

1
2−

1
Γ

(
3

1+η
+ξ3

)
n ‖hξ3

n ρΓ‖
1
Γ

L1+η(Ω)‖un‖21,2,Mn
‖vn‖1,2,Mn

+ C h
ξ2−

1
η
− 1

ηΓ

(
3

1+η
+ξ3

)
n ‖hξ3

n ρΓn‖
1
ηΓ

L1+η(Ω)‖un‖1,2,Mn
‖vn‖1,2,Mn

.
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Since ‖vn‖1,2,Mn
. ‖φwn‖H1(Ω), we can apply Remark 4.3 and we get that |Rconv(ρn,un,vn)

∣∣ → 0

as n → +∞. Moreover, by (5.1), we have hξ3
n ρΓn → 0 in Lp(Ω) with 1 < p < 1 + η as n → +∞.

Since (divMn
vn)n∈N is bounded in Lp′

(Ω), we obtain that Rn
1 → 0 as n → +∞. Hence, denoting

δn = vn − φwn = IMn
(φwn)− φwn, we have

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

+ µ

∫

Ω

∇Mn
un : ∇(φwn) dx+ (µ+ λ)

∫

Ω

divMn
un div(φwn) dx

− a

∫

Ω

ργn div(φwn) dx+Rn
2 + o

n→+∞
(1) =

∫

Ω

f · (φwn) dx, (5.28)

where:

Rn
2 = µ

∫

Ω

∇Mn
un : ∇Mn

δn dx+ (µ+ λ)

∫

Ω

divMn
un divMn

δn dx

− a

∫

Ω

ργn divMn
δn dx−

∫

Ω

f · δn dx−
∫

Ω

f · (ΠEn
vn − vn) dx.

By the properties of the Fortin operator IMn
, we have ‖δn‖L2(Ω) . h2

n|φwn|
W

2,
1+η
η (Ω)

. h2−ξ
n and

‖δn‖1, 1+η
η

,Mn
. hn|φwn|

W
2,

1+η
η (Ω)

. h1−ξ
n with 1+η

η ≥ 2. Since (‖un‖1,2,Mn
)n∈N is bounded, (ργn)n∈N is

bounded in L1+η(Ω) (recall that 1 + η = 3(γ−1)
γ ), ΠEn

vn − vn → 0 in L2(Ω) as n → +∞, and ξ < 1, we
get that Rn

2 → 0 as n → +∞.

Applying the identity (2.11) over each control volume, we get:

µ

∫

Ω

∇Mn
un : ∇(φwn) dx = µ

∫

Ω

divMn
un div(φwn) dx+ µ

∫

Ω

curlMn
un · curl(φwn) dx+Rn

3 (5.29)

with Rn
3 which has the following structure:

Rn
3 = µ

∑

σ∈En,int

∫

σ

∑

1≤i,j,k≤3

nσ,i,j,k [(un)i]σ (∇(φwn))j,k dσ(x), (5.30)

where the family of real numbers (nσ,i,j,k)σ∈E,1≤i,j,k≤3 is uniformly bounded. Injecting (5.29) in (5.28) we
get:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

+ (2µ+ λ)

∫

Ω

divMn
un div(φwn) dx+ µ

∫

Ω

curlMn
un · curl(φwn) dx

− a

∫

Ω

ργn div(φwn) dx+Rn
3 + o

n→+∞
(1) =

∫

Ω

f · (φwn) dx. (5.31)

By Lemma 5.9 with q = 2, we have:

|Rn
3 | . hn ‖un‖1,2,Mn

|∇(φwn)|H1(Ω) . hn ‖wn‖
W

2,
1+η
η (Ω)

. h1−ξ
n .
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The choice of wn gives div(φwn) = iMn
Tk(ρn)φ +wn ·∇φ and curl(φwn) = L(φ)wn, where L(φ) is

a matrix with entries involving first order derivatives of φ. Hence, reordering (5.31) we have:

∫

Ω

(
(2µ+ λ)divMn

un − aργn
)
Tk(ρn)φ dx+Rn

4 + o
n→+∞

(1)

=

∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx− (2µ+ λ)

∫

Ω

divMn
un (wn ·∇φ) dx

− µ

∫

Ω

curlMn
un · (L(φ)wn) dx+ a

∫

Ω

ργnwn ·∇φ dx+

∫

Ω

f · (φwn) dx, (5.32)

with

Rn
4 =

∫

Ω

(
(2µ+ λ) divMn

un − aργn
)(
iMn

Tk(ρn)− Tk(ρn)
)
φ dx.

Since (divMn
un)n∈N is bounded in L2(Ω) and (ργn)n∈N in L1+η(Ω), estimate (5.24) (with 1+η

η ≥ 2) yields

Rn
4 → 0 as n → +∞. Moreover, we know that divMn

un, curlMn
un (resp. ργn) weakly converge in L2(Ω)

(resp. in L1+η(Ω)) respectively towards divu, curlu and ργ . Since wn strongly converges in Lq(Ω) towards
w for all q ∈ (1,+∞), we get, passing to the limit n → +∞ in (5.32):

lim
n→+∞

∫

Ω

(
(2µ+ λ)divMn

un − aργn
)
Tk(ρn)φ dx

= lim
n→+∞

∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

− (2µ+ λ)

∫

Ω

divu (w ·∇φ) dx− µ

∫

Ω

curlu · (L(φ)w) dx

+ a

∫

Ω

ργ w ·∇φ dx+

∫

Ω

f · (φw) dx. (5.33)

Let us now determine the limit of the convective term in the right hand side of (5.33). As in the
continuous case, we introduce a mollifying sequence (ωδ)δ>0 and the regularized velocities un,δ = un ∗ωδ

and uδ = u ∗ ωδ where un and u have been extended by 0 outside Ω. We have un,δ ∈ L6(Ω) with
‖un,δ‖L6(Ω) ≤ C‖un‖L6(Ω) and for q ∈ (6,+∞], un,δ ∈ Lq(Ω) with ‖un,δ‖Lq(Ω) ≤ Cδ‖un‖L6(Ω). Moreover,

for all m ∈ N and q ∈ [1,+∞], un,δ ∈ Wm,q(Ω) with |un,δ|Wm,q ≤ Cδ‖un‖L6(Ω). Furthermore, we recall
that

un,δ −→
n→+∞

uδ strongly in L
q
loc(R

3) ∀q ∈ [1, 6) uniformly in δ,

un,δ −→
δ→0

un strongly in L
q
loc(R

3) ∀q ∈ [1, 6) (uniformly in n),

uδ −→
δ→0

u strongly in L6
loc(R

3).

(5.34)

(5.35)

(5.36)

Denoting ũn,δ = IMn
un,δ, we have:

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx

= −
∫

Ω

(PEn
ρn) (ΠEn

ũn,δ)⊗ (ΠEn
un) : ∇En

vn dx+Rn,δ
5 (5.37)

with

Rn,δ
5 = −

∫

Ω

(PEn
ρn)

(
ΠEn

un − (ΠEn
ũn,δ)

)
⊗ (ΠEn

un) : ∇En
vn dx.
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Since (ρnun)n∈N is bounded in Lp(Ω) for some p > 6
5 , (∇wn)n∈N is bounded in Ls(Ω)3 for any s ∈ (1,+∞),

then the following inequality holds, for some triple (p, q, s), such that p > 6
5 , s > 1, q < 6 and 1

p+
1
q +

1
s = 1:

|Rn,δ
5 | . ‖ρnun‖Lp(Ω)‖∇En

vn‖Ls(Ω)3‖ΠEn
un −ΠEn

ũn,δ‖Lq(Ω)

. ‖ρnun‖Lp(Ω)‖∇wn‖Ls(Ω)3‖ΠEn
un −ΠEn

ũn,δ‖Lq(Ω)

. ‖ΠEn
un −ΠEn

ũn,δ‖Lq(Ω)

. ‖un − ũn,δ‖Lq(Ω)

.
(
‖un − un,δ‖Lq(Ω) + ‖ũn,δ − un,δ‖Lq(Ω)

)

where the constants involved in these inequalities are independent of n and δ. From Lemma 5.5 we have:

‖ũn,δ − un,δ‖Lq(Ω) . h2
n|un,δ|W2,q(Ω) . Cδh

2
n‖un‖L6(Ω) . Cδh

2
n.

Therefore:

lim sup
n→+∞

|Rn,δ
5 | . lim sup

n→+∞
‖un − un,δ‖Lq(Ω), (5.38)

where the involved constant is independent of n and δ. Let us now deal with the integral in the right hand
side of (5.37). Performing a discrete integration by parts we get:

−
∫

Ω

(PEn
ρn) (ΠEn

ũn,δ)⊗ (ΠEn
un) : ∇En

vn dx

= −
∑

σ∈En,int

σ=K|L

|σ| ρσ (ũn,δ)σ ⊗ uσ : (vL − vK)⊗ nK,σ

= −
∑

σ∈En,int

σ=K|L

|σ| ρσ (uσ · nK,σ) ((ũn,δ)σ · (vL − vK))

=
∑

K∈Mn

( ∑

σ∈E(K)

|σ| ρσ (uσ · nK,σ) (ũn,δ)σ

)
· vK .

Injecting (ũn,δ)σ = (ũn,δ)σ − (ũn,δ)K + (ũn,δ)K , where (ũn,δ)K is the mean value of the function ũn,δ

over K, we get:

−
∫

Ω

(PEn
ρn) (ΠEn

ũn,δ)⊗ (ΠEn
un) : ∇En

vn dx

=
∑

K∈Mn

( ∑

σ∈E(K)

|σ| ρσ (uσ · nK,σ)
(
(ũn,δ)σ − (ũn,δ)K

))
· vK +Rn,δ

6 +Rn,δ
7 (5.39)

where, using the discrete mass conservation equation (3.4a), we have:

Rn,δ
6 = −hξ1

n

∑

K∈Mn

|K|(ρK − ρ⋆) (ũn,δ)K · vK ,

Rn,δ
7 = hξ2

n

∑

K∈Mn

( ∑

σ∈E(K)∩En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)

)
(ũn,δ)K · vK .

Since (ρn)n∈N is bounded in L
3
2 (Ω), (vn)n∈N is bounded in L∞(Ω) and

‖ũn,δ‖L6(Ω) . ‖un,δ‖L6(Ω) . 1
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where the involved constants are independent of n and δ, we obtain that:

|Rn,δ
6 | → 0 as n → +∞ uniformly with respect to δ > 0. (5.40)

Reordering the sum in Rn,δ
7 we get:

Rn,δ
7 = −hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)

(
(ũn,δ)L · vL − (ũn,δ)K · vK

)

= Rn,δ
7,1 +Rn,δ

7,2 ,

where

Rn,δ
7,1 = −hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)vL ·

(
(ũn,δ)L − (ũn,δ)K

)
,

Rn,δ
7,2 = −hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL) (ũn,δ)K · (vL − vK).

The first term is controlled as follows:

|Rn,δ
7,1 | ≤ hξ2

n ‖vn‖L∞(Ω)

∑

σ∈En,int

σ=K|L

|Dσ|
( |σ|
|Dσ|

|ρK − ρL|
) 1

η |σ|
|Dσ|

∣∣(ũn,δ)L − (ũn,δ)K
∣∣

. hξ2
n ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω)

( ∑

σ∈En,int

σ=K|L

|Dσ|
( |σ|
|Dσ|

) 1+η
η ∣∣(ũn,δ)L − (ũn,δ)K

∣∣ 1+η
η

) η
1+η

where, following similar steps as in the proof of Proposition 5.2 (see the calculation after eq. (5.9)), we
have: ∣∣(ũn,δ)L − (ũn,δ)K

∣∣ 1+η
η .

∣∣(ũn,δ)L − (ũn,δ)σ
∣∣ 1+η

η +
∣∣(ũn,δ)K − (ũn,δ)σ

∣∣ 1+η
η

.
h

1+η
η

L

|L| ‖∇ũn,δ‖
1+η
η

L

1+η
η (L)3

+
h

1+η
η

K

|K| ‖∇ũn,δ‖
1+η
η

L

1+η
η (K)3

.

By the regularity of the sequence of discretizations, we get:

|Rn,δ
7,1 | . hξ2

n ‖|∇En
(ρn)|

1
η ‖

L1+η(Ω) ‖ũn,δ‖1, 1+η
η

,Mn

. hξ2
n ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω) |un,δ|
W

1,
1+η
η (Ω)

. Cδh
ξ2
n ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω) ‖un‖L6(Ω)

. Cδh
ξ2
n ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω),

where the constants involved in . are independent of n (and δ). By the uniform estimate (5.1) we have

‖|∇En
(ρn)|

1
η ‖

L1+η(Ω) = ‖∇En
(ρn)‖

1
η

L

1+η
η (Ω)

. h
− 1

1+η
(ξ2+

5
4Γ ( 3

1+η
+ξ3))

n

Therefore

|Rn,δ
7,1 | . Cδh

η
1+η

(ξ2−
5

4ηΓ ( 3
1+η

+ξ3))
n
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which yields, with condition (3.20):

|Rn,δ
7,1 | → 0 as n → +∞ for any fixed δ > 0. (5.41)

The second term is controlled in a similar way:

|Rn,δ
7,2 | ≤ hξ2

n ‖ũn,δ‖L∞(Ω)

∑

σ∈En,int

σ=K|L

|Dσ|
( |σ|
Dσ

|ρK − ρL|
) 1

η |σ|
|Dσ|

(vL − vK)

. hξ2
n ‖ũn,δ‖L∞(Ω) ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω) ‖∇En
vn‖

L

η
1+η (Ω)

. hξ2
n ‖ũn,δ‖L∞(Ω) ‖|∇En

(ρn)|
1
η ‖

L1+η(Ω) ‖vn‖1, η
1+η

,Mn

. hξ2
n ‖ũn,δ‖L∞(Ω) ‖∇En

(ρn)‖
1
η

L

1+η
η (Ω)

|wn|
W

1,
η

1+η (Ω)

. h
η

1+η
(ξ2−

5
4ηΓ ( 3

1+η
+ξ3))

n ‖ũn,δ‖L∞(Ω),

. Cδh
η

1+η
(ξ2−

5
4ηΓ ( 3

1+η
+ξ3))

n ,

where the involved constants are independent of n (and δ). Using again (3.20), this implies that

|Rn,δ
7,2 | → 0 as n → +∞ for any fixed δ > 0. (5.42)

Let Qn,δ and ΠMn
vn be the functions defined by:

Qn,δ(x) =
∑

K∈Mn

1

|K|
( ∑

σ∈E(K)

|σ| ρσ (uσ · nK,σ)
(
(ũn,δ)σ − (ũn,δ)K

))
XK(x),

ΠMn
vn(x) =

∑

K∈Mn

vK XK(x),

so that, back to (5.39), we have :

−
∫

Ω

(PEn
ρn) (ΠEn

ũn,δ)⊗ (ΠEn
un) : ∇En

vn dx =

∫

Ω

Qn,δ ·ΠMn
vn dx+Rn,δ

6 +Rn,δ
7,1 +Rn,δ

7,2 . (5.43)

Let us prove that, for a fixed δ > 0, Qn,δ weakly converges (up to a subsequence) in Lr(Ω) for some r > 1
towards ρ(u ·∇)uδ as n → +∞. The sum in Qn,δ(x) can be rearranged as follows:

Qn,δ(x) =
∑

σ∈En,int

σ=K|L

ρσ

(
|σ|
|K|

(
(ũn,δ)σ − (ũn,δ)K

)
(uσ · nK,σ)XK(x)

+
|σ|
|L|
(
(ũn,δ)σ − (ũn,δ)L

)
(uσ · nL,σ)XL(x)

)
.

Proceeding as above for the control of
∣∣(ũn,δ)K−(ũn,δ)σ

∣∣6, and invoking once again the following estimates

‖ũn,δ‖1,6,Mn
. |un,δ|W1,6(Ω) . Cδ‖un‖L6(Ω) ≤ Cδ‖un‖1,2,Mn

,
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combined with the estimates on PEn
ρn in L3(γ−1)(Ω), ΠEn

un in L6(Ω), we can prove that (Qn,δ)n∈N is

bounded in Lr(Ω) with r > 1 (because 3(γ − 1) > 3
2 ). Then, up to a subsequence, Qn,δ weakly converges

towards some Qδ in Lr(Ω) as n → +∞.

Let us now identify Qδ. Let ψ ∈ C∞
c (Ω)3 and denote ψn = IMn

ψ. Since ψ is smooth, we have

ΠMn
ψn → ψ in Lr′(Ω) (with 1

r + 1
r′ = 1). Hence we have (observing that Rn,δ

6 → 0 and Rn,δ
7 → 0 as

n → +∞ with ψn instead of vn ):
∫

Ω

Qδ · ψ dx = lim
n→+∞

∫

Ω

Qn,δ · ΠMn
ψn dx = lim

n→+∞
−
∫

Ω

(PEn
ρn) (ΠEn

ũn,δ)⊗ (ΠEn
un) : ∇En

ψn dx.

Since ũn,δ converges strongly as n → +∞ to uδ in Lq(Ω) for all q < 6 (uniformly with respect to δ)
and ‖ũn,δ‖1,2,Mn

≤ Cδ‖un‖1,2,Mn
, we can reproduce the same arguments as those used in the previous

Subsection 5.2 (passing to the limit in the momentum equation) and obtain:
∫

Ω

Qδ ·ψ dx = −
∫

Ω

ρuδ ⊗ u : ∇ψ dx = −
∫

Ω

uδ ⊗ (ρu) : ∇ψ dx.

Since the limit functions satisfy (ρ,u) ∈ L3(γ−1)(Ω) × H1
0(Ω) and since we have already proved that

div(ρu) = 0 in Section 5.1, we infer that:

Qδ = ρ(u ·∇)uδ.

Back to (5.37) and (5.43) we get :

−
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx+

∫

Ω

ρu⊗ u : ∇(φw) dx

= Rn,δ
5 +Rn,δ

6 +Rn,δ
7,1 +Rn,δ

7,2 +Rn,δ
8 +Rδ

9. (5.44)

where

Rn,δ
8 =

∫

Ω

Qn,δ ·ΠMn
vn dx−

∫

Ω

Qk · (φw) dx,

Rδ
9 =

∫

Ω

ρ(u− uδ)⊗ u : ∇(φw) dx.

The function ΠMn
vn converges to φw strongly in Lr′(Ω) as n → +∞. Indeed, we know that in Lr′(Ω),

φwn → φw and δn = vn − φwn → 0 as n → +∞ and we also have ΠMn
vn − vn → 0 in Lr′(Ω) since:

‖ΠMn
vn − vn‖r

′

Lr′(Ω) =
∑

K∈Mn

∫

K

∣∣∣
∑

σ,σ′∈E(K)

(vσ − vσ′)ξσK ζσ′ (x)
∣∣∣
r′

dx

. hr′

n

∑

K∈Mn

h3−r′

K

∑

σ,σ′∈E(K)

|vσ − vσ′ |r′ .

Hence we have ‖ΠMn
vn − vn‖Lr′ (Ω) . hn ‖vn‖1,r′,En

. hn ‖vn‖1,r′,Mn
. hn|φwn|W1,r′ (Ω) . hn. There-

fore, by the weak convergence of Qn,δ towards Qδ in Lr(Ω) we have:

|Rn,δ
8 | → 0 as n → +∞ for any fixed δ > 0. (5.45)

Combining the estimates (5.38)-(5.40)-(5.41)-(5.42)-(5.45) and passing to limit n → +∞ in (5.44), we
obtain that:

lim sup
n→+∞

∣∣∣
∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx−
∫

Ω

ρu⊗ u : ∇(φw) dx
∣∣∣

. lim sup
n→+∞

‖un − un,δ‖Lq(Ω) + |Rδ
9|, (5.46)
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for some q ∈ [1, 6) and for all δ > 0. By (5.36) we have Rδ
9 → 0 as δ → 0 and by the uniform in n

convergence (5.35) we finally obtain, letting δ → 0 in (5.46) that:

lim
n→+∞

∫

Ω

(PEn
ρn) (ΠEn

un)⊗ (ΠEn
un) : ∇En

vn dx =

∫

Ω

ρu⊗ u : ∇(φw) dx.

Going back to (5.33) we obtain:

lim
n→+∞

∫

Ω

(
(2µ+ λ)divMn

un − aργn
)
Tk(ρn)φ dx

=

∫

Ω

ρu⊗ u : ∇(φw) dx− (2µ+ λ)

∫

Ω

divu (w ·∇φ) dx

− µ

∫

Ω

curlu · (L(φ)w) dx+ a

∫

Ω

ργ w ·∇φ dx+

∫

Ω

f · (φw) dx. (5.47)

Applying the identity (2.12) to the functions u and φw ∈ H1
0(Ω), we get:

lim
n→+∞

∫

Ω

(
(2µ+ λ)divMn

un − aργn
)
Tk(ρn)φ dx

=

∫

Ω

(
(2µ+ λ) divu− aργ

)
Tk(ρ)φ dx+

∫

Ω

ρu⊗ u : ∇(φw) dx

− µ

∫

Ω

∇u : ∇(φw) dx− (µ+ λ)

∫

Ω

divudiv(φw) dx

+ a

∫

Ω

ργ div(φw) dx+

∫

Ω

f · (φw) dx.

We have already proved that the limit triple (ρ,u, ργ) ∈ L3(γ−1)(Ω)×H1
0(Ω)×L

3(γ−1)
γ satisfies the momen-

tum equation in the weak sense. Thus, applying Proposition 5.4 to v = φw (using the density of C∞
c (Ω)3

in W
1,q
0 (Ω) for all q ∈ [1,+∞)) yields

lim
n→+∞

∫

Ω

(
(2µ+ λ)divMn

un − aργn
)
Tk(ρn)φ dx =

∫

Ω

(
(2µ+ λ) divu− aργ

)
Tk(ρ)φ dx,

thus concluding the proof of Lemma 5.7.

5.3.2 Strong convergence of the density and renormalization property

Properties of the truncation operators Tk. We first state two results that are the discrete counter-
parts of Lemmas 2.8-2.9.

Lemma 5.10. There exists a constant C such that the following inequality holds for all 1 ≤ q < 3(γ− 1),
n ∈ N and k ∈ N

∗:

‖Tk(ρ)− ρ‖Lq(Ω) + ‖Tk(ρ)− ρ‖Lq(Ω) + ‖Tk(ρn)− ρn‖Lq(Ω) ≤ Ck
1

3(γ−1)
− 1

q .

Consequently, as k → +∞, the sequences (Tk(ρ))k∈N∗ and (Tk(ρ))k∈N∗ both converge strongly to ρ in Lq(Ω)
for all q ∈ [1, 3(γ − 1)).

Lemma 5.11. There exists a constant C such that the following estimate holds:

sup
k>1

lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖Lγ+1(Ω) ≤ C. (5.48)

The proofs of these two lemmas follow the same lines as in the continuous case.
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Renormalization equation associated with Tk. We first state a discrete renormalization property
for truncated functions which is an analogous of the renormalization property stated in Remark 2.4. The
proof is similar to that of Prop. 4.8 which is given in Appendix A.

Proposition 5.12. For any b ∈ C1([0,+∞)), denote bM the truncated function such that

bM (t) =

{
b(t) if t < M,

b(M) if t ≥ M,

and [bM ]′+ its discontinuous derivative:

[bM ]′+(t) =

{
b′(t) if t < M,

0 if t ≥ M.

Let D = (M, E) be a staggered discretization of Ω. If (ρ,u) ∈ LM(Ω)×HM,0(Ω) satisfy the discrete mass
balance (3.4a) with ρ > 0 a.e. in Ω ( i.e. ρK > 0, ∀K ∈ M) then we have:

div
(
bM (ρ)u

)
K
+
(
[bM ]′+(ρK)ρK − bM (ρK)

)
div(u)K +R1

K +R2
K +R3

K = 0 ∀K ∈ M, (5.49)

where

div
(
bM (ρ)u

)
K

=
1

|K|
∑

σ∈E(K)

|σ| bM (ρσ)uσ · nK,σ,

and

R1
K =

1

|K|
∑

σ∈E(K)

|σ|rK,σ (uσ · nK,σ) and rK,σ = [bM ]′+(ρK)(ρσ − ρK) + bM (ρK)− bM (ρσ),

R2
K = hξ2

M [bM ]′+(ρK)
1

|K|
∑

σ∈E(K)

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL),

R3
K = hξ1

M[bM ]′+(ρK)(ρK − ρ⋆).

Now, for any k ∈ N
∗ we consider the function Lk introduced in Section 2 and defined as

Lk(t) =

{
t(ln t− ln k − 1), if t ∈ [0, k),

−k, if t ∈ [k,+∞).

We recall that Lk ∈ C0([0,+∞)) ∩ C1((0,+∞)) and

tL′
k(t)− Lk(t) = Tk(t) ∀t ∈ [0,+∞).

Proposition 5.13. Under the assumptions of Theorem 3.1, let (ρ,u) ∈ L3(γ−1)(Ω) ×H1
0(Ω) be the limit

couple of the sequence (ρn,un)n∈N. Then, for all k ∈ N
∗, the following inequalities hold:

divMn
(Lk(ρn)un) + Tk(ρn)divMn

un +Rn = 0, in D′(R3), ∀n ∈ N.

div(Lk(ρ)u) + Tk(ρ)divu ≥ 0 in D′(R3),

(5.50)

(5.51)

where the discrete function Rn satisfies:

∫

Ω

Rn ≥ 0.
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Proof. To prove (5.50), we apply Proposition 4.8 (completed by Remark 4.2) with the function b = Lk

which is a convex function satisfying |L′
k(t)| ≤ C| ln t| for t ≤ 1. We straightforwardly obtain (5.50).

Let M ∈ N
∗. Applying Proposition 5.12 to the function TM (t) (i.e. TM = bM with b = Id) we obtain:

div
(
TM (ρ)u

)
K
+
(
[TM ]′+(ρK)ρK − TM (ρK)

)
div(u)K +R1

K +R2
K +R3

K = 0, ∀K ∈ M.

Let φ ∈ C∞
c (Ω) with φ ≥ 0. For n ∈ N define φn ∈ LMn

(Ω) by φn|K = φK the mean value of φ over K,
for K ∈ Mn. Multiplying the above identify by |K|φK and summing over K ∈ Mn yields:

∑

K∈Mn

∑

σ∈E(K)

|σ|TM (ρσ)(uσ · nK,σ)φK

+
∑

K∈Mn

(
[TM ]′+(ρK)ρK − TM (ρK)

)
φK

( ∑

σ∈E(K)

|σ|uσ · nK,σ

)
+Rn

1 +Rn
2 +Rn

3 = 0,

with

Rn
1 =

∑

K∈Mn

∑

σ∈E(K)

|σ|
(
[TM ]′+(ρK)(ρσ − ρK) + TM (ρK)− TM (ρσ)

)
(uσ · nK,σ)φK ,

Rn
2 = hξ2

n

∑

K∈Mn

[TM ]′+(ρK)φK

∑

σ∈E(K)

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL),

Rn
3 = hξ1

n

∑

K∈Mn

|K|[TM ]′+(ρK)φK(ρK − ρ⋆).

Since the function TM is concave and ρσ is the upwind value of the density at the face σ with respect to
uσ · nK,σ, we have Rn

1 ≤ 0. The second remainder term can be rearranged as follows:

Rn
2 = hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL) ([TM ]′+(ρK)φK − [TM ]′+(ρL)φL),

= Rn
2,1 +Rn

2,2,

where

Rn
2,1 = hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL) ([TM ]′+(ρK)− [TM ]′+(ρL))φL,

Rn
2,2 = hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL) [TM ]′+(ρK) (φK − φL).

Since TM is concave, we have Rn
2,1 ≤ 0. Hence we get:

∑

K∈Mn

∑

σ∈E(K)

|σ|TM (ρσ)(uσ · nK,σ)φK

+
∑

K∈Mn

(
[TM ]′+(ρK)ρK − TM (ρK)

)
φK

( ∑

σ∈E(K)

|σ|uσ · nK,σ

)
+Rn

2,2 +Rn
3 ≥ 0. (5.52)

We want to pass to the limit n → +∞ in (5.52). To that end, we show that the remainder terms Rn
2,2 and

Rn
3 converge to 0 as n → +∞. Observing that for all K ∈ Mn, |[TM ]′+(ρK)| ≤ 1, and since φ is a smooth
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function, we get:

|Rn
2,2| ≤ hξ2

n

∑

σ∈En,int

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η |φK − φL|

. hξ2
n ‖∇φ‖

L∞(Ω)

∑

σ∈En,int

σ=K|L

|Dσ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η

. hξ2
n ‖∇φ‖

L∞(Ω) ‖|∇En
(ρn)|

1
η ‖

L1(Ω).

Since 1 + η > 1, Hölder’s inequality yields

‖|∇En
(ρn)|

1
η ‖

L1(Ω) ≤ C(Ω, η)‖∇En
(ρn)‖

1
η

L

1+η
η (Ω)

. h
− 1

1+η
(ξ2+

5
4Γ ( 3

1+η
+ξ3))

n .

Therefore

|Rn
2,2| . h

η
1+η

(ξ2−
5

4ηΓ ( 3
1+η

+ξ3))
n −→ 0 as n → +∞.

For Rn
3 we may write:

|Rn
3 | . hξ1

n ‖φ‖L∞(Ω)

∑

K∈Mn

|K||ρK − ρ⋆| . 2 |Ω| ρ⋆ ‖φ‖L∞(Ω) h
ξ1
n

so that Rn
3 → 0 as n → +∞. Coming back to (5.52), it remains to pass to the limit n → +∞ in the two

terms
∑

K∈Mn

∑

σ∈E(K)

|σ|TM (ρσ)(uσ · nK,σ)φK and
∑

K∈Mn

(
[TM ]′+(ρK)ρK − TM (ρK)

)
φK

( ∑

σ∈E(K)

|σ|uσ · nK,σ

)
.

On the one hand, we have by a discrete integration by parts

∑

K∈Mn

∑

σ∈E(K)

|σ|TM (ρσ)(uσ · nK,σ)φK = −
∫

Ω

(PEn
TM (ρn)) (ΠEn

un) ·∇En
φn dx.

Then, using the same arguments as those to pass to the limit in the discrete weak formulation of the mass
equation (see the proof of Proposition 5.2 and replace ρn by TM (ρn) which converges to TM (ρ) in L∞(Ω)
weak-* topology), we deduce that

lim
n→+∞

∑

K∈Mn

∑

σ∈E(K)

|σ|TM (ρσ)(uσ · nK,σ)φK = −
∫

Ω

TM (ρ) u ·∇φ dx.

This is possible because (TM (ρn))n∈N is bounded in L∞(Ω) (while (ρn)n∈N is bounded in L3(γ−1) with
3(γ−1) ∈ (32 , 6] since γ ∈ (32 , 3]) and a “weak BV estimate” is available for TM (ρn) thanks to the following
inequality (recall that |TM (r1)− TM (r2)| ≤ |r1 − r2| for all r1, r2 ≥ 0):

∑

σ∈Eint

σ=K|L

|σ| (TM (ρL)− TM (ρK))2 |uσ · nK,σ| ≤
∑

σ∈Eint

σ=K|L

|σ| (ρL − ρK)2 |uσ · nK,σ|.

On the other hand, we have:
∑

K∈Mn

(
[TM ]′+(ρK)ρK − TM (ρK)

)
φK

( ∑

σ∈E(K)

|σ|uσ · nK,σ

)

=

∫

Ω

(
[TM ]′+(ρn)ρn − TM (ρn)

)
divMn

un φ dx.

56



Hence, passing to the limit n → +∞ in (5.52) we obtain:

div
(
TM (ρ)u

)
+
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divM u ≥ 0 in D′(R3) (5.53)

which corresponds to a relaxed version of Equation (2.29) from Section 2. For k ∈ N
∗ and δ > 0,

we introduce the regularized function Lk,δ defined as Lk,δ(t) = Lk(t + δ), the derivative of which is
bounded close to 0 unlike Lk. Applying Lemma 2.1 (and the second part of Remark 2.4) to the pair
(TM (ρ),u) (justified since TM (ρ) ∈ L∞(Ω) for M fixed) with the function Lk,δ and the source term

g = −
[
ρ[TM ]′+(ρ)− TM (ρ)

]
divM u ∈ L1

loc(R
3), we get:

div
(
Lk,δ

(
TM (ρ)

)
u
)
+ Tk,δ

(
TM (ρ)

)
divu ≥ −L′

k,δ

(
TM (ρ)

)[
ρ[TM ]′+(ρ)− TM (ρ)

]
divM u in D′(R3)

(5.54)
where Tk,δ(t) = tL′

k,δ(t)−Lk,δ(t). Now, exactly as in the continuous case, we pass to the limits M → +∞
and then δ → 0+ (see the proof of Prop. 2.10) to get inequality (5.51).

Strong convergence of the density

Proposition 5.14. Under the assumptions of Theorem 3.1, let (ρ,u) ∈ L3(γ−1)(Ω) ×H1
0(Ω) be the limit

couple of the sequence (ρn,un)n∈N. Up to extraction, the sequence (ρn)n∈N strongly converges towards ρ
in Lq(Ω) for all q ∈ [1, 3(γ − 1)).

Proof. Integrating inequalities (5.50) and (5.51) and summing, one obtains:

∫

Ω

Tk(ρn)divMn
un dx−

∫

Ω

Tk(ρ)divudx ≤ 0, ∀n ∈ N. (5.55)

Since, |Tk(r1)− Tk(r2)|γ+1 ≤ (rγ1 − rγ2 )(Tk(r1)− Tk(r2)), for all r1, r2 ≥ 0, we have

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx ≤ lim sup
n→+∞

∫

Ω

(ργn − ργ)(Tk(ρn)− Tk(ρ)) dx

≤
∫

Ω

(
ργTk(ρ)− ργ Tk(ρ)

)
dx+

∫

Ω

(
ργ − ργ

)(
Tk(ρ)− Tk(ρ)

)
dx.

Invoking the convexity of the functions t 7→ tγ and t 7→ −Tk(t), we have ργ ≥ ργ and Tk(ρ) ≤ Tk(ρ) so
that

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx ≤
∫

Ω

(
ργTk(ρ)− ργ Tk(ρ)

)
dx.

We can now use the weak compactness property satisfied by the effective viscous flux (Prop. 5.7):

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx

≤ 2µ+ λ

a
lim sup
n→+∞

∫

Ω

(
Tk(ρn)− Tk(ρ)

)
divMn

un dx

=
2µ+ λ

a

∫

Ω

(Tk(ρ)− Tk(ρ)) divudx+ lim sup
n→+∞

( ∫

Ω

Tk(ρn)divMn
un dx−

∫

Ω

Tk(ρ)divudx
)

≤ 2µ+ λ

a

∫

Ω

(Tk(ρ)− Tk(ρ)) divudx,
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thanks to (5.55). The end of the proof is the same as that of Proposition 2.11: thanks to the previous
inequality we show that

lim
k→+∞

lim sup
n→+∞

∫

Ω

|Tk(ρn)− Tk(ρ)|γ+1 dx = 0,

and thus
lim

k→+∞
lim sup
n→+∞

‖Tk(ρn)− Tk(ρ)‖L1(Ω) = 0.

We conclude to the strong convergence of the density by passing to the limits n → +∞, k → +∞ in the
following inequality

‖ρ− ρn‖L1(Ω) ≤ ‖ρn − Tk(ρn)‖L1(Ω) + ‖Tk(ρn)− Tk(ρ)‖L1(Ω) + ‖Tk(ρ)− ρ‖L1(Ω).

A Discrete renormalized equation, proof of Proposition 4.8

Multiplying by b′(ρK)XK the discrete mass conservation equation (3.4a) (together with the definition (3.6)),
one gets

b′(ρK)
1

|K|
∑

σ∈E(K)

|σ|ρσuσ · nK,σ + hξ1
Mb′(ρK)(ρK − ρ⋆)

+ hξ2
Mb′(ρK)

1

|K|
∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL) = 0.

and then

1

|K|
∑

σ∈E(K)

|σ|b(ρσ)uσ · nK,σ +
1

|K|
∑

σ∈E(K)

|σ|
(
b′(ρK)ρK − b(ρK)

)
uσ · nK,σ

+
1

|K|
∑

σ∈E(K)

|σ|rK,σuσ · nK,σ + hξ2
Mb′(ρK)

1

|K|
∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)

+ hξ1
Mb′(ρK)(ρK − ρ⋆) = 0

with
rK,σ = b′(ρK)(ρσ − ρK) + b(ρK)− b(ρσ),

which corresponds to Equation (4.9). Multiplying by |K|, summing over K, rearranging the sums, and
using the discrete homogeneous Dirichlet boundary condition on the velocity, we get (4.10).

Let us assume from now on that b is convex, First, we have rK,σ = 0 when uσ · nK,σ ≥ 0 (since then
ρσ = ρK) and, when uσ · nK,σ ≤ 0, we have rK,σ ≤ 0 since b is convex. Hence R1

E ≥ 0.
Since b is convex, we also deduce that

R2
E = hξ2

M

∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)(b

′(ρK)− b′(ρL)) ≥ 0.

Finally for the last remainder term R3
M, we combine the convexity of b with a Taylor expansion and then

use Jensen’s inequality (recalling that
∑

K∈M |K| ρK = |Ω|ρ⋆) to get:

R3
M ≥ hξ1

M

∑

K∈M

|K| (b(ρK)− b(ρ⋆)) = hξ1
M |Ω|

(
1

|Ω|

∫

Ω

b(ρ) dx− b
( 1

|Ω|

∫

Ω

ρ dx
))

≥ 0.
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B Control of the convective term, proof of Lemma 4.13

By definition, recalling that a⊗ b : c ⊗ d = (a · c) (b · d) for a, b, c,d ∈ R
3, we have:

∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx =
∑

σ∈Eint

σ=K|L

|Dσ| ρσ (uσ · nK,σ)uσ ·
( |σ|
|Dσ|

(vL − vK)
)
.

Reordering the sum and using the definition of the primal fluxes (3.6) we get:

−
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx =
∑

K∈M

vK ·
∑

σ∈E(K)

|σ| ρσ (uσ · nK,σ)uσ

=
∑

K∈M

vK ·
∑

σ∈E(K)

FK,σ(ρ,u)uσ +R1

where

R1 = −hξ2
M

∑

K∈M

vK ·
∑

σ∈E(K)
σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)uσ.

By assumption (H2) (conservativity of the dual fluxes) we may write :

−
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx

=
∑

K∈M

vK ·
∑

σ∈E(K)

FK,σ(ρ,u)uσ +R1

=
∑

K∈M

vK ·
∑

σ∈E(K)

(
FK,σ(ρ,u) uσ +

∑

ǫ∈Ẽ(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u)uǫ

)
+R1.

Writing vK = vσ + vK − vσ we get:

−
∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx

=
∑

K∈M

∑

σ∈E(K)

vσ ·
(
FK,σ(ρ,u) uσ +

∑

ǫ∈Ẽ(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u)uǫ

)
+R1 +R2, (B.1)

with
R2 =

∑

K∈M

∑

σ∈E(K)

(vK − vσ) ·
(
FK,σ(ρ,u) uσ +

∑

ǫ∈Ẽ(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u)uǫ

)
.

By conservativity of the primal fluxes (i.e. using FK,σ(ρ,u) = −FL,σ(ρ,u) for σ = K|L) we see that the
first term in the right hand side of (B.1) is equal to

∫
Ω
divE(ρu⊗ u) · ΠEv dx. Hence:

∣∣∣
∫

Ω

divE(ρu⊗ u) · ΠEv dx+

∫

Ω

(PEρ)(ΠEu)⊗ (ΠEu) : ∇Ev dx
∣∣∣ ≤ |R1|+ |R2|.
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Proving Lemma 4.13 amounts to bounding |R1| and |R2|.
We begin with |R1|. Reordering the sum in R1 we, get for C = (Ω, γ,Γ, θ0):

|R1| = hξ2
M

∣∣∣
∑

σ∈Eint

σ=K|L

|σ|
( |σ|
|Dσ|

) 1
η |ρK − ρL|

1
η
−1 (ρK − ρL)uσ · (vK − vL)

∣∣∣

≤ C h
ξ2−

1
η

M ‖ρ‖
1
η

L∞(Ω)

(
∑

σ∈Eint

|Dσ||uσ|6
) 1

6
(
∑

σ∈Eint

|Dσ|
( |σ|
|Dσ|

|vK − vL|
) 6

5

) 5
6

≤ C h
ξ2−

1
η

M ‖ρ‖
1
η

L∞(Ω) ‖ΠEu‖L6(Ω) ‖∇Ev‖
L

6
5 (Ω)3

Therefore

|R1| ≤ C h
ξ2−

1
η
− 3

(1+η)ηΓ

M ‖ρΓ‖
1
ηΓ

L1+η(Ω) ‖u‖1,2,M ‖∇Ev‖L2(Ω)3

≤ C h
ξ2−

1
η
− 1

ηΓ

(
3

1+η
+ξ3

)

M ‖hξ3
MρΓ‖

1
ηΓ

L1+η(Ω) ‖u‖1,2,M ‖v‖1,2,M.

Let us now turn to R2. Recalling that uǫ = uσ + 1
2 (uσ′ −uσ) and using (H1), we write R2 = R2,1 +R2,2

with:

R2,1 =
1

2

∑

K∈M

∑

σ∈E(K)

(vK − vσ) ·
( ∑

ǫ∈Ẽ(Dσ),

ǫ⊂K, ǫ=Dσ|D
′

σ

Fσ,ǫ(ρ,u) (uσ′ − uσ)
)
,

R2,2 =
∑

K∈M

∑

σ∈E(K)

(vK − vσ) · uσ ξσK

( ∑

σ′∈E(K)

FK,σ′(ρ,u)
)
.

The assumption (H3) yields, for C = C(Ω, θ0):

|Fσ,ǫ(ρ,u)| ≤ C
(
‖ρ‖L∞(Ω)‖ΠEu‖L∞(Ω) h

2
K + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M hK

)

≤ C
(
‖ρ‖L∞(Ω)‖u‖L∞(Ω) hM hK + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M hK

)
.

Since vK is a convex combination of (vσ)σ∈E(K):

∣∣∣
∑

σ∈E(K)

(vK − vσ) ·
( ∑

ǫ∈Ẽ(Dσ),

ǫ⊂K, ǫ=Dσ|D
′

σ

Fσ,ǫ(ρ,u) (uσ′ − uσ)
)∣∣∣

≤ C
(
‖ρ‖L∞(Ω)‖u‖L∞(Ω) hM + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M

) ∑

σ, σ′

σ′′, σ′′′∈E(K)

hK |vσ − vσ′ | |uσ′′ − uσ′′′ |,

and, for σ, σ′ ∈ E(K), the quantity |uσ −uσ′ | (or |vσ − vσ′ |) appears in the sum a finite number of times
which depends on the number of faces of K. Hence, applying the Cauchy-Schwarz inequality and Lemma
4.4, we may write

|R2,1| ≤ C
(
‖ρ‖L∞(Ω)‖u‖L∞(Ω) hM + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M

)
‖u‖1,2,E ‖v‖1,2,E

≤ C
(
‖ρ‖L∞(Ω)‖u‖L∞(Ω) hM + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M

)
‖u‖1,2,M ‖v‖1,2,M

(B.2)
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We then get, for C = C(Ω, γ,Γ, θ0):

|R2,1| ≤ C h
1− 1

2−
1
Γ

(
3

1+η
+ξ3

)
M ‖hξ3

MρΓ‖
1
Γ

L1+η(Ω)‖u‖
2
1,2,M ‖v‖1,2,M

+ C h
ξ2+1− 1

η
− 1

ηΓ

(
3

1+η
+ξ3

)
M ‖hξ3

MρΓ‖
1
ηΓ

L1+η(Ω)‖u‖1,2,M ‖v‖1,2,M.

The estimation of R2,2 follows similar steps. Indeed by definition of vK , we have

∑

σ∈E(K)

ξσK (vK − vσ) = 0,

and we obtain that:

R2,2 =
∑

K∈M

∑

σ∈E(K)

(vK − vσ) · ξσK (uσ − uK)
[ ∑

σ′∈E(K)

FK,σ′(ρ,u)
]
,

so, once again, denoting uK =
∑

σ∈E(K) ξ
σ
K uσ:

|R2,2| ≤ C
(
‖ρ‖L∞(Ω)‖u‖L∞(Ω) hM + ‖ρ‖

1
η

L∞(Ω) h
ξ2+1− 1

η

M

) ∑

K∈M

hK

∑

σ∈E(K)

|vσ − vK | |uσ − uK |

≤ C h
1− 1

2−
1
Γ

(
3

1+η
+ξ3

)
M ‖hξ3

MρΓ‖
1
Γ

L1+η(Ω)‖u‖
2
1,2,M ‖v‖1,2,M

+ C h
ξ2+1− 1

η
− 1

ηΓ

(
3

1+η
+ξ3

)
M ‖hξ3

MρΓ‖
1
ηΓ

L1+η(Ω)‖u‖1,2,M ‖v‖1,2,M.
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[4] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin. The gradient discretisation method,
volume 82. Springer, 2018.

[5] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159. Springer Science &
Business Media, 2013.
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