
HAL Id: hal-02175184
https://hal.science/hal-02175184v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load Stress Controls on Directional Lava Dome Growth
at Volcán de Colima, Mexico

Edgar U Zorn, Nicolas Le Corvec, Nick R Varley, Jacqueline T Salzer,
Thomas R. Walter, Carlos Navarro-Ochoa, Dulce M Vargas-Bracamontes,

Samuel T Thiele, Raúl Arámbula Mendoza

To cite this version:
Edgar U Zorn, Nicolas Le Corvec, Nick R Varley, Jacqueline T Salzer, Thomas R. Walter, et al.. Load
Stress Controls on Directional Lava Dome Growth at Volcán de Colima, Mexico. Frontiers in Earth
Science, 2019, 7, pp.87. �10.3389/feart.2019.00084�. �hal-02175184�

https://hal.science/hal-02175184v1
https://hal.archives-ouvertes.fr


ORIGINAL RESEARCH
published: 07 May 2019

doi: 10.3389/feart.2019.00084

Frontiers in Earth Science | www.frontiersin.org 1 May 2019 | Volume 7 | Article 84

Edited by:

Roberto Sulpizio,

University of Bari Aldo Moro, Italy

Reviewed by:

Jon J. Major,

United States Geological Survey,

United States

Silvia Massaro,

Italian National Research Council

(CNR), Italy

*Correspondence:

Edgar U. Zorn

zorn@gfz-potsdam.de

Specialty section:

This article was submitted to

Volcanology,

a section of the journal

Frontiers in Earth Science

Received: 14 December 2018

Accepted: 08 April 2019

Published: 07 May 2019

Citation:

Zorn EU, Le Corvec N, Varley NR,

Salzer JT, Walter TR,

Navarro-Ochoa C,

Vargas-Bracamontes DM, Thiele ST

and Arámbula Mendoza R (2019)

Load Stress Controls on Directional

Lava Dome Growth at Volcán de

Colima, Mexico.

Front. Earth Sci. 7:84.

doi: 10.3389/feart.2019.00084

Load Stress Controls on Directional
Lava Dome Growth at Volcán de
Colima, Mexico
Edgar U. Zorn 1,2*, Nicolas Le Corvec 1, Nick R. Varley 3, Jacqueline T. Salzer 1,

Thomas R. Walter 1, Carlos Navarro-Ochoa 4, Dulce M. Vargas-Bracamontes 5,

Samuel T. Thiele 6 and Raúl Arámbula Mendoza 4

1German Research Centre for Geosciences GFZ, Potsdam, Germany, 2 Institute of Geosciences, University of Potsdam,

Potsdam, Germany, 3Colima Intercambio e Investigación en Vulcanología, Universidad de Colima, Colima, Mexico, 4Centro

Universitario de Estudios e Investigaciones de Vulcanología, Universidad de Colima, Colima, Mexico, 5CONACYT-CUEIV,

Universidad de Colima, Colima, Mexico, 6 School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC,

Australia

During eruptive activity of andesitic stratovolcanoes, the extrusion of lava domes, their

collapse and intermittent explosions are common volcanic hazards. Many lava domes

grow in a preferred direction, in turn affecting the direction of lava flows and pyroclastic

density currents. Access to active lava domes is difficult and hazardous, so detailed data

characterizing lava dome growth are typically limited, keeping the processes controlling

the directionality of extrusions unclear. Here we combine TerraSAR-X satellite radar

observations with high-resolution airborne photogrammetry to assess morphological

changes, and perform finite element modeling to investigate the impact of loading

stress on shallow magma ascent directions associated with lava dome extrusion and

crater formation at Volcán de Colima, México. The TerraSAR-X data, acquired in

∼1-m resolution spotlight mode, enable us to derive a chronology of the eruptive

processes from intensity-based time-lapse observations of the general crater and

dome evolution. The satellite images are complemented by close-range airborne

photos, processed by the Structure-from-Motion workflow. This allows the derivation

of high-resolution digital elevation models, providing insight into detailed loading and

unloading features. During the observation period from Jan-2013 to Feb-2016, we

identify a dominantly W-directed dome growth and lava flow production until Jan-2015.

In Feb-2015, following the removal of the active summit dome, the surface crater

widened and elongated along a NE-SW axis. Later in May-2015, a new dome grew

toward the SW of the crater while a separate vent developed in the NE of the

crater, reflecting a change in the direction of magma ascent and possible conduit

bifurcation. Finite element models show a significant stress change in agreement with

the observed magma ascent direction changes in response to the changing surface

loads, both for loading (dome growth) and unloading (crater forming excavation) cases.
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These results allow insight into shallow dome growth dynamics and the migration of

magma ascent in response to changing volcano summit morphology. They further

highlight the importance of detailed volcano summit morphology surveillance, as changes

in direction or location of dome extrusion may have major implications regarding the

directions of potential volcanic hazards, such as pyroclastic density currents generated

by dome collapse.

Keywords: lava dome, load stress, Volcán de Colima, TerraSAR-X, photogrammetry, finite element modeling

INTRODUCTION

The growth of lava domes is a common volcanic phenomenon,
being recorded at over 120 volcanoes worldwide (Ogburn et al.,
2015), with many varying growth styles. Understanding the
growth of lava domes at stratovolcanoes is one of the most
important tasks in volcanology as domes can pose a severe threat
to human lives and infrastructure. The collapse of a lava dome
can produce destructive pyroclastic density currents (PDCs), a
hazard responsible for many volcano-related deaths (Witham,
2005). One of the most prominent examples of the destructive
potential of a lava dome occurred in 1902 with the sudden
collapse of the Mount Pelee, Martinique, lava spine. This resulted
in a PDC that destroyed the nearby town St. Pierre, causing
∼28,000 deaths within a few minutes (Tanguy, 1994). More
recently, during the 2010 eruption of Merapi, Indonesia, PDCs
resulting from dome collapse extended for >15 km from the
summit, leading to the evacuation of a third of a million of people
(Surono et al., 2012; Cronin et al., 2013). Lava domes that are
emplaced on slopes or grow by oblique extrusion are especially
prone to gravitational collapse due to potential oversteepening
(Voight, 2000), so a clear understanding of the dome growth
dynamics is highly important.

Inclined or directional dome growth as well as extrusion
from multiple vents are commonly observed at many volcanoes
producing very viscous lava domes. Dome growth at Soufrière
Hills, Montserrat, between 1995 and 1998 produced several
oblique spines in different directions (Watts et al., 2002). Similar
observations weremade during the 2004–2006 dome extrusion of
Mount St. Helens, USA, which also produced directional spines
likely originating from the same vent (Vallance et al., 2008),
episodically extruding, spreading and sliding laterally (Walter,
2011; Salzer et al., 2016). At Chaiten, Chile, such spines eventually
collapsed in 2008 and produced far reaching PDCs (Pallister
et al., 2013b). At Merapi, Indonesia, a clear lava dome growth
directionality was identified toward the populated southern
slopes years before the 2010 eruption (Walter et al., 2013b).

While it is clear that lava domes regularly display directional
or oblique growth patterns, the reasons and mechanisms behind
the growth asymmetry are still poorly understood. Emplacement
on an inclined slope and a complex morphology of the lava dome
or crater can result in a preferred growth direction (Harnett
et al., 2018). Based on numerical modeling and observations
at Soufrière Hills, Montserrat (Husain et al., 2014), another
proposed mechanism is the change of dome extrusion direction
after plugging of ascent pathways and the pileup of extruded lava.

The resulting transition from endogenous to exogenous growth
and the establishment of new shear zones causes further spine
extrusions to be deflected in other directions (Hale and Wadge,
2008). Similarly, the occurrence of multiple vent extrusions
at Volcán de Colima has been attributed to a dense plug
which deflects magma ascent around it (Lavallée et al., 2012).
Furthermore, the growth of lava domes and their directionality
might be largely controlled by shear bands and slip behavior
at the conduit walls (Hale and Wadge, 2008). Pre-existing
morphology can also direct dome growth through channeling
(Walter et al., 2013b). Therefore, these previous studies suggest
that shallow extrusion processes at the conduit and the local
morphology play an important role in establishing directional
lava dome growth. Here, we contribute to this discussion by
providing new and detailed geomorphological data from Volcán
de Colima. Our analysis of aerial photogrammetry suggests a
relationship between morphology change and the directionality
of dome growth. To investigate this observed relationship, we
perform numerical modeling on the influence of local stress
changes in response to loading and unloading associated with
dome growth and crater formation. We further propose stress
changes as a principal mechanism to explain the developments
of new vents and directional dome extrusion.

Lava Dome Monitoring
While dome building volcanoes can be well monitored by
traditional seismic and geodetic techniques, domes at steep
sided volcanoes are often hazardous to approach and are
therefore monitored by remote sensing. Studies increasingly
utilize Synthetic Aperture Radar (SAR) as a tool independent of
cloud cover to assess the topography, structure and deformation
of volcanoes. Most studies analyse either the reflected amplitude
or perform interferometric processing of the signal phase values.
Interferometric SAR (InSAR) measures the phase difference
between satellite radar acquisitions, but resolving the growth
on lava domes remains challenging as the phase images require
good correlation between acquisitions (Walter et al., 2015). Thus,
most InSAR studies focus on crustal deformation affecting the
flanks of dome-growing volcanoes (Salzer et al., 2014; Welch and
Schmidt, 2017). Lava dome cooling and subsidence (Salzer et al.,
2017) and cracks splitting a lava dome have also been detected
(Walter et al., 2015). For monitoring lava domes, the analysis of
the SAR amplitude is particularly valuable as it can be used to
document and quantify lava dome growth e.g., at Merapi and
Sinabung, Indonesia (Pallister et al., 2013c, 2018) and Mount
Cleveland, Alaska (Wang et al., 2015). SAR data also allow the
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construction of DEMs, which provide a detailed quantification of
volume changes at growing lava domes (Kubanek et al., 2015).

In addition to radar monitoring, aerial photogrammetric
surface reconstructions have become a widespread tool in
geosciences (Bemis et al., 2014) especially as the development
of the Structure-from-Motion Multi-View Stereo (SfM-MVS)
workflow has allowed the reconstruction of a three dimensional
point cloud and digital terrain modeling based on oblique and
nadir photogrammetric data (Westoby et al., 2012). At dome
building volcanoes, these photogrammetrically built models
can be used to identify detailed features of the dome surface
(Darmawan et al., 2018), monitor growth and extrusion rates
(Diefenbach et al., 2012, 2013) and characterize interaction of
lava domes with snow (Walder et al., 2007). A comparison
of sequential models can also allow the estimation of volume
changes from ground movement, dome collapse (Herd et al.,
2005), lava flow/PDC emplacement (Dai and Howat, 2017;
Pedersen et al., 2018), or the study of secondary volcano hazards
such as lahars (Gomez et al., 2018; Walter et al., 2018). In this
paper, we combine both SAR and SfM-MVS photogrammetry to
investigate the oblique dome growth processes at one of the most
active volcanoes in Central America.

Regional Background
Volcán de Colima (or sometimes referred to as Fuego de
Colima) is an andesitic stratovolcano located in western Mexico
(Figure 1) as part of the Trans-Mexican Volcanic Belt. The
volcano is situated within a 5 km wide collapse scar, which is
open to the south and originated from a large flank-collapse,
likely older than 23 ka (Roverato et al., 2011). Its recent activity
has been dominated by dome growth and intermittent Vulcanian
explosions originating at the summit crater with several instances
of effusion that were recorded between 1998 and 2010 (Varley
et al., 2010), and lasted until 2011. Following a quiescence from
2011 to 2012, a short inflation heralded a new dome-growing
phase in January 2013 (Salzer et al., 2014; Walter et al., 2019)
and transitioned to explosive activity in 2015. The July 2015
eruption marked the most hazardous event in over a century
(Reyes-Dávila et al., 2016). It featured two major dome collapses
and produced PDCs extending for more than 10 km (Reyes-
Dávila et al., 2016; Capra et al., 2018). The eruption caused strong
morphologic changes, as it left an amphitheater-shaped scar at
the summit, which is breached to the south. Moderate activity,
including vulcanian explosions, dome growth and lava flow
effusion, continued until February 2017, when the most recent
active period terminated. In this work we further elucidate the
2013–2016 activity, and quantify the large morphology changes
associated with summit growth and destruction.

The activity of Volcán de Colima shows a ∼100-year cycle,
characterized by lava flow effusion, dome growth and moderate
explosions, with an intensification in activity before culminating
in a large sub-plinian to plinian eruption (Luhr and Carmichael,
1980; González et al., 2002; Luhr, 2002). The last large eruptions
occurred in 1818 (Macías et al., 2017) and 1913 (Saucedo
et al., 2010; Massaro et al., 2018), making close monitoring
of the volcano an important topic due to the possibility of a
plinian eruption in the near future. Therefore, many recent

studies are aimed at monitoring and understanding the dynamics
of volcano deformation. Small-scale deformation has been
observed with interferometrically processed TerraSAR-X (TSX)
data (Salzer et al., 2014, 2017), identifying shallow pressurization
and suggesting the existence of a dense plug and a complex
conduit system at shallow depth. At the surface, morphological
and volumetric observations of the lava dome at Volcán de
Colima have previously been studied based on airborne LiDAR
in 5m resolution (Davila et al., 2007) and TanDEM-X satellites in
an approximate 10m resolution (Kubanek et al., 2014). However,
these rather rare datasets could hardly be used for year-long
monitoring, and were only realized for distinct years and eruptive
episodes. The SfM-MVS workflow has also been used to model
the summit dome and crater from both optical (James and
Varley, 2012) and thermal (Thiele et al., 2017) surveys, allowing
morphologic studies each time an overflight is realized.

DATA AND METHODOLOGY

Volcán de Colima has a continuous seismic monitoring network
(Arámbula-Mendoza et al., 2018). To obtain an overview of the
volcanic activity in the observation period from Jan 2013 to
Feb 2016, we employed the records from the seismic station
closest to the investigated dome. For this, data from the vertical
component of the broadband Guralp CMG-6TD seismic station
SOMA, located on the NW flank at 1.7 km from the summit,
were decomposed and normalized employing the discrete wavelet
transform (DWT). A 0.5Hz high-pass filter was applied to
reduce microseismic noise. This type of signal decomposition
has been previously used at Volcán de Colima observatory
(Vargas-Bracamontes et al., 2009) and, similar to previous seismic
studies at Volcán de Colima (Lamb et al., 2014), allows for the
identification of dome growth phases as these are associated with
characteristic frequency distributions (Figure 2). Phases of dome
growth, collapse and crater formation were further investigated
in remote sensing data as described below.

High-Resolution Satellite Radar
Observations
We processed amplitude SAR data from the German TerraSAR-
X satellite (TSX) acquired between January 2013 and February
2016 at Volcán de Colima. The satellite has a continuous 11 day
return orbit and a 12 h time gap between the chosen ascending
and descending acquisitions, resulting in constant temporal data
acquisition and providing a good overview of the visible changes
at Volcán de Colima and thus its eruptive activity. Due to the
rapid changes and temporal decorrelation of the SAR signal
at dome building volcanoes (Walter et al., 2015; Wang et al.,
2015; Arnold et al., 2017; Chaussard, 2017), we investigate the
amplitude information rather than the phase information.

For this study, we consider a total of 166 SAR-images in
both ascending (86 images) and descending geometries (80
images), which we acquired in spotlight mode for high resolution
(Roth et al., 2003) (Figures 1, 3). The resulting TSX footprint
captures an area of ∼12 × 10 km around Volcán de Colima,
providing a ground resolution of ∼1m, although distortions
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FIGURE 1 | (A) The map shows the location and (B) the local topography of Volcán de Colima. The SAR acquisition geometry with Line of Sight (LOS) for the

ascending (ASC) and descending (DSC) orbit are also indicated. The two photos highlight the dynamic morphological changes occurring at the summit of andesitic

stratovolcanoes. These involve (C) repeated cycles of dome growth (photo from 13.03.2013), and (D) destruction by the collapse of the dome or explosive

excavation, forming a crater (photo from 25.03.2015).

FIGURE 2 | Overview of the seismic activity of Volcán de Colima during the study period characterized by the decomposed frequency content of the seismic signal.

The seismicity is presented as the rate of normalized seismic energy per hour at scales of 2j samples (Vargas-Bracamontes et al., 2009), the associated frequencies

are indicated at the top-right corner of the figure. While in a dome-growing stage, the seismicity is dominantly characterized by high-frequencies due to regular

rockfalls. During an explosive stage, lower frequencies dominate, indicating the explosive activity from a pressurized conduit. The bottom of the plot shows a timeline

of the multiple dome growth phases as well as the growth directions. The main azimuth shown is based on the direction of advancing lava flows/lobes originating from

the dome. The last growth phase had no clear growth direction and is indicated with a circle. The TSX/SfM data used for the study are also included. Stars indicate

that the data are shown in Figures 4, 5, respectively.
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are common due to the nature of the radar acquisition and
the steep terrain. The radar images were geocoded based on
coregistration with the simulated backscatter from a digital
elevation model (DEM) using the GAMMA software (Werner
et al., 2000). Because the DEM has a major influence on the
geometric correction of SAR data, we used a DEM based on a tri-
stereo photogrammetric dataset (acquired 10.01.2016) processed
in Erdas Imagine. We follow the workflow proposed by Bagnardi
et al. (2016), i.e., photogrammetric terrain reconstructed based
on three optical high resolution stereo-images. The resulting
DEM was resampled at 1m and allowed accurate geocoding of
the TSX data. These were then speckle-filtered to enhance the
image quality. We analyse the radar intensity images, yielding
the reflectivity measure of the ground. By this, topography can
be assessed indirectly, as those slopes facing the satellite appear
brighter, while those at the opposite sites are darker.

High-Resolution Airborne Photogrammetry
Flights were conducted by helicopter or plane with flight
paths comprised of single or multiple circles around the
crater and an oblique viewing geometry (Figure 3). Airborne
photogrammetric data were acquired at irregular intervals,
depending on weather and flight access, though allowing a high
spatial resolution. Our photogrammetric survey data consist of
13 flights between 2013 and 2016, each capturing the crater area
with digital single-lens reflex handheld cameras (DSLR). The
image sizes and resolution varied due to the number of different
cameras used (Canon, Nikon, Sony, Fujifilm) and are between
1,280× 960 and 6,000× 4,000 pixels, while the image to ground
distances vary between a few hundred meters to a kilometer.
Image input also varied greatly between 61 and 344 photos per
survey. This is due to the overflight taking place over several
years and the imaging was conducted by several different camera
operators with changing equipment.

Photogrammetric reconstruction was performed using
Agisoft Photoscan Professional (Version 1.4.1.5925), which uses
SfM-MVS to locate and orient each image and produce a dense
point cloud of the terrain (Westoby et al., 2012). As the images
were acquired by handheld cameras they have no geotagging,
and as no ground control point could be measured in the field
due to hazardous crater access, the resulting point clouds were
not referenced. Here, georeferencing was achieved using the
∼1m resolution point cloud from the Pleiades tri-stereo DEM.
We use this dataset to reference the photogrammetric point
cloud closest to the Pleiades acquisition date (here 02.12.2015)
by using point pair-picking registration in CloudCompare. As
the SfM photogrammetry point clouds have a much higher
resolution compared to the Pleiades point cloud, and to ensure
internal consistency within our dataset, all other point clouds
were referenced directly against this (02.12.2015) high-resolution
SfM point cloud using the same manual point-matching method.
The georeferencing to the Pleiades dataset could be achieved
with an RMS of±2.4m plus an additional error between±0.2m
and ±0.5m from the subsequent point-matching of the other
clouds to the first reference cloud.

Using the referenced SfM point clouds, detailed DEMs could
be constructed using ESRI ArcMap (Version 10.5). Here all

DEMs were built at 10 cm resolution after performing a statistical
outlier subsampling on the point clouds, removing any singular
points outside of the standard deviation for the average point
distance. This is used to prevent misplaced points from affecting
the final DEMs. From the 13 flights realized between 2013
and 2016 we derived 13 DEMs, providing a detailed view of
morphology gain and loss at the summit of Volcán de Colima.

Modeling
The stress-field pattern of a volcano is known to influence or
even control the path of ascending magmas (Nakamura, 1977;
Rivalta et al., 2015; Sulpizio and Massaro, 2017). In addition,
recent studies show that loading or unloading of a volcanic
edifice (Maccaferri et al., 2017) or a crater excavation and filling
(Le Corvec et al., 2018) can reorient magma propagation. Here
we investigate the response of edifice-stresses to load-changes
associated with the addition and removal of the summit dome.
We develop a model using DEM changes in the finite-element
method implemented with COMSOL Multiphysics R©. Sequential
topographic profiles derived from our photogrammetric data
of different eruptive stages were used to calculate the changes
in surface-loading. We further assess the impact of the stress
changes on the shallowmagma ascent direction by implementing
a slip-failure based approach.

The direction of magma propagation is controlled by the
least compressive principal stress. Such low viscosity magmas
accordingly propagate through tensile mode-I type cracks
opening in ascent direction (Rubin, 1995). For this study
however, we model a case revolving around the extrusion of a
lava dome fed by a high viscosity or even solid magma. In this
case, magma propagates upwards by pushing through a pipe-like
conduit, developing shear fault-like features and slip surfaces on
the walls of the conduit (Iverson et al., 2006; Pallister et al., 2013a;
Kendrick et al., 2014; Ryan et al., 2018) or, in the case of less
viscous magma, form ductile shear bands (Tuffen and Dingwell,
2005). If conduit walls are fault-like, we may apply quasi-static
metrics of stress changes such as normal stress, shear stress and
accordingly Coulomb failure stress. These are concepts that are
normally applied in the study of earthquake distributions (Stein
et al., 1997; Freed, 2005), but they have been used in numerical
modeling of lava dome extrusions before, successfully predicting
extrusion volumes and deformation data (Chadwick et al., 1988).

Ourmodel consists of an elastic domain and assumes andesitic
composition with a Young’s Modulus (Ec) of 10 GPa, a density
(ρc) of 2,290 kg m−3, and a Poisson’s ratio (µ) of 0.33, which are
typical values for andesites such as those at Volcán de Colima
(Heap et al., 2014). We consider a 2D axisymmetric domain of
linear elastic materials with cylindrical coordinates (r, ϕ, z), i.e., a
2D profile is revolved on its z axis to construct a 3D environment.
The axisymmetric simplifications allows for the simulation of
a dense mesh and for the consideration of small topographic
changes. To avoid boundary effects, the area of the elastic domain
is set to 100 km × 100 km and is subjected to gravitational loads
expressed by an initial lithostatic stress (Grosfils, 2007):

σr = σϕ = σz = −g · ρc · Z (1)
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FIGURE 3 | Illustrated remote sensing methods including radar amplitude images from the TerraSAR-X satellite, oblique aerial photos and the workflow of the

SfM-MVS approach.

with σr , σϕ, σz being the normal stresses acting in the radial,
azimuthal, vertical direction. Z corresponds to the vertical
coordinates and is negative downwards, therefore considering
the convention that negative stress values indicate compression,
and g is the Earth’s gravitational acceleration (−9.81m s−2). The
model is further subjected to a volume load equal to

g · ρc (2)

For our scenario, we infer magma ascent to occur by slip at
the conduit walls. To assess the direction of the expected slip,
we calculate Mohr-Coulomb slip planes, acting as conduit wall
analogs, assuming a rock cohesion of 25 MPa, this being an
average value of a medium strength rock that is highly fractured
(Hoek and Brown, 1997). The orientation of the slip-planes
was calculated using the visualization method developed by
Grosfils et al. (2015).

We further consider the conduit position of the ascending
magma column inferred from the photogrammetric data, and
define the observed conduit walls (assumed to be initially
vertical) as stress change receiver faults. For consistency with
the use of Mohr-Coulomb slip planes, we infer the conduit walls
to act as shear faults for the extrusion of magma representing
the side of a hypothetical conduit. These are included as two
imaginary vertical lines, with the Mohr-Coulomb slip planes
acting as continuations paths for the conduit wall slip, thus

deflectingmagma ascent. The change in CFS was calculated along
the two imaginary vertical lines using:

∆CFS = ∆τ + µ · (∆σn) (3)

where ∆τ is the shear stress change, ∆σn the normal stress
change and u is the coefficient of internal friction defined by the
angle of internal friction (here u = tan(25) as a common value
for dry volcanic rock) (Byerlee, 1978). The change in CFS on the
conduit faults can indicate the tendency to encourage (positive
∆CFS) or discourage (negative ∆CFS) fault failure with depth.

We evaluate stress changes based on morphological changes
in the “elastic domain/volcano” for two case scenarios: (1) “the
dome-building case,” and (2) “the crater-forming case.” For the
dome-building (loading) case, the dome domain is created based
on the natural topography (cf. section High-Resolution Airborne
Photogrammetry) to which we added the andesitic physical
characteristics and gravitational loads. For the crater-forming
(unloading) case, a later profile representing the excavation
created by explosive activity in early 2015 is used. Here, for Z <

0 an additional unloading force equal to the negative lithostatic
stress is applied at the surface of the crater and pulling it upwards.
This is to account for the sudden stress in equilibrium due to the
fast unloading.
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RESULTS

Our results allow detailed insight into eruptive activity and
dome building processes at Volcán de Colima. A comprehensive
timeline of SAR and photogrammetric results presented in this
study is shown complementary to the seismic data (Figure 2).

Overview of Temporal Data From TSX and
Seismic Station
The TSX data allow the identification of changes at the volcano
summit in a constant spatial and temporal resolution, whereas
the seismic data provide an insight into the type of activity.
The 11-day temporal acquisition of the TSX data permits the
distinction of four phases of dome growth during the 3-year
period between January 2013 and February 2016 (Figure 4).
These are also expressed in seismic data, where three phases
of extrusion are associated with strong high-frequency seismic
signals (Figure 2) indicative of rockfalls (Arámbula-Mendoza
et al., 2018), with the last being too minor to be recorded clearly.
The pauses between the dome growth phases all lasted roughly
4–5 months, but interestingly, the phase durations seemed to
decrease progressively (Figure 2). The complete TSX dataset with
the seismic timeline is shown in Supplementary Material A,
with the relevant data being presented here.

TSX and seismic data both indicate the growth of the
first lava dome, representing the start of the renewed eruptive
activity at Volcán de Colima, occurred in early 2013. The
eruptive activity was dominantly constructive with the addition
of lava at the summit and the western volcano flanks, and
can be observed in the TSX data (Figures 4A,B). According to
helicopter observations, the very first extrusion of lava started
on 11 January 2013; however this new dome was destroyed by
the ongoing explosive activity. We first identify the lava dome in
the TSX image from 19 February 2013 (Figure 4A). The dome
grew westward and by March 2013 resulted in the formation
of a lava flow that descended the western flank. In early 2014,
seismic data indicate either a prolonged pause in extrusion or
a significant reduction of the extrusion rate, as seismic events
changed to low-frequency dominated events. In simple terms,
this indicated that fewer rockfalls associated with dome-growth
occurred. The pause in extrusion is supported by the TSX data,
as it shows the dome staying stagnant at the summit and no
major morphological changes occur during this time (March to
July 2014).

Between July and August 2014, activity resumed with a strong
extrusion as evidenced by four lava flows appearing in the
TSX acquisitions (Figure 4B). This second extrusion produced
lava flows to the SW and NW (Figure 4B), which by October,
respectively extend to 2.3 and 1.3 km from the summit. Smaller
flows to the N and S extend less than 500m from the summit
(Figure 4B). A final lava flow developed in November 2014
toward the SW, also not extending more than a few hundred
meters down the flank (Figure 5C), meaning that almost all the
extrudedmaterial during this phase was deposited on the western
half of the volcano. In December 2014, extrusions slowed and the
activity became more explosive. The TSX images do not show
any further extrusion and the seismic data indicate that 17 to 25

January 2015 was a transition period from extrusive to explosive
activity. The transition is characterized by a change from high- to
low-frequency dominated seismic signals, representing rockfall
and explosion signatures, respectively (Figure 2). More detailed
seismic data showing this transition are included and explained
in Supplementary Material B. Explosive activity resulted in the
partial collapse of the summit dome, likely within a few days in
late January 2015, as a new crater formed in its place (Figure 4C).
Over the following months, the crater deepened through further
explosive excavation and elongated along a southwest-northeast
axis, developing an elliptical shape (Figure 4D).

A third lava dome began to grow in May 2015 and involved
simultaneous explosive activity. While the crater remained
elongated on its southwest-northeast axis, a new lava dome grew
inside the crater (Figure 4D); however the growth was initially
seen only within the SW half of the crater. On the NE side of
the crater, activity was reportedly comprised of small explosions
(Reyes-Dávila et al., 2016). By June 2015 the dome filled the
entire crater and in July it produced lava flows in both SW and
NE directions (Figure 4E). The onset of new rockfalls coinciding
with the start of the lava flows is also seen in the seismic data,
with a change to high-frequency dominated events (Figure 2).
Extrusive activity intensified and culminated in the catastrophic
collapse of the summit area from 10 to 11 July. The eruption and
collapse produced a large crater which was breached toward the
south (Figure 4F). After July 2015, activity at Volcán de Colima
declined and displayed onlyminor tomoderate explosive activity.

In February 2016, seismic data indicated that a new dome
had started to grow inside the center of the crater. This dome
is visible as a small and roughly circular extrusion in the TSX
images (Figure 4G) and did not grow much larger.

Overview of Structural Data From SfM and
Thermal Images
The SfM reconstructions performed well on the flight data. The
summit area of Volcán de Colima was resolved in all 13 datasets
that were considered for the 2013–2016 observation period. We
obtained a morphologic time-lapse dataset showing the growth
and destruction of the summit lava dome(s) and the growth
direction. The exceptionally high resolution of 10 cm allows the
identification of small features such as individual explosion pits
and lava bombs, and also allows us to identify the structures
associated with the direction of dome growth. The complete SfM
dataset is shown as shaded reliefs in Supplementary Material C.

Our model from the first extrusion in February 2013 shows an
elliptical (N-S elongated, aspect ratio AR= 1.37) lava dome with
a diameter of ∼100m within a ∼160m wide crater (Figure 5A).
With continued dome extrusion until the end of 2014, both
the older dome and the surrounding main summit crater were
gradually buried (Figures 5A–C). The dome itself is a single
extrusion lobe characterized by a flat-topped blocky surface
with a surrounding talus. The flat top also shows a slight
inclination during the first months of growth (Figure 6A). By
March 2014 the dome had filled the crater and overtopped it to
theW (Figure 5B). This is consistent with previous observations,
showing a clear westwards directionality from the start of the
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FIGURE 4 | SAR amplitude images highlighting important developments at the summit crater at various stages of the observation period, red circles mark lava dome

positions. (A) first dome growth phase, (B) the second dome growth phase with the production of lava flows (arrows indicate flow directions), (C) outline of the newly

formed crater (the dashed line indicated the extent of the crater), (D) third dome growth phase, (E) continued dome extrusion and lava flow production from two vents

(arrows indicate flow directions), (F) large collapse crater after the July 2015 eruption, (G) fourth dome growth phase.

dome growth (Walter et al., 2019). After a pause in extrusion,
activity resumed and another new dome lobe was seen at the
summit in November 2014, overtopping the previous extrusions
toward the SW and its surface shows the same blocky nature as
the previous dome (Figure 5C). As the flight data did not capture
the initial growth stage, it is not clear whether the extrusion
occurred with an elongation.

By February 2015, after the start of the destructive activity,
the top of the summit dome was removed and a ∼165m wide
and round crater had formed in its place (Figure 5D). This crater
grew larger within a few weeks, as much of the explosive activity
was focused on its NE side, thus gradually elongating it along
the southwest-northeast axis by March 2015 (Figure 5E). By the
time the third dome started to grow in May 2015, the crater had
formed a∼240m long and 180mwide depression (Figure 5F). A
new extrusion then formedwithin that depression, reaching a size
of 195m by 110m (NE-SW elongated, AR = 1.77) (Figure 5F).
This dome, compared to the first dome from February 2013

(Figure 5A), also had a blocky surface, but had a much lower
profile. Initial dome growth was also focused to the SW half
of the elongated crater and the direction of growth occurred
mainly toward the SW, while the northeast side of the crater
first showed steaming and explosive activity, then transitioned
to lava extrusion. From additional thermal data during this
stage, we identified two main anomalies in the NE and the
SW, respectively (Figure 5G). As seen from the TSX data, the
dome became increasingly elongated across this NE-SW axis
(Figure 4E). During the last stage of dome growth, and shortly
before the large eruption in July 2015, the dome filled the entire
crater, topping over both the NE and SW sides of the crater and
generating advancing lava lobes in both directions (Figure 4E).
At this stage the dome had bifurcated into two growth directions,
to the SW and to the NE.

After the July 2015 dome collapse, the final flight we processed
shows a ∼300m wide and ∼80m deep crater open to the south
(Figure 5H). The excavation decapitated the previous conduit
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FIGURE 5 | DEMs built from aerial SfM-MVS photogrammetry, showing highly

detailed morphological changes within the crater area. (A) The initial dome

growth in January 2013; (B) overtopping of lava toward the west; (C) final lava

flow emplacement during the constructive activity on the SW side; (D) initial

crater after the dome collapse; (E) deepened and elongated crater following

ongoing explosive activity; (F) bifurcated dome growth on both the NE and SW

side; (G) overlay of thermal data, highlighting the conduit bifurcation reflected

by two active dome areas in the NE and SW, respectively; (H) Collapse crater

after the July 2015 eruption with the new extrusion at the crater floor. Dashed

blue lines mark the extent of the summit lava dome or lava flow and the

dashed red line marks the deep vent position inferred from (H). The profile

position used in Figure 6 is marked with a black line in (A).

system and a new and near circular dome extrusion∼45m across
(AR= 1.16) was visible in the bottom of this crater, which marks
the new conduit position below the previous level (Figure 5H).

FIGURE 6 | Profile view from A-A’ marked in Figure 5A of the DEM data

showing the changes resulting from the important eruptive phases, (A) the

growth of the lava dome, (B) its removal, and (C) the lava dome regrowth and

conduit bifurcation. The inferred deep conduit position (see Figure 5H) is

also shown.

Topographic Stress Modeling
We use stress-change modeling to better understand why dome
growth at Volcán de Colima develops directionality as observed
during our study period (W until late 2014 to SW and NE in
early 2015). Specifically, we test the effect of changes in the local
stress field on the magma ascent directions due to the changing
topography in case of dome growth or destruction.

To quantify the changes in the topographic loading due to
dome growth, the elevation difference between the 21.02.2013
DEM and the 24.11.2014 DEM was used (Figure 6A). This
captures the entire constructive dome growth activity before
the dome was removed in early 2015. The models thus reflect
the gradual emplacement of the load through the lava dome,
which had grown toward the western side of the crater. For
the unloading model, the topography difference between the
24.11.2014 and the 25.03.2015 was used (Figure 6B). This
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FIGURE 7 | Coulomb Stress Change (1CFS) along the walls of a magmatic

conduit in the case of (A) loading with dome growth, and (B) unloading with

crater formation. The topographic profiles are taken as differences from the

SfM-DEMs. The topography change is from 21.02.2013 to 24.11.2014 for (A)

and 24.11.2014 to 25. 03. 2015 for (B). The 1CFS inhibits fault movements

when negative (blue color) and favors fault movements when positive (red

color). Thin black lines show orientations of the Mohr–Coulomb slip planes

(Cohesion = 25 MPa, 8frict = 25◦) that have the same orientation as the

favored movement along the conduit. For the dome growth the

Mohr–Coulomb slip planes are directed westwards (i.e., toward the additional

load). For the crater formation they are eastwards (i.e., away from the

unloaded crater). Actual conduit extrusion would follow the imaginary wall

faults at ∼80m depth, then deviate from that path following the

Mohr–Coulomb slip planes at any point above.

captures the removal of the summit dome and excavation of the
crater in its place during early 2015. It is also at a stage where the
elongation of the crater had not yet started or was not yet visible,
meaning it is also before the second vent in the NE appeared.

The stress models show a clear response of the Mohr–
Coulomb slip-lines to the changed stresses with the addition and
removal of the dome loading, respectively (Figure 7). Generally,
slip planes are directed toward additional load, thus favoring
conduit wall slip into elevated topography, here the newly grown
lava dome. The excavation of material from the dome on the
other hand deflects the slip lines away from the removed load and
toward the remaining topography on the side of the crater. Here,
this promoted fracturing and slip toward the eastern excavation
rim after the lava dome was removed.

By loading and unloading of the lava dome, the Coulomb
failure stress changed along the conduit walls of the ascending

magma column. This can be observed on the modeled imaginary
conduit (Figure 7). Depending on the depth the stress difference
can be up to 0.25 MPa (1CFS) (Figure 7), which may contribute
to activating or clamping the conduit. The position of the
conduit at a depth of ∼80m could be inferred from the 2016
model (Figure 5H). This assumes a constant position of the
deeper magma column as well as magma extrusion by shearing
of a conduit fault. In the loading model, the western conduit
fault located toward the dip of the dome would be activated
preferentially, whereas the eastern side of the conduit would
tend to clamp due to the reduction in 1CFS (Figure 7A). This
is reversed in the unloading model, where the eastern side
conduit fault will activate preferentially and the western side will
clamp (Figure 7B).

DISCUSSION

Lava domes growing in the summit regions of active volcanoes
are a major source of hazards, as parts of a dome may become
unstable, fail and generate PDCs. Lava domes growing in a
preferred direction may allow better judgment of the direction
of this instability, however the reasons for the preferred growth
direction have not been investigated in detail yet. In this work we
propose a model in which the local stress field is controlled by the
eruptive sequence, which could be coupled with other processes
and effects, such as pre-existing morphology and slope, rheology
and structural interactions, as further elaborated below.

Magma Ascent Response to Load Changes
Conduit Position
By integrating photogrammetric data, satellite radar images and
numerical modeling methods, we are able to gain insight into the
physical processes controlling the lava dome growth at Volcán de
Colima, Mexico. Based on deformation studies the location of the
feeding conduit could already be inferred in a 2013 dataset (Salzer
et al., 2014), which matches very well with the conduit position
in our study (Figure 5H). The July 2015 eruption produced an
80m deep crater and carved the conduit on the crater floor
with the onset of new extrusion in 2016, indicating that the
location has been constant for the period 2013–2016. Therefore,
we could infer the conduit location (center at 103◦37’0.75“W and
19◦30’44.881”N) and identify approximate extrusion paths and
growth directions of the lava dome in the 2013–2015 growth
phase (Figure 5H). This is done under the assumption that the
conduit position at depth was constant between 2013 and 2016.
We assume this is valid as the dome that grew in 2016 did not
show any directionality and is in a central position of the current
crater. This is further supported by the∼70m westward offset of
the initial 2013 dome with respect to the observed deeper conduit
(Figure 5A) and a noticeable tilt in the flat dome top (Figure 6A),
suggesting an inclined extrusion vent and implying a shallow
bend in the conduit, likely between the surface and∼80m depth.
Such a bend has also been suggested to occur as a result of conduit
bifurcation at a shallow depth in previous works (Lavallée et al.,
2012; Salzer et al., 2014) and is thus in good agreement with our
interpretation (Figure 8A).
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FIGURE 8 | Illustration of the proposed processes during the observation period. The sketches are not to scale and orientated based on the A-A’ profile view marked

in Figure 5A and used in Figure 6. (A) The initial stages of dome growth, showing the dome extruding westwards by activation of the inner conduit wall fault. (B) The

crater after the removal of the summit dome. The load stress field has shifted, causing new fractures to branch of the conduit wall to the NE side. (C) Regrowth of the

lava dome and the conduit bifurcation. (D) Final stage of the lava dome before the large collapse in July 2015, the dome is growing in two directions (NE and SW) fed

by two separate vents.

Changes in Loading Stress
We are able to provide an explanation for the extrusion direction
of the lava dome and the conduit bifurcation following the
collapse of the dome and infer the dynamics of the shallow
conduit system based on changes in the local load stress field. The
additional load due to the growing dome and the lava flows on
the western side emplaced between 2013 and late 2014 aligned
conduit slip planes toward the western side (Figure 7A). This
likely favored the activation of conduit slip in this direction,
providing Mohr-Coulomb slip surfaces for the magma ascent in
this direction, which resulted in further west-directed extrusion.
It also likely favored the formation of cracks and fissures in
this direction due to the conduit movement at shallow depth.
The change in CFS suggests that extrusion mostly moved by the
activation of the western conduit fault/margin (Figure 8A), thus
piling additional material to the west and creating a self-sustained
directionality. Support for this sustained system can be seen in
the timespan of purely west-directed lava extrusion as it lasted
almost 2 years and through two phases of extrusion.

The west-directed extrusion only stopped when the load, i.e.,
most of the summit dome, was removed and the crater deepened
during the onset of explosive eruptive activity during late January
and early February 2015 (Figure 4C). During the removal of
the dome and subsequent crater elongation, activity shifted to
the northeast on the other side of the deep conduit position
(Figures 5E–G). We interpret this as a newly opened vent,

which could have been formed from a new or reactivated fissure
originating from the same conduit (Figures 6C, 8B), which has
been previously described at Volcán de Colima (Lavallée et al.,
2012). Here our model suggests the new vent formation was
caused by the removal of the load, rather than a deflection
caused by a dense plug. This deflected the slip planes away
from the new-formed crater and toward the remaining load
on the crater rim (Figure 7B), which was where the new vent
developed. Another factor favoring the fracturing and opening of
new fissures may have been the transitional period from effusive
to explosive activity (Figure 2 and Supplementary Material B)
as this will have involved repeated conduit pressurization. Under
the new load stresses, it is likely that the new fissure branched
off the eastern conduit wall coinciding with the activation of
the conduit wall fault, thus causing the conduit bifurcation we
observed (Figures 8B–D). Since both the NE and the SW vents
started extruding in May 2015, we presume that the previously
west-directed extrusion vent was likely reactivated by a new
pulse of magma. As this would involve multiple shallow conduits
our model cannot resolve this behavior properly, although it is
possible that extrusion may still take place on the active conduit
wall (here the eastern side) for both vents.

The stress response to loading and unloading can also be used
to explain the shift in dome extrusion from an initial E-W axis
to the NE-SW axis observed toward the end of the eruption.
At the start of the dome extrusion in 2013, the direction of the
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dome growth and the following lava flow were directed purely
to the west (Figures 5B, 6A). However, this shifted in 2014 as
the accumulated extrusion products were buried and lava flows
developed in other directions, most prominently toward the SW
with the final pulse in November 2014 (Figures 4B, 5C). The
highest load was therefore placed on the SW side, explaining why
the new vent opened on the other NE side after this load was
removed in early 2015.

These results are in agreement with previous studies
investigating the ascent of magma in response to changing
surface loads, which were found to occur due to a shift in
principal stresses on a local (Le Corvec et al., 2018) and crustal
scale (Maccaferri et al., 2017).

Causes of Magma Deflection and Growth
Directionality
Our observations of directional dome growth, vent offset
and possible conduit bifurcation are consistent with previous
investigations into the dynamics of the shallow crater system at
Volcán de Colima. Our study further suggests an evolution in
growth directionality as the first dome growth is west-directed,
then becomes both west and east-directed, and finally bifurcates
into a western and an eastern branch. The mechanism causing
the directed extrusion proposed here provides a new explanation
that differs from other mechanisms discussed in previous studies.

Firstly, the topography around the extrusion of a lava dome
has been proposed to play an important role. Emplacement on
a sloped surface or within uneven craters can cause directed
growth downslope (Harnett et al., 2018). Here, the dome at
Volcán de Colima grew inside an explosion crater, with the
western crater wall slightly lower than the eastern wall. Similarly,
observational data at other volcanoes showed that the crater
shape may significantly affect the direction and speed of dome
growth (Walter et al., 2013b).Thus we cannot rule out an
impact of topography after the dome started to overflow the
crater. However, as the dome was already growing westwards
before overtopping the crater, this is unlikely to be the cause of
the directionality.

Secondly, changing extrusion directions have been linked
to a structural or mechanical control within older emplaced
domes, where an inclined growth lobe develops along a curved
shear fault originating at the side of the conduit (Watts et al.,
2002). This is also reflected by changes from endogenous to
exogenous growth styles, when a lava lobe is pushed through
the previously emplaced dome (Watts et al., 2002; Hale and
Wadge, 2008; Husain et al., 2014). In our study, we see a
change from endogenous to exogenous only for the newly
opened NE vent in 2015 and only after the direction of
dome growth had already changed. The changes of extrusion
directions at Volcán de Colima are thus linked to the removal
of dome material occurring previously, not the growth style.
However, the movement along shear faults originating from the
conduit walls is supported by our study, and the importance
of the conduit wall for lava dome emplacement through shear
faulting has been emphasized in many earlier studies (Chadwick

et al., 1988; Tuffen and Dingwell, 2005; Pallister et al., 2013a;
Kendrick et al., 2014; Ryan et al., 2018).

Thirdly, changes in growth direction at Volcán de Colima
were characterized by the activation of new lobes as rockfalls
would cause local unloading on the dome (Hutchison et al.,
2013). The growth lobes thus advanced in this direction as
the rockfall area became unconfined by the talus surrounding
the dome (Walter, 2011). A similar change in growth direction
and even extrusion rate in response to local unloading due to
slumps was also found at Mount St. Helens (Vallance et al.,
2008). This mechanism is similar to our interpretation as it is
also based on topographic loading and unloading, however, the
unloading and redirection of growth occurs only with the already
extruded parts of the dome as it becomes unconfined on one
side while remaining confined (or buttressed) on the other. Our
interpretation adds to this discussion by suggesting a loading-
based deflection of extrusion to occur prior to extrusion (and
likely at an inclined angle), which is a separate process from the
one proposed by Hutchison et al. (2013), and a combination of
both is likely.

Lastly, there can be some external factors impacting the
direction of magma extrusion. Several studies have suggested the
existence of a dense plug in the shallow levels of the Colima
conduit, causing a deflection of magma ascent and pressurization
at shallow depth (Lavallée et al., 2012; Salzer et al., 2014). An
offset of the dome from the main summit crater center was
already noted in 2010 (James and Varley, 2012; Lavallée et al.,
2012). The deeper conduit position (Figure 5H) highlights that
active vents between 2013 and 2015 shifted due to shallow
conduit deflection; however our models suggest a reorientation
in slip-lines due to changing load stresses as a mechanism.
Considering the existence of the dense plug, our models may
contribute to the concept of shallow conduit deflections by
providing a preferred direction, with which magma will ascend
around such obstacles.

With respect to the changing Coulomb stress along the
conduit wall faults, our models suggest a differential conduit
wall fault activation, with one side being preferentially activated,
the other being clamped (Figures 7, 8). Aside from an inclined
conduit, this may be another factor explaining the strong
directionality in the observed dome growth. The existence
of conduit wall faults is well known and documented,
mainly as slip-surfaces (Pallister et al., 2013a; Kendrick et al.,
2014; Ryan et al., 2018), but also as ductile shear bands
(Tuffen and Dingwell, 2005); however a one-sided trap-
door style extrusion as illustrated in Figure 8A has not
been described or observed at growing lava domes before,
this is only implied by our model. Normally this style of
fault movement is seen in large scale caldera collapses (i.e.,
Lipman, 1997; Cole et al., 2005), whereas here we would
assume a one-sided upwards movement as it occurs with
resurgent blocks on a larger scale (Acocella et al., 2001).
As our data are static, the extrusion movement cannot be
clearly resolved, but considering the continuing extrusions
eventually formed viscous lava flows, the fault movement was
most likely accomplished by a combination of ductile and
stick-slip movement.
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Considering the factors discussed above, the directed dome
growth at Volcán de Colima was most likely an effect of (1)
load stress interaction, (2) shear fault movement originating
from the conduit walls and (3) an inclined vent and shallow
conduit. Impacts due to sloped emplacement are unlikely and
the influence of a potential impermeable plug deflecting magma
ascent remains unclear.

Method Limitations
The use of satellite radar, photogrammetry and seismic data to
observe volcanic activity combined with numerical modeling
introduces some inherent limitations. The most important ones
will be briefly discussed here.

Remote Sensing Limitations
Our interpretation of the amplitude SAR-images may be
biased by the acquisition geometry. The radar data contain
shortening and lengthening at slopes due to the inclined sensor
(foreshortening), distorting the image and potentially leading
to layover and shadowing effects. Accurate geocoding with a
suitable DEM, as done in this study, can correct some of
these distortions; however, such geocoding may introduce other
artifacts at points where the DEM (here Pleiades 2016) does
not reflect the same topography as the SAR image (2013–2016),
especially if they were generated at different times and the
topography has changed among multiple images. The speckle
filter applied here, while smoothing the image and enhancing
important features, also lowers the resolution slightly. In this
study, these effects impact the corrected SAR-images to a small
degree as the crater showed many topographic changes and all
SAR-images were geocoded with the same DEM. We used the
SAR data to identify prominent brightness changes associated
with topographic changes, which are very well resolved and
discernable. Therefore, our SAR images are most likely only
distorted tominor degrees, i.e., only at small topographic features
such as cliffs and ledges. The features, outlines and positions of
lava flows, domes and craters can still be recognized very clearly
in the images (see e.g., the circular lava dome in Figure 4G). The
same applies for the directions of dome growth or flows between
subsequent images, so our interpretation of the images is not
affected by the limitations listed above. The TSX data also agree
well with the photogrammetry data and provide a very regular
11-day interval view onto the dome of the active volcano, whereas
the photogrammetric data could only be realized when weather
and funding allowed for overflights.

While the SAR data capture the entire volcanic edifice and
permit the tracking of active lava flows down the volcano flank,
all high-resolution SfM-MVS generated DEMs used in this study
only cover the summit area within a few hundred meters of
the vent. Additionally, contrary to SAR data, overflight data are
only available on occasion and not all data can be used for
photogrammetric processing as steam and gas often limit the
visibility. In some cases this effect can be overcome with thermal
images (Thiele et al., 2017), but this will result in lower spatial
resolution models due to the limitations of such cameras. Here,
our observations made outside of the summit area are affected by

these limits, therefore we can only use occasional DEMs, acting
as high-resolution snapshots to complement the SAR data.

As the SfM point clouds could not be georeferenced
directly in Agisoft PhotoScan Professional, the ground sampling
distance (GSD), a common indicator for the resolution of
photogrammetric surveys, could not be calculated precisely and
the imaging distances had to be estimated. Most surveys resulted
in GSDs slightly better than 10 cm per pixel as indicated by
the point distances within the cloud, but there may be some
variations due to the number of different cameras, focal lengths
and viewing distances applied. We omitted these by resolving all
DEMs at 10 cm resolution, also providing consistency between
the DEMs.

Seismic Data Limitations
The main purpose of the seismic data used (Figure 2) was to
provide an overview of the dominant seismic signal during our
study period based on frequency content. However, neither this
type of analysis nor the location of the seismic station (closest
to the crater at 1.7 km) are enough to detect and identify the
details of dome extrusion mechanisms and directionality, which
take place at a very shallow level in the volcanic system or at the
crater’s surface. Additional seismometers near to the crater or on
the volcanic edifice might allow to pursue such a task, which is
beyond the scope of this paper. For example, at Mount St. Helens
Moran et al. (2008) used a network of seismic stations inside
the crater and suggested that changes in drumbeat-seismicity
characteristics (size and spacing) during the dome-building 2005
eruption were a function of the mechanics of extrusion rather
than of the extrusion rate.

The seismic data provide a good overview of the current
activity and the changing dominant eruptive modes, i.e., dome
extrusion and explosions (Figure 2). However, there can be a
significant delay in the onset of high-frequencies representing
dome extrusion. One such delay occurred around May 2015 with
the onset of renewed lava dome growth, when the dominant
frequencies only changed to higher frequencies several weeks
after the dome growth had started. This is likely due to the time
gap between the initial dome growth within the crater and the
overtopping the crater to produce rockfalls, which generate the
high-frequency seismic signal. The true onset of dome growth
can in general still be seen in the characteristics of individual
seismic events; however, until rockfalls occur, high frequency
signals are not dominant.

Model Limitations
Using a numerical model to explain real observations always
includes a number of assumptions and simplifications. Our
models are based on the gravitational loading derived from
changing topography, which is not the same as the total stress.
For example, the effects of internal magma and fluid pressure
as well as material heterogeneities are neglected as they are very
complex and difficult to include in such a model. This is unlikely
to affect the general finding regarding the deflection of slip planes
in response to load stresses. However, it is important to note
that the real stress field within the volcanic edifice may be quite
different compared to a simple gravitational model, and factors
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such as the dense plug discussed above may play an additional
important role when addressing magma ascent directionality.

Another limitation of the model is the use of a 2D
axisymmetric half-space to create a 3D model from a profile.
This is a common simplification used in several similar studies
(Chadwick et al., 1988; Corbi et al., 2016; Le Corvec et al.,
2018) and is due to the difficult implementation of the large
datasets and computing power that are required to use a full
3D surface model. While we manage to capture and include all
important features including the conduit and vent positions, it
is important to note that our model is derived from a change
in topography of a 2D environment and is thus not a complete
representation of the real morphology (e.g., variable crater depth
or dome heights cannot be included). Here, we picked the rotated
profile location (Figures 5A, 6) to be the best representation of
the summit morphology.

The model relies on the concept that the conduit walls of the
ascending magma column act as frictional planes (Costa et al.,
2012; Kendrick et al., 2014), which is a reasonable assumption
when considering highly viscous or solid magmas. However,
these conduit faults are normally associated with spine-type lava
domes such as Mount St. Helens, USA (Kendrick et al., 2012;
Kennedy and Russell, 2012) or Mount Unzen, Japan (Hornby
et al., 2015). At Volcán de Colima the viscosity of the magma
is clearly lower, producing mostly lava lobes that transition to
lava flows. This is also evidenced by the blocky surfaces of
the extruded domes (Figures 5A–C, F–H), suggesting a viscous
magma core fracturing a solid dome carapace through inflation.
The extent to which a classic fault structure can be applied to
the conduit of Volcán de Colima is not clear. However, recent
insights into similar episodic activity expressed by seismicity
and ground deformation highlight the relevance of conduit
shear stresses even for viscous magmas (Neuberg et al., 2018).
Previous models successfully predicted extrusion patterns (e.g.,
ground tilt) using only shear stress (Chadwick et al., 1988).
Additionally, movements along the conduit occur by stick-slip
motion (Kendrick et al., 2014), indicated by observed episodic
extrusion patterns at Volcán de Colima (Walter et al., 2013a),
which suggest that partial slip movements occur along discrete
fault zones.

The use of Coulomb stress changes (1CFS) is restricted to
the summit region only, yet the resulting values are high enough
to compare to values seen on larger scales. Depending on depth
in the conduit, the maximum Coulomb stress change is as large
as 0.25 MPa. For context, stress changes of <0.01 MPa can be
sufficient to induce failure and earthquakes (Stein, 1999). These
values are high, given we only consider very local loads within a
few hundred meters of the free surface. As the model used here
assumes a purely elastic environment and is very close to the
surface, this may induce an artificial stress-build up. However,
the relative changes of increasing or decreasing Coulomb stress
with respect to load stress are likely to have a real effect on the
conduit faults.

Hazard Implications
The potential impact of both local and regional stresses carry
some major implications for the hazard potential, especially

for dome-building stratovolcanoes. PDCs originating from
the collapse of lava domes are among the most deadly
and destructive volcanic hazards. In the case of Volcán de
Colima, they exceeded 10 km distance during the July 2015
eruption (Reyes-Dávila et al., 2016; Capra et al., 2018). This
highlights that accurate assessment of potential scale and flow
direction of these hazards is one of the most important tasks
in volcanology.

Directed effusion and the development of new vents or their
migration in response to load stress changes, as we propose for
the 2013–2015 eruption at Volcán de Colima, will affect the
direction of dome-related flows, explosions and collapses, and
hence the distribution of hazards around the volcano, mainly
PDCs, lava flows and possibly ballistic ejecta. The distribution
of ashfall is likely only affected to a minor degree as the
wind is the primary control on the ashfall direction. The
second growth direction that developed at Volcán de Colima
caused lava flows and PDCs to flow down the NE side of the
volcano, whereas previous flows were directed mostly to the
W and SW. Similarly, changes in the inclination of a growing
dome will affect the stability of the dome, with collapses and
resulting block-and-ash flows occurring more likely with a
larger inclination.

The effects of unloading and the removal of large parts of
a lava dome or crater wall will not only affect the local stress
field and magma ascent direction, but will also remove pressure
from magma stored in the shallow subsurface. A sudden drop in
pressure can release volatiles entrained within an incompletely
degassed magma and induce vesiculation and vesicle expansion
(Alidibirov and Dingwell, 1996; Watts et al., 2002), leading to a
strong increase in extrusion and ascent rate or explosive activity.
A similar effect due to unloading at the summit is hypothesized
to have been a driver of the 1913 eruption of Volcán de Colima
(Massaro et al., 2018). Due to the increased ascent rate this can,
in turn, affect the stability and shape of subsequent lava domes,
with faster extrusion rates resulting in weaker lava dome rocks
(Heap et al., 2016; Zorn et al., 2018) and so increase the risk
of collapse.

Finally, regional tectonic stresses may control the orientation
of fracturing in summit lava domes, leading to destabilization
and partial collapse to form block-and-ash flows, e.g., at the
Merapi lava dome (Walter et al., 2015; Darmawan et al., 2018).
While no such observations have been made at a lava dome
from Volcán de Colima, changes in eruption style due to
regional stress changes have been observed (e.g., through tectonic
earthquakes lowering lithostatic stress) (Sulpizio and Massaro,
2017), although their importance for Volcán de Colima remains
unclear as there are many other potential explanations for this
effect (Massaro et al., 2018).

The effects of directional dome growth on volcanic hazards
presented here are described in the context of a simple shift
in the direction of the erupting vent and dome growth. In
reality, there are several other factors that influence the direction
of hazards from a volcano, e.g., local ground morphology
such as river valleys or breached calderas, redirecting or
channeling PDCs (Major et al., 2013). Similarly, the dome
volume, temperature, volatile charge and slope steepness will
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affect the mobility of such PDCs and thus their travel distance
(Bourdier and Abdurachman, 2001; Cronin et al., 2013). The
redirection of hazards due to shifting lava dome growth
directionality is only one aspect and for a detailed hazard
assessment, all the complexities of the potential hazards have to
be considered.

CONCLUSIONS

Between January 2013 and February 2016 we observe four
distinct phases of dome extrusion at Volcán de Colima including
a prolonged west-directed dome growth followed by a removal of
the dome with explosive crater excavation and finally renewed
dome growth in two directions to the SW and NE. Modeling
suggests that the emplacement and removal of the lava dome
affected the local stress field and varied the direction of magma
ascent and extrusion as well as the opening of new a vent,
likely causing a conduit bifurcation. A growing lava dome will
increasingly deflect conduit slip toward the added load, whereas
an excavated crater will cause a diversion of slip direction toward
the crater rim. The models provide a potential explanation to
the observations made at Volcán de Colima and suggest that
the dome growth stage in July 2015 reflects combined activity
from a pre-established oblique conduit and a new vent formed
in response to the earlier dome removal.

These results imply that small scale changes in crater
morphology can sufficiently affect the local stress field to
influence shallowmagma ascent directions. This has implications
for volcanic hazards posed by dome building volcanoes, as the
position and growth directionality of the lava domes govern the
direction of resulting PDCs or lava flows.
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