
HAL Id: hal-02175168
https://hal.science/hal-02175168v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability in the Unitary Sphere
Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, Benoît Valiron

To cite this version:
Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, Benoît Valiron. Realizability in the
Unitary Sphere. 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019),
Jun 2019, Vancouver, Canada. �hal-02175168�

https://hal.science/hal-02175168v1
https://hal.archives-ouvertes.fr

Realizability in the Unitary Sphere
Alejandro Dı́az-Caro∗†, Mauricio Guillermo‡, Alexandre Miquel‡, and Benoı̂t Valiron§

∗Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
†Instituto de Ciencias de la Computación (UBA-CONICET), Buenos Aires, Argentina

Email: adiazcaro@icc.fcen.uba.ar
‡Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay

Email: {mguille,amiquel}@fing.edu.uy
§LRI, CentraleSupélec, Université Paris-Saclay, Orsay, France

Email: benoit.valiron@lri.fr

Abstract—In this paper we present a semantics for a linear
algebraic lambda-calculus based on realizability. This semantics
characterizes a notion of unitarity in the system, answering a long
standing issue. We derive from the semantics a set of typing rules
for a simply-typed linear algebraic lambda-calculus, and show
how it extends both to classical and quantum lambda-calculi.

I. INTRODUCTION

The linear-algebraic lambda calculus (Lineal) [1]–[3] is an
extension of the lambda calculus where lambda terms are
closed under linear combinations over a semiring K. For
instance, if t and r are two lambda terms, then so is α.t+β.r
with α, β ∈ K. The original motivation of [1] for such a
calculus was to set the basis for a future quantum calculus,
where α.t + β.r could be seen as the generalization of the
notion of quantum superposition to the realm of programs (in
which case K is the field C of complex numbers).

In quantum computation, data is encoded in the state of a
set of particles governed by the laws of quantum mechanics.
The mathematical formalization postulates that quantum data
is modeled as a unit vector in a Hilbert space. The quantum
analogue to a Boolean value is the quantum bit, that is a linear
combination of the form φ = α|0〉+ β|1〉, where |0〉 and |1〉
respectively correspond to “true” and “false”, and where |α|2+
|β|2 = 1. In other words, the state φ is a linear combination
of the Boolean values “true” and “false”, of l2-norm equal to
1: it is a unit-vector in the Hilbert space C2.

A quantum memory consists in a list of registers holding
quantum bits. The canonical model for interacting with a
quantum memory is the QRAM model [4]. A fixed set of
elementary operations are allowed on each quantum register.
Mathematically, these operations are modeled with unitary
maps on the corresponding Hilbert spaces, that is: linear
maps preserving the l2-norm and the orthogonality. These

A. Dı́az-Caro and B. Valiron have been partially supported by PICT
2015-1208, ECOS-Sud A17C03, and the French-Argentinian International
Laboratory SINFIN. B. Valiron has been partially supported by the French
National Research Agency (ANR) under the research project SoftQPRO ANR-
17-CE25-0009-02, and by the DGE of the French Ministry of Industry under
the research project PIA-GDN/QuantEx P163746-484124. M. Guillermo and
A. Miquel have been partially supported by the Uruguayan National Research
& Innovation Agency (ANII) under the research project “Realizability, Forcing
and Quantum Computing”, FCE 1 2014 1 104800.

operations, akin to Boolean gates, are referred to as quantum
gates, and they can be combined into linear sequences called
quantum circuits. Quantum algorithms make use of a quantum
memory to solve a particular classical problem. Such an
algorithm therefore consists in particular in the description of
a quantum circuit.

Several existing languages for describing quantum algo-
rithms such as Quipper [5] and QWIRE [6] are purely func-
tional and based on the lambda calculus. However, they only
provide classical control: the quantum memory and the al-
lowed operations are provided as black boxes. These languages
are mainly circuit description languages using opaque high-
level operations on circuits. They do not feature quantum
control, in the sense that the operations on quantum data are
not programmable.

A lambda calculus with linear combinations of terms made
“quantum” would allow to program those “black boxes”
explicitly, and provide an operational meaning to quantum
control. However, when trying to identify quantum data with
linear combinations of lambda terms, the problem arises
from the norm condition on quantum superpositions. To be
quantum-compatible, one cannot have any linear combination
of programs. Indeed, programs should at the very least yield
valid quantum superpositions, that is: linear combinations
whose l2-norm equals 1—a property which turns out to be
very difficult to preserve along the reduction of programs.

So far, the several attempts at accommodating linear al-
gebraic lambda calculi with the l2-norm have failed. At one
end of the spectrum, [7] stores lambda terms directly in the
quantum memory, and encodes the reduction process as a
purely quantum process. Van Tonder shows that this forces
all lambda terms in superposition to be mostly equivalent. At
the other end of the spectrum, the linear algebraic approaches
pioneered by Arrighi and Dowek consider a constraint-free
calculus and try to recover quantum-like behavior by adding
ad-hoc term reductions [1] or type systems [8]–[10]. But if
these approaches yield very expressive models of computa-
tions, none of them is managing to precisely characterize linear
combinations of terms of unit l2-norm, or equivalently, the
unitarity of the representable maps.

This paper answers this question by presenting an algebraic

lambda calculus together with a type system that enforces
unitarity. For that, we use semantic techniques coming from
realizability [11] to decide on the unitarity of terms.

Since its creation by Kleene as a semantics for Heyting
arithmetic, realizability has evolved to become a versatile
toolbox, that can be used both in logic and in functional
programming. Roughly speaking, realizability can be seen as
a generalization of the notion of typing where the relation
between a term and its type is not defined from a given set of
inference rules, but from the very operational semantics of the
calculus, via a computational interpretation of types seen as
specifications. Types are first defined as sets of terms verifying
certain properties, and then, valid typing rules are derived from
these properties rather than set up as axioms.

The main feature of our realizability model is that types
are not interpreted as arbitrary sets of terms or values, but as
subsets of the unit sphere of a particular weak vector space [3],
whose vectors are distributions (i.e. weak linear combinations)
of “pure” values. So that by construction, all functions that are
correct w.r.t. this semantics preserve the `2-norm. As we shall
see, this interpretation of types is not only compatible with the
constructions of the simply typed lambda calculus (with sums
and pairs), but it also allows us to distinguish pure data types
(such as the type B of pure Booleans) from quantum data types
(such as the type]B of quantum Booleans). Thanks to these
constraints, the type system we obtain naturally enforces that
the realizers of the type]B →]B are precisely the functions
representing unitary operators of C2.

This realizability model is therefore answering a hard prob-
lem [12]: it provides a unifying framework able to express not
only classical control, with the presence of “pure” values, but
also quantum control, with the possibility to interpret quantum
data-types as (weak) linear combinations of classical ones.

A. Contributions

(1) We propose a realizability semantics based on a linear
algebraic lambda calculus capturing a notion of unitarity
through the use of a l2-norm. As far as we know, such a
construction is novel.

(2) The semantics provides a unified model for both classical
and quantum control. Strictly containing the simply-typed
lambda calculus, it does not only serve as a model for a
quantum circuit-description language, but it also provides a
natural interpretation of quantum control.

(3) In order to exemplify the expressiveness of the model,
we show how a circuit-description language in the style
of QWIRE [6] can be naturally interpreted in the model.
Furthermore, we discuss how one can give within the model an
operational semantics to a high-level operation on circuits usu-
ally provided as a black box in circuit-description languages:
the control of a circuit.

B. Related Works

Despite its original motivations, [10] showed that Lineal
can handle the l1-norm. This can be used for example to

represent probabilistic distributions of terms. Also, a simpli-
fication of Lineal, without scalars, can serve as a model for
non-deterministic computations [13]. And, in general, if we
consider the standard values of the lambda calculus as the
basis, then linear combinations of those form a vector space,
which can be characterized using types [9]. In [14] a similar
distinction between classical bits (B) and qbits (]B) has been
also studied. However, without unitarity, it is impossible to
obtain a calculus that could be compiled onto a quantum
machine. Finally, a concrete categorical semantics for such
a calculus has been recently given in [15].

An alternative approach for capturing unitarity (of data
superpositions and functions) consists to change the language.
Instead of starting with a lambda calculus, [16] defines and
extends a reversible language to express quantum computation.

Lambda calculi with vectorial structures are not specific to
quantum computation. Vaux [17] independently developed the
algebraic lambda calculus (where linear combinations of terms
are also terms), initially to study a fragment of the differential
lambda calculus of [18]. Unlike its quantum-inspired cousin
Lineal, the algebraic lambda calculus is morally call-by-name,
and [19] shows the formal connection with Lineal.

Designing an (unconstrainted) algebraic lambda calculus (in
call-by-name [17] or in call-by-value [1]) raises the problem
of how to enforce the confluence of reduction. Indeed, if the
semi-ring K is a ring, since 0 · t = ~0, it is possible to design a
term Yt reducing both to t and the empty linear combination
~0. A simple solution to recover consistency is to weaken the
vectorial structure and remove the equality 0 · t = ~0 [3].
The vector space of terms becomes a weak vector space. This
approach is the one we shall follow in our construction.

This paper is concerned with modeling quantum higher-
order programming languages. If the use of realizability
techniques is novel, several other techniques have been used,
based on positive matrices and categorical tools. For first-order
quantum languages, [20] constructs a fully complete semantics
based on superoperators. To model a strictly linear quantum
lambda-calculus, [21] shows that the compact closed category
CPM based on completely positive maps forms a fully abstract
model. Another approach has been taken in [22], with the
use of a presheaf model on top of the category of super-
operators. To accomodate duplicable data, [23] extends CPM
using techniques developed for quantitative models of linear
logic. Finally, a categorical semantics of circuit-description
languages has been recently designed using linear-non-linear
models by [24], [25].

C. Outline

Section II presents the linear algebraic calculus and its weak
vector space structure. Section III discusses the evaluation
of term distributions. Section IV introduces the realizability
semantics and the algebra of types spawning from it. At the
end of this section, Theorem IV.12 and Corollary IV.13 express
that the type of maps from quantum bits to quantum bits only
contains unitary functions. Section V introduces a notion of
typing judgment and derives a set of valid typing rules from the

semantics. Section V-B discusses the inclusion of the simply-
typed lambda calculus in this unitary semantics. Finally, Sec-
tion VI describes a small quantum circuit-description language
and shows how it lives inside the unitary semantics.

II. SYNTAX OF THE CALCULUS

This section presents the calculus upon which our realizabil-
ity model will be designed. It is a lambda-calculus extended
with linear combinations of lambda-terms, but with a subtelty:
terms form a weak vector space.

A. Values, terms and distributions

The language is made up of four syntactic categories: pure
values, pure terms, value distributions and term distributions
(Table I). As usual, the expressions of the language are built
from a fixed denumerable set of variables, written X .

In this language, a pure value is either a variable x, a λ-
abstraction λx .~s (whose body is an arbitrary term distribu-
tion ~s), the void object ∗, a pair of pure values (v1, v2), or one
the two variants inl(v) and inr(v) (where v is pure value).
A pure term is either a pure value v or a destructor, that is: an
application s t, a sequence t;~s for destructing the void object
in t1, a let-construct let (x1, x2) = t in ~s for destructing
a pair in t, or a match-construct match t {inl(x1) 7→
~s1 | inr(x2) 7→ ~s2} (where ~s, ~s1 and ~s2 are arbitrary term
distributions). A term distribution is simply a formal C-linear
combination of pure terms, whereas a value distribution is
a term distribution that is formed only from pure values.
We also define Booleans using the following abbreviations:
tt := inl(∗), ff := inr(∗), and, finally, if t {~s1 | ~s2} :=
match t {inl(x1) 7→ x1;~s1 | inr(x2) 7→ x2;~s2}.

The notions of free and bound (occurrences of) variables are
defined as expected, and in what follows, we shall consider
pure values, pure terms, value distributions and term distribu-
tions up to α-conversion, silently renaming bound variables
whenever needed. The set of all pure terms (resp. of all pure
values) is written Λ(X) (resp. V(X)), whereas the set of all
term distributions (resp. of all value distributions) is written
~Λ(X) (resp. ~V(X)). So that we have the inclusions:

Λ(X) ⊂ ~Λ(X)
∪ ∪

V(X) ⊂ ~V(X)

B. Distributions as weak linear combinations

Formally, the set ~Λ(X) of term distributions is equipped
with a congruence ≡ that is generated from the 7 rules of
Table II. We assume that the congruence ≡ is shallow, in
the sense that it only goes through sums (+) and scalar
multiplications (·), and stops at the level of pure terms. So that
~t+(~s1 +~s2) ≡ ~t+(~s2 +~s1) but λx .~s1 +~s2 6≡ λx .~s2 +~s1.
(This important design choice will be justified in Section V-A,
Remark V.5). We easily check that:

1Note the asymmetry: t is a pure term whereas ~s is a term distribution. As
a matter of fact, the sequence t;~s (that could also be written let ∗ = t in ~s)
is the nullary version of the pair destructing let let (x1, x2) = t in ~s.

Lemma II.1. For all α ∈ C, we have α ·~0 ≡ ~0.

Proof. From 0·~0 ≡ 0·~0+~0 ≡ 0·~0+1·~0 ≡ (0+1)·~0 = 1·~0 ≡ ~0,
we get α ·~0 ≡ α · (0 ·~0) ≡ (0α) ·~0 = 0 ·~0 ≡ ~0.

On the other hand, the relation 0 · ~t ≡ ~0 cannot be derived
from the rules of Table II as we shall see below (Proposi-
tion II.6 and Example II.7). As a matter of fact, the congruence
≡ implements the equational theory of a restricted form of
linear combinations—which we shall call distributions—that
is intimately related to the notion of weak vector space [3].

Definition II.2 (Weak vector space). A weak vector space
(over a given field K) is a commutative monoid (V,+,~0)
equipped with a scalar multiplication (·) : K × V → V
such that for all u, v ∈ V , α, β ∈ K, we have 1 · u = u,
α · (β · u) = αβ · u, (α + β) · u = α · u + β · u, and
α · (u+ v) = α · u+ α · v.

Remark II.3. The notion of weak vector space differs from
the traditional notion of vector space in that the underlying
additive structure (V,+,~0) may be an arbitrary commutative
monoid, whose elements do not necessarily have an an addi-
tive inverse. So that in a weak vector space, the vector (−1)·u
is in general not the additive inverse of u, and the product 0·u
does not simplify to ~0.

Weak vector spaces naturally arise in functional analysis as
the spaces of unbounded operators. Historically, the notion of
unbounded operator was introduced by von Neumann to give a
rigorous mathematical definition to the operators that are used
in quantum mechanics. Given two (usual) vector spaces E
and F (over the same field K), recall that an unbounded
operator from E to F is a linear map f : D(f)→ F that is
defined on a sub-vector space D(f) ⊆ E , called the domain
of f . The sum of two unbounded operators f, g : E ⇀ F
is defined by: D(f + g) := D(f) ∩ D(g), (f + g)(x) :=
f(x) + g(x) (for all x ∈ D(f + g)), whereas the product of
an unbounded operator f : E ⇀ F by a scalar α ∈ K is
defined by: D(α · f) := D(f), (α · f)(x) := α · f(x) (for all
x ∈ D(α · f)).

Example II.4. The space Ł(E ,F) of all unbounded operators
from E to F is a weak vector space, whose null vector is the
(totally defined) null function.

Indeed, we observe that an unbounded operator f ∈
Ł(E ,F) has an additive inverse if and only f is total, that
is: if and only if D(f) = E —and in this case, the additive
inverse of f is the operator (−1) · f . In particular, it should
be clear to the reader that 0 · f (= ~0�D(f)) 6= ~0 as soon as
D(f) 6= E .

We can now observe that, by construction:

Proposition II.5. The space ~Λ(X)/≡ of all term distributions
(modulo the congruence ≡) is the free weak C-vector space
generated by the set Λ(X) of all pure terms2.

2The same way as the space of linear combinations over a given set X is
the free vector space generated by X .

Pure values v, w ::= x | λx .~s | ∗ | (v1, v2) | inl(v) | inr(v)

Pure terms s, t ::= v | s t | t;~s | let (x1, x2) = t in ~s | match t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}

Value distributions ~v, ~w ::= ~0 | v | ~v + ~w | α · ~v (α ∈ C)

Term distributions ~s,~t ::= ~0 | t | ~s+ ~t | α · ~t (α ∈ C)

TABLE I
SYNTAX OF THE CALCULUS

~t+~0 ≡ ~t 1 · ~t ≡ ~t α · (β · ~t) ≡ αβ · ~t
~t1 + ~t2 ≡ ~t2 + ~t1 (~t1 + ~t2) + ~t3 ≡ ~t1 + (~t2 + ~t3)

(α+ β) · ~t ≡ α · ~t+ β · ~t α · (~t1 + ~t2) ≡ α · ~t1 + α · ~t2

TABLE II
CONGRUENCE RULES ON TERM DISTRIBUTIONS

Again, the notion of distribution (or weak linear combina-
tion) differs from the standard notion of linear combination
in that the summands of the form 0 · t cannot be erased, so
that the distribution t1 + (−3) · t2 is not equivalent to the
distribution t1 + (−3) · t2 + 0 · t3 (provided t3 6≡ t1, t2). In
particular, the distribution (−1) · t1 + 3 · t2 is not the additive
inverse of t1 + (−3) · t2, since

(
t1 + (−3) · t2

)
+
(
(−1) · t1 +

3 · t2
)
≡ 0 · t1 + 0 · t2 6≡ ~0 . However, the equivalence of

term distributions can be simply characterized as follows:

Proposition II.6 (Canonical form of a distribution). Each
term distribution ~t can be written ~t ≡

∑n
i=1 αi · ti ,

where α1, . . . , αn ∈ C are arbitrary scalars (possibly equal
to 0), and where t1, . . . , tn (n ≥ 0) are pairwise distinct
pure terms. This writing—which is called the canonical form
of ~t—is unique, up to a permutation of the summands αi · ti
(i = 1..n).

Example II.7. Given distinct pure terms t1 and t2, we
consider the term distributions ~t := 3·t1 and ~t′ := 3·t1+0·t2.
We observe that the distributions ~t and ~t′ (that are given in
canonical form) do not have the same number of summands,
hence they are not equivalent: ~t 6≡ ~t′.

Corollary II.8. The congruence ≡ is trivial on pure
terms: t ≡ t′ iff t = t′, for all t, t′ ∈ Λ(X).

Thanks to Proposition II.6, we can associate to each term
distribution ~t ≡

∑n
i=1 αi · ti (written in canonical form) its

domain dom(~t) := {t1, . . . , tn}3 and its weight $(~t) :=∑n
i=1 αi. Note that the weight function $: ~Λ(X)/≡ → C

is a linear function from the weak C-vector space of term
distributions to C, whereas the domain function dom :
~Λ(X)/≡ → Pfin(Λ(X)) is a morphism of commutative
monoids from (~Λ(X)/≡,+,~0) to (Pfin(Λ(X)),∪,∅), since

3Note that the domain of a distribution ~t ≡
∑n

i=1 αi · ti gathers all pure
terms ti (i = 1..n), including those affected with a coefficient αi = 0. So
that the domain of a distribution should not be mistaken with its support.

we have4: dom(~0) = ∅, dom(~t1 +~t2) = dom(~t1)∪ dom(~t2),
dom(t) = {t} and dom(α · ~t) = dom(~t) for all t ∈ Λ(X),
~t1,~t2 ∈ ~Λ(X) and α ∈ C.

Remark II.9. In practice, one of the main difficulties of
working with distributions is that addition is not regular, in
the sense that the relation ~t+~t1 ≡ ~t+~t2 does not necessarily
imply that ~t1 ≡ ~t2. However, for example if ~t = α.s, we can
deduce that ~t1 ≡ ~t2 or ~t1 ≡ ~t2 + 0 · s or ~t2 ≡ ~t1 + 0 · s.

To simplify the notation, we shall adopt the following:

Convention II.10. From now on, we consider term distri-
butions modulo the congruence ≡, and simply write ~t = ~t′

for ~t ≡ ~t′. This convention does not affect inner—or raw—
distributions (which occur within a pure term, for instance
in the body of an abstraction), that are still considered only
up to α-conversion5. The same convention holds for value
distributions.

To sum up, we now consider that ~s1 + ~s2 = ~s2 + ~s1 (as a
top-level distribution), but:

λx .~s1 + ~s2 6= λx .~s2 + ~s1

t; (~s1 + ~s2) 6= t; (~s2 + ~s1)
let (x, y) = t in ~s1 + ~s2 6= let (x, y) = t in ~s2 + ~s1

match t {inl(x) 7→ ~s1 + ~s2 | inr(y) 7→ ~s}
6= match t {inl(x) 7→ ~s2 + ~s1 | inr(y) 7→ ~s}

match t {inl(x) 7→ ~s | inr(y) 7→ ~s1 + ~s2}
6= match t {inl(x) 7→ ~s | inr(y) 7→ ~s2 + ~s1}

C. Extending syntactic constructs by linearity

Pure terms and term distributions are intended to be evalu-
ated according to the call-by-basis strategy (Section III), that
can be seen as the declination of the call-by-value strategy
in a computing environment where all functions are linear
by construction. Keeping this design choice in mind, it is
natural to extend the syntactic constructs of the language by
linearity, proceeding as follows: for all value distributions
~v =

∑n
i=1 αi · vi and ~w =

∑m
j=1 βj · wj , and for all term

4Actually, the function dom : ~Λ(X)/≡ → Pfin(Λ(X)) is even linear,
since the commutative (and idempotent) monoid (Pfin(Λ(X)),∪,∅) has a
natural structure of weak C-vector space whose (trivial) scalar multiplication
is defined by α ·X = X for all α ∈ C and X ∈ Pfin(Λ(X)).

5Intuitively, a distribution that appears in the body of an abstraction (or
in the body of a let-construct, or in a branch of a match-construct) does
not represent a real superposition, but it only represents machine code that
will produce later a particular superposition, after some substitution has been
performed.

distributions ~s1, ~s2, ~t =
∑p
k=1 γk · tk and ~s =

∑q
`=1 δ` · s` we

have:

(~v, ~w) :=
∑n
i=1

∑k
j=1 αiβj · (vi, wj)

inl(~v) :=
∑n
i=1 αi · inl(vi)

inr(~v) :=
∑n
i=1 αi · inr(vi)

~t~s :=
∑p
k=1

∑q
`=1 γkδ` · tks`

~t;~s :=
∑p
k=1 γk · (tk;~s)

let (x, y) = ~t in ~s :=
∑p
k=1 γk ·

(
let (x, y) = tk in ~s

)
match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} :=∑p

k=1 γk ·
(
match tk {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}

)
The value distribution (~v, ~w) will be sometimes written ~v⊗ ~w
as well.

D. Substitutions

Given a variable x and a pure value w, we define an
operation of pure substitution, written [x := w], that associates
to each pure value v (resp. to each pure term t, to each raw
value distribution ~v, to each raw term distribution ~t) a pure
value v[x := w] (resp. a pure term t[x := w], a raw value
distribution ~v[x := w], a raw term distribution ~t[x := w]).
The four operations v[x := w], t[x := w], ~v[x := w] and
~t[x := w] are defined by mutual recursion as expected.

Although the operation ~t[x := w] is primarily defined on
raw term distributions (i.e. by recursion on the tree structure
of ~t, without taking into account the congruence ≡), it is
compatible with the congruence ≡, in the sense that if ~t ≡ ~t′,
then ~t[x := w] ≡ ~t′[x := w] for all pure values w. In other
words, the operation of pure substitution is compatible with
Convention II.10. It is also clear that, by construction, the
operation ~t [x := w] is linear w.r.t. ~t, so that ~t [x := w] is∑n
i=1 αi ·ti[x := w] for all term distributions ~t =

∑n
i=1 αi ·ti.

(The same observations hold for the operation ~v[x := w]).
Moreover, the operation of pure substitution behaves well

with the linear extension of the syntactic constructs of the
language (cf. Appendix D). And we have the expected sub-
stitution lemma: For all term distributions ~t and for all pure
values v and w, provided x 6= y and x /∈ FV(w)), we have
~t [x := v][y := w] := ~t [y := w][x := v[y := w]]. We
extend the notation to parallel substitution in the usual manner
(cf. Remark A.14 in Appendix D).

From the operation of pure substitution [x := w], we define
an operation of bilinear substitution 〈x := ~w 〉 that is defined
for all term distributions ~t =

∑n
i=1 αi ·ti and for all value dis-

tributions ~w =
∑m
j=1 βj ·wj , letting ~t〈x := ~w 〉 :=

∑m
j=1 βj ·

~t [x := wj] =
∑n
i=1

∑m
j=1 αiβj · ti[x := wj] . By construc-

tion, the generalized operation of substitution ~t〈x := ~w〉 is
bilinear—which is consistent with the bilinearity of application
(Section II-C). But beware! The bilinearity of the operation
~t〈x := ~w〉 also makes its use often counter-intuitive, so
that this notation should always be used with the greatest
caution. Indeed, while inl(~v)〈x := ~w〉 = inl(~v〈x := ~w〉),
(v1, v2)〈x := ~w〉 6= (v1〈x := ~w〉, v2〈x := ~w〉). Lemma A.10,
in Appendix C gives the valid identities. In addition, bilinear

substitution is not (completely) canceled when x /∈ FV(~t),
in which case ~t〈x := ~w〉 = $(~w) · ~t 6= ~t. where
$(~w) :=

∑m
j=1 βj is the weight of ~w (cf Section II-B).

III. EVALUATION

The set of term distributions is equipped with a relation of
evaluation ~t �� ~t′ that is defined in three steps as follows.

A. Atomic evaluation
First we define an asymmetric relation of atomic evaluation

t . ~t′ (between a pure term t and a term distribution ~t′) from
the inference rules of Table III.

These rules basically implement a deterministic call-by-
value strategy, where function arguments are evaluated from
the right to the left. (The argument of an application is always
evaluated before the function6). Also notice that no reduction
is ever performed in the body of an abstraction, in the second
argument of a sequence, in the body of a let-construct, or in
a branch of a match-construct. Moreover, atomic evaluation is
substitutive: If t . ~t′, then t[x := w] . ~t′[x := w] for all pure
values w.

B. One step evaluation
The relation of one step evaluation ~t � ~t′ is defined as

follows:

Definition III.1 (One step evaluation). Given two term distri-
butions ~t and ~t′, we say that ~t evaluates in one step to ~t′ and
write ~t � ~t′ when there exist a scalar α ∈ C, a pure term s
and two term distributions ~s′ and ~r such that ~t = α · s + ~r,
~t′ = α · ~s′ + ~r, and s . ~s′.

Notice that the relation of one step evaluation is also
substitutive. In addition, the strict determinism of the relation
of atomic evaluation t . ~t′ implies that the relation of one step
evaluation fulfills the following weak diamond property:

Lemma III.2 (Weak diamond). If ~t � ~t′1 and ~t � ~t′2, then
one of the following holds: either ~t′1 = ~t′2; either ~t′1 � ~t′2 or
~t′2 � ~t′1; either ~t′1 � ~t′′ and ~t′2 � ~t′′ for some ~t′′.

Remark III.3. In the decomposition ~t = α · s + ~r of
Definition III.1, we allow that s ∈ dom(~r). So that for
instance, we have the following. Let t := (λx . x) y. Then,

t = 1 · (λx . x) y � y

t =
1

2
· (λx . x) y +

1

2
· (λx . x) y � 1

2
· y +

1

2
· (λx . x) y

t = 7 · (λx . x) y + (−6) · (λx . x) y � 7 · y + (−6) · (λx . x) y

Remark III.4. Given a pure term t, we write Yt := (λx . t+
xx)(λx . t+xx), so that we have Yt . t+Yt by construction.
Then we observe that for all α ∈ C, we have

0·Yt = α·Yt+(−α)·Yt � α·(t+Yt)+(−α)·Yt = α·t+0·Yt
This example does not jeopardize the confluence of evaluation,
since we also have

α · t+ 0 · Yt � α · t+ ((−α) · t+ 0 · Yt) = 0 · t+ 0 · Yt
6This design choice is completely arbitrary, and we could have proceeded

the other way around.

(λx .~t) v . ~t [x := v] ∗;~s . ~s let (x, y) = (v, w) in ~s . ~s[x := v, y := w]

match inl(v) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} . ~s1[x1 := v] match inr(v) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} . ~s2[x2 := v]

t . ~t′

s t . s~t′
t . ~t′

t v . ~t′ v

t . ~t′

t;~s . ~t′;~s

t . ~t′

let (x, y) = t in ~s . let (x, y) = ~t′ in ~s

t . ~t′

match t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} . match ~t′ {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}

TABLE III
INFERENCE RULES OF THE RELATION OF ATOMIC EVALUATION t . ~t′

C. Evaluation

Finally, the relation of evaluation ~t �� ~t′ is defined as
the reflexive-transitive closure of the relation of one step
evaluation ~t � ~t′, that is: (��) := (�)∗.

Proposition III.5 (Linearity of evaluation). The relation ~t ��
~t′ is linear, in the sense that:

1) ~0 �� ~0
2) If ~t �� ~t′, then α · ~t �� α · ~t′ for all α ∈ C.
3) If ~t1 �� ~t′1 and ~t2 �� ~t′2, then ~t1+~t2 �� ~t′1+~t′2.

Example III.6. In our calculus, the Hadamard operator H :
C2 → C2, whose matrix is given by Mat(H) := 1√

2

(
1 1
1 −1

)
,

is computed by the term

H := λx . if x
{

1√
2
·tt+ 1√

2
·ff

∣∣∣ 1√
2
·tt+ (− 1√

2
) ·ff

}
.

Indeed, for all α, β ∈ C, we have

H (α · tt + β · ff) = α ·H tt + β ·H ff

�� α · if tt
{

1√
2
· tt + 1√

2
· ff

∣∣ 1√
2
· tt +

(
− 1√

2

)
· ff
}

+

β · if ff
{

1√
2
· tt + 1√

2
· ff

∣∣ 1√
2
· tt +

(
− 1√

2

)
· ff
}

�� α ·
(

1√
2
· tt + 1√

2
· ff
)

+ β ·
(

1√
2
· tt +

(
− 1√

2

)
· ff
)

= 1√
2
(α+ β) · tt + 1√

2
(α− β) · ff

Theorem III.7 (Confluence of evaluation). If ~t �� ~t′1 and
~t �� ~t′2, then there is a term distribution ~t′′ such that ~t′1 �� ~t′′

and ~t′2 �� ~t′′.

Proof. Writing (�?) the reflexive closure of (�), it is clear
from Lemma III.2 that (�?) fulfills the diamond property.
Therefore, (��) = (�)∗ = (�?)+ fulfills the diamond
property.

D. Normal forms

From what precedes, it is clear that the normal forms of
the relation of evaluation ~t �� ~t′ are the term distributions of
the form ~t =

∑n
i=1 αi · ti where ti 6 . for each i = 1..n.

In particular, all value distributions ~v are normal forms (but
they are far from being the only normal forms in the calculus).
From the property of confluence, it is also clear that when a
term distribution ~t reaches a normal form ~t′, then this normal
form is unique.

In what follows, we shall be more particularly interested
in the closed term distributions ~t that reach a (unique) closed
value distribution ~v through the process of evaluation.

IV. A SEMANTIC TYPE SYSTEM

In this section, we present the type system associated with
the (untyped) language presented in Section II as well as the
corresponding realizability semantics.

A. Structuring the space of value distributions

In what follows, we write: Λ the set of all closed pure terms;
~Λ the space of all closed term distributions; V (⊆ Λ) the set
of all closed pure values, which we shall call basis vectors;
and ~V (⊆ ~Λ) the space of all closed value distributions, which
we shall call vectors.

The space ~V formed by all closed value distributions (i.e.
vectors) is equipped with the inner product 〈~v | ~w〉 and the
pseudo-`2-norm ‖~v ‖ that are defined by

〈~v | ~w〉 :=
∑n
i=1

∑m
j=1 αi βj δvi,wj

‖~v ‖ :=
√
〈~v | ~v 〉 =

√∑n
i=1 |αi|2

where ~v =
∑n
i=1 αi · vi and ~w =

∑m
j=1 βj · wj (both in

canonical form), and where δvi,wj
is the Kronecker delta such

that it is 1 if vi = wj and 0 otherwise. Let us observe that
the inner product behaves well with term constructors, so that
e.g. 〈inl(~v1) | inl(~v2)〉 = 〈~v1 | ~v2〉, and that values built
from distinct term constructors are orthogonal, so that e.g.
〈inl(~v1) | inr(~w2)〉 = 0. We can also infer that for all
~v, ~w ∈ ~V, we have ‖inl(~v)‖ = ‖inr(~v)‖ = ‖~v‖ and
‖(~v, ~w)‖ = ‖~v‖ ‖~w‖.

Most of the constructions we shall perform hereafter will
take place in the unit sphere S1 ⊆ ~V, that is defined by S1 :=
{~v ∈ ~V : ‖~v ‖ = 1}. It is clear that for all ~v, ~w ∈ S1, we
have inl(~v) ∈ S1, inr(~w) ∈ S1 and (~v, ~w) ∈ S1.

Given a set of vectors X ⊆ ~V, we also write span(X) the
span of X , defined by

{∑n
i=1 αi ·~vi : n ≥ 0, α1, . . . , αn ∈

C, ~v1, . . . , ~vn ∈ X
}
⊆ ~V, and [X the basis of X , defined by⋃

~v∈X dom(~v) ⊆ V.
Note that by construction, span(X) is the smallest (weak)

sub-vector space of ~V such that X ⊆ span(X), whereas [X
is the smallest set of basis vectors such that X ⊆ span([X).

B. The notion of unitary type

Definition IV.1 (Unitary types). A unitary type (or a type, for
short) is defined by a notation A, together with a set of unitary
vectors JAK ⊆ S1, called the unitary semantics of A.

Definition IV.2 (Realizability predicate). To each type A we
associate a realizability predicate ~t A (where ~t ranges over
~Λ) that is defined by ~t A if and only if ~t �� ~v for some ~v ∈
JAK. The set or realizers of A, written { A}, is then defined
by {~t ∈ ~Λ : ~t A}, that is, {~t ∈ ~Λ : ∃~v ∈ JAK, ~t �� ~v}.

Lemma IV.3. For all types A, we have JAK = { A}∩~V.

C. Judgments, inference rules and derivations

Definition IV.4 (Judgments). A judgment is a notation J
expressing some assertion, together with a criterion of validity,
that defines whether the judgment J is valid or not.

For instance, given any two types A and B, we can consider
the following two judgments:
• The judgment A ≤ B (‘A is a subtype of B’), that is

valid when JAK ⊆ JBK.
• The judgment A ' B (‘A is equivalent to B’), that is

valid when JAK = JBK.
(In Section V-A below, we shall also introduce a typing
judgment written Γ ` ~t : A). From the definition of both
judgments A ≤ B and A ' B, it is clear that the judgment
A ' B is valid if and only if both judgments A ≤ B and
B ≤ A are valid. Moreover:

Lemma IV.5. Given any two types A and B:
1) A ≤ B is valid if and only if { A} ⊆ { B}.
2) A ' B is valid if and only if { A} = { B}.

More generally, we call an inference rule any pair formed
by a finite set of judgments J1, . . . , Jn, called the premises of
the rule, and a judgment J0, called the conclusion:

J1 · · · Jn
J0

We say that an inference rule J1 ··· Jn
J0

is valid when the joint
validity of the premises J1, . . . , Jn implies the validity of the
conclusion J0. As usual, inference rules can be assembled into
derivations, and we shall say that a derivation is valid when
all the inference rules that are used to build this derivation
are valid. It is clear that when all the premises of a valid
derivation are valid, then so is its conclusion. In particular,
when a judgment has a valid derivation without premises, then
this judgment is valid.

D. A simple algebra of types

In this section, we design a simple algebra of unitary types
whose notations (i.e. the syntax) are given in Table IV and
whose unitary semantics are given in Table V.

The choice we make in this paper follows from the structure
of the calculus: each set of standard constructor/destructor
canonically yields a type constructor: this gives : U, the unit
type, that is inhabited by the sole vector ∗ ; A+B, the simple
sum of A and B ; A × B, the simple product of A and B;
A→ B, the space of all pure functions mapping A to B.

The next natural choice of type constructor is derived from
the existence of linear combinations of terms. First, [A is
the basis of A, that is: the minimal set of basis vectors that

A,B ::= U | [A |]A | A+B | A×B | A→ B | A⇒ B

TABLE IV
SYNTAX OF UNITARY TYPES

JUK := {∗} J[AK := [JAK J]AK := span(JAK) ∩ S1
JA+BK :=

{
inl(~v) : ~v ∈ JAK

}
∪
{
inr(~w) : ~w ∈ JBK

}
JA×BK :=

{
(~v, ~w) : ~v ∈ JAK, ~w ∈ JBK

}
JA→ BK :=

{
λx .~t : ∀~v ∈ JAK, ~t 〈x := ~v 〉 B

}
JA⇒ BK :=

{(∑n
i=1 αi · λx .~ti

)
∈ S1 : ∀~v ∈ JAK,(∑n

i=1 αi · ~ti〈x := ~v 〉
)
 B

}
TABLE V

UNITARY SEMANTICS OF TYPES

generate all vectors of type A by (weak) linear combinations.
Note that in general, [A is not a subtype of A. Then,]A is
the unitary span of A, that is: the type of all unitary vectors
that can be formed as a (weak) linear combination of vectors
of type A. Note that A is always a subtype of]A.

The last non-trivial type is A⇒ B: the space of all unitary
function distributions mapping A to B. As lambda-terms are
not distributives over linear combinations, this type is distinct
from](A→ B) (see next remark for a discussion). However,
by construction, A→ B is always a subtype of A⇒ B.

Finally, we provide some syntactic sugar: the type of
Booleans, the direct sum and the tensor product are defined
by B := U+U, A⊕B :=](A+B), and A⊗B :=](A×B).

The type]B =](U + U) = U ⊕ U will be called the type
of unitary Booleans. Notice that its semantics is given by the
definition J]BK = span({tt, ff})∩S1, that is, the set

{
α ·tt :

|α| = 1
}
∪
{
β ·ff : |β| = 1

}
∪
{
α·tt+β ·ff : |α|2+|β|2 = 1

}
.

Remarks IV.6.
1) The type constructors [and] are monotonic and idem-

potent: [[A ' [A and]]A ']A.
2) We always have the inclusion A ≤]A, but the inclusion

[A ≤ A does not hold in general. For instance, given
any type A, we easily check that 3

5 ·
(
λx . 5

6 · x
)

+ 4
5 ·(

λx . 5
8 ·x
)
∈ JA⇒ AK , so that (λx . 5

6 ·x), (λx . 5
8 ·x) ∈

[JA⇒ AK = J[(A⇒ A)K. On the other hand, it is also
clear that (λx . 5

6 · x), (λx . 5
8 · x) /∈ JA ⇒ AK (unless

JAK = ∅). Therefore, [(A⇒ A) 6≤ A⇒ A.
3) We have the equivalence []A ' [A, but only the

inclusion A ≤][A. More generally, the type constructor
[commutes with + and ×: [(A + B) ' [A + [B and
[(A×B) ' [A×[B but the type constructor] does not,
since we only have the inclusions]A+]B ≤](A+B)
and]A×]B ≤](A×B)

4) The inclusions A⇒ B ≤](A⇒ B) and](A→ B) ≤
](A⇒ B) are strict in general (unless the type A⇒ B
is empty). As a matter of fact, the two types](A →
B) and](A ⇒ B) have no interesting properties—for
instance, they are not subtypes of]A⇒]B. In practice,
the type constructor] is only used on top of an algebraic

type, constructed using one of U, +, or ×.

1) Pure types and simple types: In what follows, we shall
say that a type A is pure when its unitary semantics only
contains pure values, that is: when JAK ⊆ V. Equivalently, a
type A is pure when the type equivalence [A ' A is valid (or
when A ≤ [B for some type B). We easily check that:

Lemma IV.7. For all types A and B:
1) The types U, [A and A→ B are pure.
2) If A and B are pure, then so are A+B and A×B.
3)]A and A⇒ B are not pure, unless they are empty.

A particular case of pure types are the simple types, that are
syntactically defined from the following sub-grammar of the
grammar of Table IV:

A,B ::= U | A+B | A×B | A→ B

It is clear from Lemma IV.7 that all simple types are pure
types. The converse is false, since the type]U→]U is pure,
although it is not generated from the above grammar.

2) Pure arrow vs unitary arrow: The pure arrow A → B
and the unitary arrow A⇒ B only differ in the shape of the
functions which they contain: the pure arrow A → B only
contains pure abstractions whereas the unitary arrow A⇒ B
contains arbitrary unitary distributions of abstractions mapping
values of type A to realizers of type B. However, the functions
that are captured by both sets JA→ BK ⊆ V and JA⇒ BK ⊆
S1 are extensionally the same:

Proposition IV.8. For all unitary distributions of abstractions(∑n
i=1 αi · λx .~ti

)
∈ S1, one has:(∑n
i=1 αi · λx .~ti

)
∈ JA⇒ BK

iff λx .
(∑n

i=1 αi · ~ti
)
∈ JA→ BK .

E. Representation of unitary operators

Recall that the type of unitary Booleans is defined as]B =
](U + U) = U⊕U, so that for all closed term distributions ~t,
we have ~t]B iff

~t �� α · tt for some α ∈ C s.t. |α| = 1, or
~t �� β · ff for some β ∈ C s.t. |β| = 1, or
~t �� α · tt + β · ff for some α, β ∈ C s.t. |α|2 + |β|2 = 1 .

We can observe that the unitary semantics of the type]B
simultaneously contains the vectors α · tt and α · tt + 0 · ff,
that can be considered as “morally” equivalent (although they
are not according to the congruence ≡). To identify such
vectors, it is convenient to introduce the Boolean projection
πB : span({tt, ff})→ C2 defined by

πB(α · tt) = (α, 0), πB(β · ff) = (0, β),
and πB(α · tt + β · ff) = (α, β)

for all α, β ∈ C. By construction, the function πB :
span({tt, ff})→ C2 is linear, surjective, and neglects the dif-
ference between α·tt+0·ff and α·tt (and between 0·tt+β·ff
and β · ff). Moreover, the map πB : span({tt, ff}) → C2

preserves the inner product, in the sense that for all ~v, ~w ∈
span({tt, ff}), we have

〈πB(~v) | πB(~w)〉C2 = 〈~v | ~w〉~V
Definition IV.9. We say that a closed term distribution ~t
represents a function F : C2 → C2 when for all ~v ∈
span({tt, ff}), there exists ~w ∈ span({tt, ff}) such that

~t~v �� ~w and πB(~w) = F (πB(~v)) .

Remark IV.10. From the bilinearity of application, it is clear
that each function F : C2 → C2 that is represented by a
closed term distribution is necessarily linear.

Recall that an operator F : C2 → C2 is unitary when
it preserves the inner product of C2, in the sense that
〈F (u) | F (v)〉 = 〈u | v〉 for all u, v ∈ C2. Equivalently, an
operator F : C2 → C2 is unitary if and only if ‖F (1, 0)‖C2 =
‖F (0, 1)‖C2 = 1 and 〈F (1, 0) | F (0, 1)〉C2 = 0. The following
propositions expresses that the types]B →]B and]B ⇒]B
capture unitary operators:

Proposition IV.11. Given a closed λ-abstraction λx .~t, we
have λx .~t ∈ J]B →]BK if and only if there are two value
distributions ~v1, ~v2 ∈ J]BK such that we have ~t [x := tt] ��
~v1, ~t [x := ff] �� ~v2 and 〈~v1 | ~v2〉 = 0.

Theorem IV.12 (Characterization of the values of type
]B →]B). A closed λ-abstraction λx .~t is a value of type
]B →]B if and only if it represents a unitary operator
F : C2 → C2.

Corollary IV.13 (Characterization of the values of type
]B ⇒]B). A unitary distribution of abstractions

(∑n
i=1 αi ·

λx .~ti
)
∈ S1 is a value of type]B ⇒]B if and only if it

represents a unitary operator F : C2 → C2.

V. TYPING JUDGEMENTS

In Section IV, we introduced a simple type algebra (Ta-
ble IV) together with the corresponding unitary semantics
(Table V). We also introduced the two judgments A ≤ B
and A ' B. Now, it is time to introduce the typing judgment
Γ ` ~t : A together with the corresponding notion of validity.

A. Typing Rules

As usual, we call a typing context (or a context) any finite
function from the set of variables to the set of types. Contexts
Γ are traditionally written Γ = x1 : A1, . . . , x` : A` where
{x1, . . . , x`} = dom(Γ) and where Ai = Γ(xi) for all i =
1..`. The empty context is written ∅, and the concatenation
of two contexts Γ and ∆ such that dom(Γ) ∩ dom(∆) = ∅
is defined by Γ,∆ := Γ ∪ ∆ (that is: as the union of the
underlying functions).

Similarly, we call a substitution any finite function from
the set of variables to the set ~V of closed value distributions.
Substitutions σ are traditionally written σ = {x1 :=
~v1, . . . , x` := ~v`} where {x1, . . . , x`} = dom(σ) and where
~vi = σ(xi) for all i = 1..`. The empty substitution is written ∅,
and the concatenation of two substitutions σ and τ such that

dom(σ) ∩ dom(τ) = ∅ is defined by σ, τ := σ ∪ τ (that is:
as the union of the underlying functions). Given an open term
distribution ~t and a substitution σ = {x1 := ~v1, . . . , x` := ~v`},
we write ~t 〈σ〉 := ~t 〈x1 := ~v1〉 · · · 〈x` := ~v`〉 . Note that
since the value distributions ~v1, . . . , ~v` are closed, the order in
which the (closed) bilinear substitutions 〈xi := ~vi〉 (i = 1..`)
are applied to ~t is irrelevant.

Definition V.1 (Unitary semantics of a typing context). Given
a typing context Γ, we call the unitary semantics of Γ and
write JΓK the set of substitutions defined by

JΓK :=
{
σ substitution : dom(σ) = dom(Γ)

and ∀x ∈ dom(σ), σ(x) ∈ JΓ(x)K
}
.

Finally, we call the strict domain of a context Γ and write
dom](Γ) the set

dom](Γ) := {x ∈ dom(Γ) : JΓ(x)K 6= [JΓ(x)K} .

Intuitively, the elements of the set dom](Γ) are the variables
of the context Γ whose type is not a type of pure values. As
we shall see below, these variables are the variables that must
occur in all the term distributions that are well-typed in the
context Γ. (This restriction is essential to ensure the validity
of the rule (UnitLam), Table VI).

Definition V.2 (Typing judgments). A typing judgment is a
triple Γ ` ~t : A formed by a typing context Γ, a (possibly
open) term distribution ~t and a type A. This judgment is valid
when:

1) dom](Γ) ⊆ FV(~t) ⊆ dom(Γ); and
2) ~t〈σ〉 A for all σ ∈ JΓK.

Proposition V.3. The typing rules of Table VI are valid.

Remark V.4. In the rule (PureLam), the notation [Γ ' Γ refers
to the conjunction of premises [A1 ' A1 & · · · & [A` ' A`,
where A1, . . . , A` are the types occurring in the context Γ.

Remark V.5. The proof of validity of the typing rule (UnitLam)
crucially relies on the fact that the body ~t of the abstraction
λx .~t is a raw distribution (i.e. an expression that is considered
only up to α-conversion, and not ≡). This is the reason why we
endowed term distributions (Section II-B) with the congruence
≡ that is shallow, in the sense that it does not propagate in
the bodies of abstractions, in the bodies of let-constructs, or
in the branches of match-constructs.

B. Simply-typed lambda-calculus

Recall that simple types (Section IV-D1) are generated from
the following sub-grammar of the grammar of Table IV:

A,B ::= U | A+B | A×B | A→ B

By construction, all simple types A are pure types, in the sense
that [A ' A. Since pure types allow the use of weakening and
contraction, it is a straightforward exercise to check that any
typing judgment Γ ` t : A that is derivable in the simply-
typed λ-calculus with sums and products is also derivable from
the typing rules of Table VI.

C. Typing Church numerals

Let us recall that Church numerals n̄ are defined for all
n ∈ N by n̄ := λf . λx . fn x. From the typing rules of
Table VI, we easily derive that ` n̄ : (B→ B)→ (B→ B)
(by simple typing) and even that ` n̄ : (]B→]B)→ (]B→
]B), using the fact that]B→]B is a pure type, that is subject
to arbitrary weakenings and contractions. On the other hand,
since we cannot use weakening or contraction for the non pure
type]B⇒]B, we cannot derive the judgments ` n̄ : (]B⇒
]B)→ (]B⇒]B) and ` n̄ : (]B⇒]B)⇒ (]B⇒]B) but
for n = 1. (cf. Fact A.11 in Appendix C).

D. Orthogonality as a Typing Rule

The typing rules of Table VI allow us to derive that the
terms I := λx . x, Ktt := λx . tt, Kff := λx . ff and N :=
λx . if x {ff | tt} have type B → B; they even allow us
to derive that I has type]B →]B, but they do not allow us
(yet) to derive that the Boolean negation N or the Hadamard
H have type]B→]B. For that, we need to introduce a new
form of judgment: orthogonality judgments.

Definition V.6 (Orthogonality judgments). An orthogonality
judgment is a sextuple

Γ ` (∆1 ` ~t1) ⊥ (∆2 ` ~t2) : A

formed by three typing contexts Γ, ∆1 and ∆2, two (possibly
open) term distributions ~t1, ~t2 and a type A. This judgment is
valid when:

1) both judgments Γ,∆1 ` ~t1 : A and Γ,∆2 ` ~t2 : A are
valid; and

2) for all σ ∈ JΓK, σ1 ∈ J∆1K and σ2 ∈ J∆2K, if
~t1〈σ, σ1〉 �� ~v1 and ~t2〈σ, σ2〉 �� ~v2,
then 〈~v1 | ~v2〉 = 0.

When both contexts ∆1 and ∆2 are empty, the orthogonality
judgment Γ ` (∆1 ` ~t1) ⊥ (∆2 ` ~t2) : A is simply written
Γ ` ~t1 ⊥ ~t2 : A.

With this definition, we can prove a new typing rule, which
can be used to type Hadamard:

Proposition V.7. The rule (UnitaryMatch) given below is valid.
Γ ` ~t : A1 ⊕A2 ∆ ` (x1 :]A1 ` ~s1) ⊥ (x2 :]A2 ` ~s2) :]C

Γ,∆ ` match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} :]C

Example V.8. We have ` tt ⊥ ff : B. Consider the terms
|+〉 = 1√

2
· tt+ 1√

2
· ff and |−〉 = 1√

2
· tt+ (− 1√

2
) · ff. Then

we can prove that ` |+〉 ⊥ |−〉 :]B.
We can also prove that

` (x :]U ` x; |+〉) ⊥ (y :]U ` y; |−〉) :]B

Using this fact, and the rule (UnitaryMatch) from Proposi-
tion V.7, we can derive the type]B →]B for the Hadamard
gate H defined in Example III.6. Recall that]B =](U+U) =
U⊕ U.

x : A ` x : A
(Axiom)

Γ ` ~t : A A ≤ A′

Γ ` ~t : A′
(Sub)

Γ, x : A ` ~t : B [Γ ' Γ

Γ ` λx .~t : A→ B
(PureLam)

Γ, x : A ` ~t : B

Γ ` λx .~t : A⇒ B
(UnitLam)

Γ ` ~s : A⇒ B ∆ ` ~t : A

Γ,∆ ` ~s~t : B
(App)

` ∗ : U
(Void)

Γ ` ~t : U ∆ ` ~s : A

Γ,∆ ` ~t;~s : A
(Seq)

Γ ` ~t :]U ∆ ` ~s :]A

Γ,∆ ` ~t;~s :]A
(SeqSharp)

Γ ` ~v : A ∆ ` ~w : B

Γ,∆ ` (~v, ~w) : A×B
(Pair)

Γ ` ~t : A×B ∆, x : A, y : B ` ~s : C

Γ,∆ ` let (x, y) = ~t in ~s : C
(LetPair)

Γ ` ~t : A⊗B ∆, x :]A, y :]B ` ~s :]C

Γ,∆ ` let (x, y) = ~t in ~s :]C
(LetTens)

Γ ` ~v : A

Γ ` inl(~v) : A+B
(InL) Γ ` ~w : B

Γ ` inr(~w) : A+B
(InR)

Γ ` ~t : A+B ∆, x1 : A ` ~s1 : C ∆, x2 : B ` ~s2 : C

Γ,∆ ` match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} : C
(PureMatch)

Γ ` ~t : B [A ' A
Γ, x : A ` ~t : B

(Weak)
Γ, x : A, y : A ` ~t : B [A ' A

Γ, x : A ` ~t [y := x] : B
(Contr)

TABLE VI
SOME VALID TYPING RULES

VI. UNIFYING MODEL OF CLASSICAL AND QUANTUM
CONTROL

We showed in Section V-B that the unitary linear algebraic
lambda calculus strictly contains the simply-typed lambda cal-
culus. With Theorem IV.12 and Corollary IV.13 we expressed
how the “only” valid functions were unitary maps, and in
Section V-D we hinted at how to type orthogonality with the
model. This section is devoted to showing how the model can
be used as a model for quantum computation, with the model
providing an operational semantics to a high-level operation
on circuits: the control of a circuit.

A. A Quantum Lambda-Calculus

The language we consider, called λQ, is a circuit-description
language similar to QWIRE [6] or Proto-Quipper [26]. For-
mally, the types of λQ are defined from the following gram-
mar:

A,B ::= U | A→ B | A×B | bit | AQ(BQ

AQ, BQ ::= qbit | AQ ⊗BQ

The types denoted by A, B are the usual simple types, which
we call classical types. (Note that they contain a type bit of
classical bits, that corresponds to the type U+U in our model.)
The types denoted by AQ, BQ are the quantum types; they
basically consist in tensor products of the type qbit of quantum
bits. As the former types are duplicable while the latter are
non-duplicable, we define a special (classical) function-type
AQ(BQ between quantum types.

The term syntax for λQ is defined from the following
grammar:

t, r, s ::= x | ∗ | λx.t | t r | (t, r) | π1(t) | π2(t)

| tt | ff | if t {r | s}
| t⊗ r | let x⊗ y = t in r

| new(t) | U(t) | λQx.t | t@r

The first two lines of the definition describe the usual con-
structions of the simply-typed lambda calculus with (ordinary)
pairs. The last two lines adds the quantum specificities: a

tensor for dealing with systems of several quantum bits
(together with the corresponding destructor), an operator new
to create a new quantum bit, and a family of operators U(t) to
apply a given unitary operator on t. We also provide a special
lambda abstraction λQ to make a closure out of a quantum
computation, as well as a special application to apply such
a closure. Note that for simplicity, we only consider unary
quantum operators—that is: operators on the type qbit—, but
this can be easily extended to quantum operators acting on
tensor products of the form qbit⊗n. Also note that we do not
consider measurements, for our realizability model does not
natively support it.

The language λQ features two kinds of typing judgments: a
classical judgment ∆ `C t : A, where ∆ is a typing context of
classical types and where A is a classical type, and a quantum
judgment ∆|Γ `Q t : AQ, where ∆ is a typing context of
classical types, Γ a typing context of quantum types, and where
AQ is a quantum type. An empty typing context is always
denoted by ∅. As usual, we write Γ,∆ for Γ ∪∆ (when Γ ∩
∆ = ∅), and we use the notation FV(t) : qbit to represent the
quantum context x1 : qbit, . . . , xn : qbit made up of the finite
set FV(t) = {x1, . . . , xn}.

The typing rules for classical judgements are standard and
are given in the Appendix D. Rules for quantum judgements
are given in the Table VII. The last three rules allows to
navigate between classical and quantum judgments. Note that
in the above rules, classical variables (declared in the ∆’s)
can be freely duplicated whereas quantum variables (declared
in the Γ’s) cannot. Also note that in λQ, pure quantum
computations are essentially first-order.

The first of the last three rules makes a qbit out of a bit, the
second rule makes a closure out of a quantum computation,
while the third rule opens a closure containing a quantum
computation. These last two operations give a hint of higher-
order to quantum computations in λQ.

A value is a term belonging to the grammar:

u, v ::= x | λx.t | λQx.t | (u, v) | ∗ | u⊗ v .
The language λQ is equipped with the standard operational

semantics presented in [27]: the quantum environment is

∆|x : AQ `Q x : AQ

∆|Γ1 `Q s : AQ ∆|Γ2 `Q t : BQ

∆|Γ1,Γ2 `Q s⊗ t : AQ ⊗BQ

∆|Γ `Q t : qbit

∆|Γ `Q U(t) : qbit

∆|Γ1 `Q s : AQ ⊗BQ ∆|Γ2, x : AQ, y : BQ `Q t : CQ

∆|Γ1,Γ2 `Q let x⊗ y = s in t : CQ

∆ `C t : bit

∆|∅ `Q new(t) : qbit

∆|x : AQ `Q t : BQ

∆ `C λQx.t : AQ (BQ

∆ `C s : AQ (BQ ∆|Γ `Q t : AQ

∆|Γ `Q s@t : BQ

TABLE VII
TYPING RULES FOR λQ

[Q,L,C{(λx.t)u}]→ [Q,L,C{t[x := u]}]
[Q,L,C{(λQx.t)@u}]→ [Q,L,C{t[x := u]}]

[Q,L,C{π1(u, v)}]→ [Q,L,C{u}]
[Q,L,C{π2(u, v)}]→ [Q,L,C{v}]

[Q,L,C{if tt {t | r}}]→ [Q,L,C{t}]
[Q,L,C{if ff {t | r}}]→ [Q,L,C{r}]

[Q,L,C{let x⊗ y = u⊗ v in s}]→ [Q,L,C{s[x := u, y := v]}]
[Q,L,C{new(tt)}]→ [Q⊗ |0〉, L ∪ {x 7→ n+1}, C{x}]
[Q,L,C{new(ff)}]→ [Q⊗ |1〉, L ∪ {x 7→ n+1}, C{x}]

[Q,L,C{U(x)}]→ [Q′, L, C{x}]
where Q’ is obtained by applying U to the quantum bit L(x)

TABLE VIII
OPERATIONAL SEMATICS OF λQ

separated from the term, in the spirit of the QRAM model
of [4]. Formally, a program is defined as a triplet [Q,L, t]
where t is a term, L is a bijection from FV (t) to {1, . . . , n}
and Q is an n-quantum bit system: a normalized vector
in the 2n-dimensional vector space (C2)⊗n. We say that a
program [Q,L, t] is well-typed of type AQ when the judgment
∅|FV(t) : qbit `Q t : AQ is derivable. In particular, well-typed
programs correspond to quantum typing judgements, closed
with respect to classically-typed term-variables.

The operational semantics is call-by-value and relies on
applicative contexts, that are defined as follows:

C{·} ::= {·} | C{·}u | rC{·} | (C{·}, r) | (u,C{·})
| π1(C{·}) | π2(C{·}) | if C{·} {t | r} | C{·} ⊗ r
| u⊗ C{·} | let x⊗ y = C{·} in t | new(C{·})
| U(C{·}) | C{·}@u | r@C{·}

The operational semantics of the calculus is formally defined
from the rules given in Table VIII. The language λQ satisfies
the usual safety properties, proved as in [27].

Theorem VI.1 (Safety properties). If [Q,L, t] : AQ and
[Q,L, t] → [Q′, L′, r], then [Q′, L′, r] : AQ. Moreover,
whenever a program [Q,L, t] is well-typed, either t is already
a value or it reduces to some other program.

B. Modelling λQ

The realizability model based on the unitary linear-algebraic
lambda-calculus is a model for the quantum lambda-calculus
λQ. We write LtM for the translation of a term of λQ into its
model. The model can indeed not only accomodate classical
features, using pure terms, but also quantum states, using linear
combinations of terms.

We map qbit to]B and bit to B. This makes bit a subtype
of qbit: the model captures the intuition that booleans are
“pure” quantum bits. Classical arrows → are mapped to →
and classical product × is mapped to the product of the model,
in the spirit of the encoding of simply-typed lambda-calculus.
Finally, the tensor of λQ is mapped to the tensor of the model.

The interesting type is AQ(BQ. We need this type to be
both classical and capture the fact that a term of this type is a
pure quantum computation from AQ to BQ, that is, a unitary
map. The encoding we propose consists in using “thunk”,
as proposed by [28]. Formally, the translation of types is as
follows: LbitM = B, LA×BM = LAM×LBM, LA→ BM = LAM→
LBM, LAQ(BQM = U → (LAQM ⇒ LBQM), LqbitM =]B,
LAQ ⊗BQM = LAQM⊗LBQM =](LAQM×LBQM), and LUM = U.

Lemma VI.2. For all classical types A, [LAM ' LAM.

Lemma VI.3. For all qbit types AQ,]LAQM ' LAQM.

The classical structural term constructs of λQ are translated
literally: LxM = x, L∗M = ∗, Lλx.tM = λx.LtM, LtrM = LtMLrM,
L(t, r)M = (LtM, LrM), Lif t {r | s}M = match LtM {inl(z1) 7→
z1; LrM | inr(z2) 7→ z2; LsM} with z1 and z2 fresh variables,
LttM = inl(∗), LffM = inr(∗), Lπi(t)M = let (x1, x2) =
LtM in xi. Finally, the term constructs related to quantum bits
make use of the algebraic aspect of the language. First, new
is simply the identity, since booleans are subtypes of quantum
bits: Lnew(t)M = LtM. Then, the translation of the unitary
operators is done with the construction already encountered
in e.g. Example III.6: LU(t)M = ŪLtM where Ū is defined as
follows. If U = (a bc d), then Ū = λx.match x {inl(x1) 7→ a·
inl(x1)+c·inr(x1) | inr(x2) 7→ b·inl(x2)+d·inr(x2)}.

Then, the tensor is defined with the pairing construct, which
is distributive: Lt⊗ rM = (LtM, LrM) and Llet x⊗ y = s in tM =
let (x, y) = LsM in LtM. Finally, the quantum closure and
applications are defined by remembering the use of the
thunk: LλQx.tM = λzx.LtM, where z is a fresh variable, and
Lt@rM = (LtM∗)LrM: one first “open” the thunk before applying
the function.

We also define the translation of typing contexts as follows:
if Γ = {xi : Ai}i, we write LΓM for {xi : LAiM}i, and we write
L∆|ΓM for L∆M, LΓM. Finally, a program is translated as follows:
L[
∑m
i=1 αi.|yi1, . . . , yin〉, {x1 := p(1), . . . , xn := p(n)}, t]M =∑m

i=1 αi · LtM[x1 := ȳip(1), . . . , xn := ȳip(n)] where p is a
permutation of n and 0̄ = tt and 1̄ = ff.

Example VI.4. Let P be the program [α|00〉+ β|11〉, {x :=
1, y := 2}, (x⊗ y)]. It consists on a pair of the two quantum
bits given in the quantum context on the first component of the
triple. The translation of this program is as follows. LP M =

α · (x, y)[x := tt, y := tt] + β · (x, y)[x := ff, y := ff] =
α · (tt, tt) + β · (ff, ff).

The translation is compatible with typing and rewriting.
This is to be put in reflection with Theorem IV.12: not only
the realizability model captures unitarity, but it is expressive
enough to comprehend a higher-order quantum programming
language.

Theorem VI.5. Translation preserves typeability:
1) If Γ `Q t : AQ then LΓM ` LtM : LAQM.
2) If ∆|Γ `C t : A then L∆M, LΓM ` LtM : LAM.
3) If [Q,L, t] : A then ` L[Q,L, t]M : LAM.

Theorem VI.6 (Adequacy). If [Q,L, t] → [Q′, L′, r], then
L[Q,L, t]M �� L[Q′, L′, r]M.

C. A Circuit-Description Language

Quantum algorithms do not only manipulate quantum bits:
they also manipulate circuits. A quantum circuit is a sequence
of elementary operations that are buffered before being sent
to the quantum memory. If one can construct a quantum
circuit by concatenating elementary operations, several high-
level operations on circuits are allowed for describing quantum
algorithms: repetition, control (discussed in Section VI-D),
inversion, etc.

In recent years, several quantum programming languages
have been designed to allow the manipulation of circuits:
Quipper [5] and its variant ProtoQuipper [26], QWIRE [6],
etc. These languages share a special function-type Circ(A,B)
standing for the type of circuits from wires of type A to wires
of type B. Two built-in constructors are used to go back and
forth between circuits and functions acting on quantum bits:
• box : (AQ(BQ) → Circ(AQ, BQ). Its operational

semantics is to evaluate the input function on a phantom
element of type A, collect the list of elementary quantum
operations to be performed and store them in the output
circuit.

• unbox : Circ(AQ, BQ) → (AQ (BQ). This operator
is the dual: it takes a circuit — a list of elementary
operations — and return a concrete function.

The advantage of distinguishing between functions and circuits
is that a circuit is a concrete object: it is literally a list of
operations that can be acted upon. A function is a suspended
computation: it is a priori not possible to inspect its body.

The language λQ does not technically possess a type
constructor for circuits: the typing construct (is really a
lambda-abstraction. However, it is very close to being a circuit:
one could easily add a typing construct Circ in the classical
type fragment and implement operators box and unbox, taking
inspiration for the operational semantics on what has been
done by [26] for PROTOQUIPPER.

How would this be reflected in the realizability model? We
claim that the translation of the type Circ(AQ, BQ) can be
taken to be the same as the translation of AQ (BQ, the
operator box and unbox simply being the identity. The realiz-
ability model is then rich enough to express several high-level

operations on circuits: this permits to extend the language λQ.
The fact that the model “preserves unitarity” (Theorem IV.12)
ensuring the soundness of the added constructions.

In what follows, by abuse of notation, we identify
Circ(AQ, BQ) and AQ(BQ.

D. Control Operator
Suppose that we are given a closed term t of λQ with type

qbit (qbit. This function corresponds to a unitary matrix
U = (a bc d), sending |0〉 to a|0〉+c|1〉 and |1〉 to b|0〉+d|1〉. We
might want to write ctl(t) of type (qbit⊗qbit)((qbit⊗qbit)
behaving as the control of U, whose behavior is to send |0〉⊗φ
to |0〉⊗φ and |1〉⊗φ to |1〉⊗ (Uφ): if the first input quantum
bit is in state |0〉, control-U acts as the identity. If the first
input quantum bit is in state |1〉, control-U performs U on the
second quantum bit.

This is really a “quantum test” [29]. It has been formalized
in the context of linear algebraic lambda-calculi by [1]. It can
be ported to the unitary linear algebraic lambda-calculus as
follows:

ctl := λf.λz.let((x, y)) = z in

match x {inl(z1) 7→ (inl(z1), fy)

|inr(z2) 7→ (inr(z2), y)}

and ctl can be given the type

(]A⇒]B)→ ((B⊗A)⇒ (B⊗B)).

Note how the definition is very semantical: the control oper-
ation is literally defined as a test on the first quantum bit.

We can then add an opaque term construct ctl(s) to λQ with
typing rule

∆ `C t : AQ(BQ

∆ `C ctl(t) : (qbit⊗AQ)((qbit⊗BQ).

The translation of this new term construct is then Lctl(t)M =
λz.(ctl(LtM∗)) with z a fresh variable, and Theorem VI.6 still
holds.

VII. CONCLUSIONS

In this paper we have presented a language based on
Lineal [1], [2]. Then, we have given a set of unitary types
and proposed a realizability semantics associating terms and
types.

The main result of this paper can be pinpointed to Theo-
rem IV.12 and Corollary IV.13, which, together with normal-
ization, progress, and subject reduction of the calculus (which
are axiomatic properties in realizability models), imply that
every term of type]B →]B represent a unitary operator.
In addition, the Definition V.6 of orthogonal judgements led
to Proposition V.7 proving rule (UnitaryMatch). Indeed, one of
the main historic drawbacks for considering a calculus with
quantum control has been to define the notion of orthogonality
needed to encode unitary gates (cf., for example, [29]).

Finally, as an example to show the expressiveness of the
language, we have introduced λQ and showed that the calculus
presented in this paper can be considered as a denotational
semantics of it.

REFERENCES

[1] P. Arrighi and G. Dowek, “Linear-algebraic λ-calculus: higher-order,
encodings, and confluence.” in Rewriting Techniques and Applications,
A. Voronkov, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 17–31.

[2] ——, “Lineal: A linear-algebraic lambda-calculus,” Logical Methods in
Computer Science, vol. 13, 2017.

[3] B. Valiron, “A typed, algebraic, computational lambda-calculus,” Math-
ematical Structures in Computer Science, vol. 23, no. 2, pp. 504–554,
2013.

[4] E. H. Knill, “Conventions for quantum pseudocode,” Los Alamos
National Laboratory, Tech. Rep. LA-UR-96-2724, 1996.

[5] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” ACM SIGPLAN
Notices (PLDI’13), vol. 48, no. 6, pp. 333–342, 2013.

[6] J. Paykin, R. Rand, and S. Zdancewic, “Qwire: A core language
for quantum circuits,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL 2017.
New York, NY, USA: ACM, 2017, pp. 846–858.

[7] A. van Tonder, “A lambda calculus for quantum computation,” SIAM
Journal on Computing, vol. 33, pp. 1109–1135, 2004.

[8] A. Dı́az-Caro, “Du typage vectoriel,” Ph.D. dissertation, Université de
Grenoble, France, Sep. 2011.

[9] P. Arrighi, A. Dı́az-Caro, and B. Valiron, “The vectorial lambda-
calculus,” Information and Computation, vol. 254, no. 1, pp. 105–139,
2017.

[10] P. Arrighi and A. Dı́az-Caro, “A System F accounting for scalars,”
Logical Methods in Computer Science, vol. 8, 2012.

[11] S. C. Kleene, “On the interpretation of intuitionistic number theory,”
Journal of Symbolic Logic, vol. 10, pp. 109–124, 1945.

[12] C. Bdescu and P. Panangaden, “Quantum alternation: Prospects and
problems,” in Proceedings of QPL-2015, ser. Electronic Proceedings in
Theoretical Computer Science, C. Heunen, P. Selinger, and J. Vicary,
Eds., vol. 195, 2015, pp. 33–42.

[13] A. Dı́az-Caro and B. Petit, “Linearity in the non-deterministic call-by-
value setting,” in Proceedings of WoLLIC 2012, ser. LNCS, L. Ong and
R. de Queiroz, Eds., vol. 7456. Buenos Aires, Argentina: Springer,
2012, pp. 216–231.

[14] A. Dı́az-Caro and G. Dowek, “Typing quantum superpositions and mea-
surement,” in Theory and Practice of Natural Computing (TPNC 2017),
ser. Lecture Notes in Computer Science, C. Martı́n-Vide, R. Neruda,
and M. A. Vega-Rodrı́guez, Eds., vol. 10687. Prague, Czech Republic:
Springer, Cham, 2017, pp. 281–293.

[15] A. Dı́az-Caro and O. Malherbe, “A concrete categorical semantics for
lambda-s,” in 13th Workshop on Logical and Semantic Frameworks with
Applications (LSFA 2018), 2018, pp. 143–172, to appear in ENTCS.
Available at arXiv:1806.09236.

[16] A. Sabry, B. Valiron, and J. K. Vizzotto, “From symmetric pattern-
matching to quantum control,” in Foundations of Software Science
and Computation Structures - 21st International Conference, FOSSACS
2018,, ser. LNCS, C. Baier and U. D. Lago, Eds., vol. 10803. Thes-
salonikis, Greece: Springer, 2018, pp. 348–364.

[17] L. Vaux, “The algebraic lambda calculus,” Mathematical Structures in
Computer Science, vol. 19, pp. 1029–1059, 2009.

[18] T. Ehrhard and L. Regnier, “The differential lambda-calculus,” Theoret-
ical Computer Science, vol. 309, no. 1, pp. 1–41, 2003.

[19] A. Assaf, A. Dı́az-Caro, S. Perdrix, C. Tasson, and B. Valiron, “Call-
by-value, call-by-name and the vectorial behaviour of the algebraic λ-
calculus,” Logical Methods in Computer Science, vol. 10, 2014.

[20] P. Selinger, “Towards a quantum programming language,” Mathematical
Structures in Computer Science, vol. 14, no. 4, pp. 527–586, 2004.

[21] P. Selinger and B. Valiron, “On a fully abstract model for a quantum
linear functional language,” in Proceedings of the Fourth International
Workshop on Quantum Programming Languages (QPL’06), ser. Elec-
tronic Notes in Theoretical Computer Science, P. Selinger, Ed., vol. 210,
Oxford, UK., July 2008, pp. 123–137.

[22] O. Malherbe, P. Scott, and P. Selinger, “Presheaf models of quantum
computation: An outline,” in Computation, Logic, Games, and Quantum
Foundations. The Many Facets of Samson Abramsky - Essays Dedicated
to Samson Abramsky on the Occasion of His 60th Birthday, ser. Lecture
Notes in Computer Science, B. Coecke, L. Ong, and P. Panangaden,
Eds. Springer, 2013, vol. 7860, pp. 178–194.

[23] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative se-
mantics to higher-order quantum computing,” ACM SIGPLAN Notices
(POPL’14), vol. 49, no. 1, pp. 647–658, 2014.

[24] F. Rios and P. Selinger, “A categorical model for a quantum circuit de-
scription language,” in Proceedings of the 14th International Conference
on Quantum Physics and Logic, QPL 2017, ser. EPTCS, B. Coecke and
A. Kissinger, Eds., vol. 266, 2017, pp. 164–178.

[25] B. Lindenhovius, M. Mislove, and V. Zamdzhiev, “Enriching a
linear/non-linear lambda calculus: A programming language for string
diagrams,” in Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2018). ACM, 2018, pp. 659–668.

[26] N. J. Ross, “Algebraic and logical methods in quantum computation,”
Ph.D. dissertation, Dalhousie University, 2015.

[27] P. Selinger and B. Valiron, “A lambda calculus for quantum computation
with classical control,” Mathematical Structures in Computer Science,
vol. 16, no. 3, pp. 527–552, 2006.

[28] P. Z. Ingerman, “Thunks: A way of compiling procedure statements
with some comments on procedure declarations,” Communication of the
ACM, vol. 4, no. 1, pp. 55–58, 1961.

[29] T. Altenkirch and J. Grattage, “A functional quantum programming
language,” in Proceedings of LICS 2005. Chicago, USA: IEEE, 2005,
pp. 249–258.

APPENDIX

A. Proofs related to Section III

Lemma A.1 (Simplifying equalities). Let scalars α1, α2 ∈ C, pure terms t1, t2 and term distributions ~s1, ~s2 such that
α1 · t1 + ~s1 ≡ α2 · t2 + ~s2.

1) If t1 = t2 = t and α1 = α2, then: ~s1 ≡ ~s2 or ~s1 ≡ ~s2 + 0 · t or ~s2 ≡ ~s1 + 0 · t.
2) If t1 = t2 = t but α1 6= α2, then: ~s1 ≡ ~s2 + (α2 − α1) · t or ~s2 ≡ ~s1 + (α1 − α2) · t.
3) If t1 6= t2, then: ~s1 ≡ ~s3 + α2 · t2 and ~s2 ≡ ~s3 + α1 · t1 for some distribution ~s3.

(All the above disjunctions are inclusive).

Lemma III.2 (Weak diamond). if ~t � ~t′1 and ~t � ~t′2, then one of the following holds: either ~t′1 = ~t′2; either ~t′1 � ~t′2 or ~t′2 � ~t′1;
either ~t′1 � ~t′′ and ~t′2 � ~t′′ for some ~t′′.

Proof of Lemma III.2. Since ~t � ~t′1 and ~t � ~t′2, there are decompositions

~t = α1 · s1 + ~r1 ~t′1 = α1 · ~s′1 + ~r1

~t = α2 · s2 + ~r2 ~t′2 = α2 · ~s′2 + ~r2

where s1 . ~s′1
where s2 . ~s′2

We distinguish three cases:
• Case where s1 = s2 = s and α1 = α2 = α. In this case, we have ~s′1 = ~s′2 = ~s′ since atomic evaluation is deterministic.

And by Lemma A.1 (1), we deduce that:
– Either ~r1 = ~r2, so that: ~t′1 = α · ~s′ + ~r1 = α · ~s′ + ~r2 = ~t′2.
– Either ~r1 = ~r2 + 0 · s, so that:

~t′1 = α · ~s′ + ~r1 = α · ~s′ + ~r2 + 0 · s
� α · ~s′ + ~r2 + 0 · ~s′ = (α+ 0) · ~s′ + ~r2 = ~t′2 .

– Either ~r2 = ~r1 + 0 · s, so that:

~t′2 = α · ~s′ + ~r2 = α · ~s′ + ~r1 + 0 · s
� α · ~s′ + ~r1 + 0 · ~s′ = (α+ 0) · ~s′ + ~r1 = ~t′1 .

• Case where s1 = s2 = s, but α1 6= α2. In this case, we have ~s′1 = ~s′2 = ~s′ since atomic evaluation is deterministic.
And by Lemma A.1 (2), we deduce that:

– Either ~r1 = ~r2 + (α2 − α1) · s, so that:

~t′1 = α1 · ~s′ + ~r1 = α1 · ~s′ + ~r2 + (α2 − α1) · s
� α1 · ~s′ + ~r2 + (α2 − α1) · ~s′ = α2 · ~s′ + ~r2 = ~t′2 .

– Either ~r2 = ~r1 + (α1 − α2) · s, so that:

~t′2 = α2 · ~s′ + ~r2 = α2 · ~s′ + ~r1 + (α1 − α2) · s
� α2 · ~s′ + ~r1 + (α1 − α2) · ~s′ = α1 · ~s′ + ~r1 = ~t′1 .

• Case where s1 6= s2. In this case, we know by Lemma A.1 (3) that ~r1 = ~r3 + α2 · s2 and ~r2 = ~r3 + α1 · s1 for some
~r3. Writing ~t′′ = α1 · ~s′1 + α2 · ~s′2 + ~r3, we conclude that

~t′1 = α1 · ~s′1 + ~r1 = α1 · ~s′1 + α2 · s2 + ~r3 � α1 · ~s′1 + α2 · ~s′2 + ~r3 = ~t′′

~t′2 = α2 · ~s′2 + ~r2 = α1 · s1 + α2 · ~s′2 + ~r3 � α1 · ~s′1 + α2 · ~s′2 + ~r3 = ~t′′

B. Proofs related to Section IV

Proposition A.2. For all value distributions ~v1, ~v2, ~w1, ~w2, we have:

〈inl(~v1) | inl(~v2)〉 = 〈~v1 | ~v2〉
〈inr(~w1) | inr(~w2)〉 = 〈~w1 | ~w2〉
〈(~v1, ~w1) | (~v2, ~w2)〉 = 〈~v1 | ~v2〉 〈~w1 | ~w2〉
〈inl(~v1) | inr(~w2)〉 = 0

〈inl(~v1) | (~v2, ~w2)〉 = 0

〈inr(~w1) | (~v2, ~w2)〉 = 0

Proof. Let us write ~v1 =
∑n1

i1=1 α1,i1 · v1,i1 , ~v2 =
∑n2

i2=1 α2,i2 · v2,i1 , ~w1 =
∑m1

j1=1 β1,j1 ·w1,j1 and ~w2 =
∑m2

j2=1 β2,j2 ·w2,j1

(all in canonical form). Writing δv,v′ = 1 when v = v′ and δv,v′ = 0 when v 6= v′ (Kronecker symbol), we observe that:

〈inl(v)1 | inl(v)2〉 =
〈∑n1

i1=1 α1,i1 · inl(v1,i1)
∣∣ ∑n2

i2=1 α2,i2 · inl(v2,i2)
〉

=
∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 〈inl(v1,i1) | inl(v2,i2)〉
=
∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 δinl(v1,i1),inl(v2,i2)

=
∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 δv1,i1 ,v2,i2
=
∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 〈v1,i1 | v2,i2〉 = 〈~v1 | ~v2〉

〈inl(v)1 | inr(w)2〉 =
〈∑n1

i1=1 α1,i1 · inr(v1,i1)
∣∣ ∑m2

j2=1 β2,j2 · inl(w2,j2)
〉

=
∑n1

i1=1

∑m2

j2=1 α1,i1 β2,j2 〈inl(v1,i1) | inr(w2,j2)〉
=
∑n1

i1=1

∑m2

j2=1 α1,i1 β2,j2 δinl(v1,i1),inr(w2,j2)

=
∑n1

i1=1

∑m2

j2=1 α1,i1 β2,j2 × 0 = 0

〈(~v1, ~w1) | (~v2, ~w2)〉 =
〈∑n1

i1=1

∑m1

j1=1 α1,i1β1,j1 · (v1,i1 , w1,j1)
∣∣ ∑n2

i2=1

∑m2

j2=1 α2,i2β2,j2 · (v2,i2 , w2,j2)
〉

=
∑n1

i1=1

∑m1

j1=1

∑n2

i2=1

∑m2

j2=1 α1,i1β1,j1α2,i2β2,j2〈(v1,i1 , w1,j1) | (v2,i2 , w2,j2)〉
=
∑n1

i1=1

∑m1

j1=1

∑n2

i2=1

∑m2

j2=1 α1,i1β1,j1α2,i2β2,j2δ(v1,i1 ,w1,j1
),(v2,i2 ,w2,j2

)

=
∑n1

i1=1

∑n2

i2=1

∑m1

j1=1

∑m2

j2=1 α1,i1 α2,i2 β1,j1 β2,j2 δv1,i1 ,v2,i2 δw1,j1
,w2,j2

=
(∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 δv1,i1 ,v2,i2
)(∑m1

j1=1

∑m2

j2=1 β1,j1 β2,j2 δw1,j1
,w2,j2

)
=
(∑n1

i1=1

∑n2

i2=1 α1,i1 α2,i2 〈v1,i1 | v2,i2〉
)(∑m1

j1=1

∑m2

j2=1 β1,j1 β2,j2 〈w1,j1 | w2,j2〉
)

= 〈~v1 | ~v2〉 〈~w1 | ~w2〉

The other equalities are proved similarly.

Lemma IV.3. For all types A, we have JAK = { A} ∩ ~V.

Proof. The inclusion JAK ⊆ { A} ∩ ~V is clear from the definition of { A}. Conversely, suppose that ~v ∈ { A} ∩ ~V.
From the definition of the set { A}, we know that ~v �� ~v′ for some ~v′ ∈ JAK. But since ~v is a normal form, we deduce that
~v = ~v′ ∈ JAK.

Lemma IV.5. Given any two types A and B:
1) A ≤ B is valid if and only if { A} ⊆ { B}.
2) A ' B is valid if and only if { A} = { B}.

Proof. The direct implications are obvious from the definition of { A}, and the converse implications immediately follow
from Lemma IV.3.

Proposition IV.11. Given a closed λ-abstraction λx .~t, we have λx .~t ∈ J]B →]BK if and only if there are two value
distributions ~v1, ~v2 ∈ J]BK such that

~t [x := tt] �� ~v1, ~t [x := ff] �� ~v2, and 〈~v1 | ~v2〉 = 0 .

Proof. The condition is necessary. Suppose that λx .~t ∈ J]B →]BK. Since tt, ff ∈ J]BK, there are ~v1, ~v2 ∈ J]BK such
that ~t [x := tt] �� ~v1 and ~t [x := ff] �� ~v2. It remains to prove that 〈~v1 | ~v2〉 = 0. For that, consider α, β ∈ C such that
|α|2 + |β|2 = 1. By linearity, we observe that

~t 〈x := α · tt + β · ff〉 = α · ~t [x := tt] + β · ~t [x := ff] �� α · ~v1 + β · ~v2 .

But since α · tt + β · ff ∈ J]BK, we must have α · ~v1 + β · ~v2 ∈ J]BK too, and in particular ‖α · ~v1 + β · ~v2‖ = 1. From this,
we get

1 = ‖α · ~v1 + β · ~v2‖2 = 〈α · ~v1 + β · ~v2 | α · ~v1 + β · ~v2〉
= |α|2〈~v1 | ~v1〉+ ᾱβ 〈~v1 | ~v2〉+ αβ̄ 〈~v2 | ~v1〉+ |β|2〈~v2 | ~v2〉
= |α|2 + |β|2 + ᾱβ 〈~v1 | ~v2〉+ ᾱβ 〈~v1 | ~v2〉 = 1 + 2Re

(
αβ̄ 〈~v1 | ~v2〉

)
and thus Re(ᾱβ 〈~v1 | ~v2〉) = 0. Taking α = β = 1√

2
, we deduce that Re(〈~v1 | ~v2〉) = 0. And taking α = i 1√

2
and β = 1√

2
,

we deduce that Im(〈~v1 | ~v2〉) = 0. Therefore: 〈~v1 | ~v2〉 = 0.

The condition is sufficient. Suppose that there are ~v1, ~v2 ∈ J]BK such that ~t [x := tt] �� ~v1, ~t [x := ff] �� ~v2 and 〈~v1 | ~v2〉 = 0.
In particular, we have ~v1, ~v2 ∈ span({tt, ff}) and ‖~v1‖ = ‖~v2‖ = 1. Now, given any ~v ∈ J]BK, we distinguish three cases:
• Either ~v = α · tt, where |α| = 1. In this case, we observe that

~t 〈x := ~v 〉 = α · ~t [x := tt] �� α · ~v1 ∈ J]BK ,

since α · ~v1 ∈ span({tt, ff}) and ‖α · ~v1‖ = |α| ‖~v1‖ = 1.
• Either ~v = β · ff, where |β| = 1. In this case, we observe that

~t 〈x := ~v 〉 = β · ~t [x := ff] �� β · ~v2 ∈ J]BK ,

since β · ~v2 ∈ span({tt, ff}) and ‖β · ~v2‖ = |β| ‖~v2‖ = 1.
• Either ~v = α · tt + β · ff, where |α|2 + |β|2 = 1. In this case, we observe that

~t 〈x := ~v 〉 = α · ~t [x := tt] + β · ~t [x := ff] �� α · ~v1 + β · ~v2 ∈ J]BK ,

since α · ~v1 + β · ~v2 ∈ span({tt, ff}) and

‖α · ~v1 + β · ~v2‖2 = 〈α · ~v1 + β · ~v2 | α · ~v1 + β · ~v2〉
= |α|2〈~v1 | ~v1〉+ αβ̄ 〈~v1 | ~v2〉+ ᾱβ 〈~v2 | ~v1〉+ |β|2〈~v2 | ~v2〉
= |α|2‖~v1‖2 + 0 + 0 + |β|2‖~v2‖2 = |α|2 + |β|2 = 1 .

We have thus shown that ~t 〈x := ~v〉]B for all ~v ∈ J]BK. Therefore λx .~t ∈ J]B→]BK.

Theorem IV.12 (Characterization of the values of type]B→]B). A closed λ-abstraction λx .~t is a value of type]B→]B
if and only if it represents a unitary operator F : C2 → C2.

Proof. The condition is necessary. Suppose that λx .~t ∈ J]B →]BK. From Prop. IV.11, there are ~v1, ~v2 ∈ J]BK such that
~t [x := tt] �� ~v1, ~t [x := ff] �� ~v2 and 〈~v1 | ~v2〉 = 0. Let F : C2 → C2 be the operator defined by F (1, 0) = πB(~v1) and
F (0, 1) = πB(~v2). From the properties of linearity of the calculus, it is clear that the abstraction λx .~t represents the operator
F : C2 → C2. Moreover, the operator F is unitary since ‖πB(~v1)‖C2 = ‖πB(~v2)‖C2 = 1 and 〈πB(~v1) | πB(~v2)〉C2 = 0.

The condition is sufficient. Let us assume that the abstraction λx .~t represents a unitary operator F : C2 → C2. From this,
we deduce that:
• (λx .~t) tt �� ~v1 for some ~v1 ∈ span({tt, ff}) such that πB(~v1) = F (πB(tt)) = F (1, 0);
• (λx .~t) ff �� ~v2 for some ~v2 ∈ span({tt, ff}) such that πB(~v2) = F (πB(ff)) = F (0, 1).

Using the property of confluence, we deduce that
• ~t [x := tt] �� ~v1 ∈ J]BK, since ‖~v1‖ = ‖F (1, 0)‖C2 = 1;
• ~t [x := ff] �� ~v2 ∈ J]BK, since ‖~v2‖ = ‖F (0, 1)‖C2 = 1.

We deduce that λx .~t ∈ J]B→]BK by Prop. IV.11, since 〈~v1 | ~v2〉 = 〈F (1, 0) | F (0, 1)〉C2 = 0.

Corollary IV.13 (Characterization of the values of type]B⇒]B). A unitary distribution of abstractions
(∑n

i=1 αi·λx .~ti
)
∈ S1

is a value of type]B⇒]B if and only if it represents a unitary operator F : C2 → C2.

Proof. Indeed, given
(∑n

i=1 αi · λx .~ti
)
∈ S1, we have(∑n

i=1 αi · λx .~ti
)
∈ J]B⇒]BK

iff λx .
(∑n

i=1 αi · ~ti
)
∈ J]B→]BK

iff λx .
(∑n

i=1 αi · ~ti
)

represents a unitary operator F : C2 → C2

iff
(∑n

i=1 αi · λx .~ti
)

represents a unitary operator F : C2 → C2

since both functions
∑n
i=1 αi · λx .~ti and λx .

(∑n
i=1 αi · ~ti

)
are extensionally equivalent.

Lemma A.3. For all term distributions ~t, ~t′, ~s, ~s1, ~s2 and for all value distributions ~v and ~w:
1) (λx .~t)~v �� ~t 〈x := ~v〉
2) let (x, y) = (~v, ~w) in ~s �� ~s〈x := ~v〉〈y := ~w〉 (if y /∈ FV(~v))
3) match inl(~v) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} �� ~s1〈x1 := ~v〉
4) match inr(~v) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} �� ~s2〈x2 := ~v〉
5) If ~t �� ~t′, then ~s~t �� ~s~t′
6) If ~t �� ~t′, then ~t~v �� ~t′ ~v
7) If ~t �� ~t′, then ~t;~s �� ~t′;~s
8) If ~t �� ~t′, then let (x1, x2) = ~t in ~s �� let (x1, x2) = ~t′ in ~s

9) If ~t �� ~t′, then match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2} ��
match ~t′ {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}

10) If ~t �� ~t′, then ~t 〈x := ~v 〉 �� ~t′ 〈x := ~v 〉.

Proof. (1) Assume that ~v =
∑n
i=1 αi · vi. Then we observe that

(λx .~t)~v =
∑n
i=1 αi · (λx .~t) vi ��

∑n
i=1 αi · ~t [x := vi] = ~t 〈x := ~v 〉 .

(2) Assume that ~v =
∑n
i=1 αi · vi and ~w =

∑m
j=1 βj · wj . Then we observe that

let (x, y) = (~v, ~w) in ~s = let (x, y) =
(∑n

i=1

∑m
j=1 αjβj · (vi, wj)

)
in ~s

=
∑n
i=1

∑m
j=1 αiβj · let (x, y) = (vi, wj) in ~s

��
∑n
i=1

∑m
j=1 αiβj · ~s[x := vi, y := wj]

=
∑n
i=1

∑m
j=1 αiβj · ~s[x := vi][y := wj] (since y /∈ FV(~v))

= ~s〈x := ~v〉〈y := ~w〉
Items (3) and (4) are proved similarly as item (2). Then, items (5), (6), (7), (8), (9) and (10) are all proved following the
same pattern, first treating the case where ~t � ~t′ (one step), and then deducing the general case by induction on the number
of evaluation steps. Let us prove for instance (5), first assuming that ~t � ~t′ (one step). This means that there exist a scalar
α ∈ R, a pure term t0 and term distributions ~t′0 and ~r such that

~t = α · t0 + ~r, ~t′ = α · ~t′0 + ~r and t0 . ~t
′
0 .

So that for all term distributions ~s =
∑n
i=1 βi · si, we have:

~s~t =
(∑n

i=1 βi · si
)

(α · t0 + ~r) =
∑n
i=1(αβi · si t0 + βi · si ~r)

��
∑n
i=1(αβi · si ~t′0 + βi · si ~r) =

(∑n
i=1 βi · si

)
(α · ~t′0 + ~r) = ~s~t′

observing that si t0 . si ~t
′
0, hence αβi · si t0 + βi · si ~r � αβi · si ~t′0 + βi · si ~r for all i = 1..n. Hence we proved that

~t � ~t′ implies ~s~t �� ~s~t′. By a straightforward induction on the number of evaluation steps, we deduce that ~t �� ~t′ implies
~s~t �� ~s~t′.

Lemma A.4 (Application of realizers). If ~s A⇒ B and ~t A, then ~s~t B

Proof. Since ~t A, we have ~t �� ~v for some vector ~v ∈ JAK. And since ~s A ⇒ B, we have ~s ��
∑n
i=1 αi · λx .~si for

some unitary distribution of abstractions
∑n
i=1 αi · λx .~si ∈ JA⇒ BK. Therefore, we get

~s~t �� ~s~v �� (
∑n
i=1 αi · λx .~si)~v =

∑n
i=1 αi · (λx .~si)~v ��

∑n
i=1 αi · ~si〈x := ~v〉 ∈ JBK

from Lemma A.3 (5), (6), (1) and from the definition of JA⇒ BK.

C. Proofs related to Section V

Lemma A.5. Given a type A, two vectors ~u1, ~u2 ∈ J]AK and a scalar α ∈ C, there exists a vector ~u0 ∈ J]AK and a scalar
λ ∈ C such that ~u1 + α · ~u2 = λ · ~u0.

Proof. Let λ := ‖~u1 +α ·~u2‖. When λ 6= 0, we take ~u0 := 1
λ · (~u1 +α ·~u2) ∈ J]AK, and we are done. Let us now consider the

(subtle) case where λ = 0. In this case, we first observe that α 6= 0, since α = 0 would imply that ‖~u1 +α · ~u2‖ = ‖~u1‖ = 0,
which would be absurd, since ‖~u1‖ = 1. Moreover, since λ = ‖~u1 + α · ~u2‖ = 0, we observe that all the coefficients of the
distribution ~u1 + α · ~u2 are zeros (when written in canonical form), which implies that

~u1 + α · ~u2 = 0 · (~u1 + α · ~u2) = 0 · ~u1 + 0 · ~u2 .

Using the triangular inequality, we also observe that

0 < 2|α| = ‖2α · ~u2‖ ≤ ‖~u1 + α · ~u2‖+ ‖~u1 + (−α) · ~u2‖ = ‖~u1 + (−α) · ~u2‖ ,

hence λ′ := ‖~u1 + (−α) · ~u2‖ 6= 0. Taking u0 := 1
λ′ · (~u1 + (−α) · ~u2) ∈ J]AK, we easily see that

~u1 + α · ~u2 = 0 · ~u1 + 0 · ~u2 = 0 ·
(

1
λ′ · (~u1 + (−α) · ~u2)

)
= λ · ~u0 .

Proposition A.6 (Polarisation identity). For all value distributions ~v and ~w, we have:

〈~v | ~w〉 =
1

4
(‖~v + ~w‖2 − ‖~v + (−1) · ~w‖2

− i‖~v + i · ~w‖2 + i‖~v + (−i) · ~w‖2) .

Lemma A.7. Given a valid typing judgment of the form ∆, x :]A ` ~s : C, a substitution σ ∈ J∆K, and value distributions
~u1, ~u2 ∈ J]AK, there are value distributions ~w1, ~w2 ∈ JCK such that

~s〈σ, x := ~u1〉 �� ~w1, ~s〈σ, x := ~u2〉 �� ~w2 and 〈~w1 | ~w2〉 = 〈~u1 | ~u2〉 .
Proof. From the validity of the judgment ∆, x :]A ` ~s : C, we know that there are ~w1, ~w2 ∈ JCK such that ~s〈σ, x := ~u1〉 ��
~w1 and ~s〈σ, x := ~u2〉 �� ~w2. In particular, we have ‖~w1‖ = ‖~w2‖ = 1. Now applying Lemma A.5 four times, we know that
there are vectors ~u0,1, ~u0,2, ~u0,3, ~u0,4 ∈ J]AK and scalars λ1, λ2, λ3, λ4 ∈ C such that

~u1 + ~u2 = λ1 · ~u0,1 ~u1 + i · ~u2 = λ3 · ~u0,3

~u1 + (−1) · ~u2 = λ2 · ~u0,2 ~u1 + (−i) · ~u2 = λ4 · ~u0,4

From the validity of the judgment ∆, x :]A ` ~s : C, we also know that there are value distributions ~w0,1, ~w0,2, ~w0,3, ~w0,4 ∈ JCK
such that ~s〈σ, x := ~u0,j〉 �� ~w0,j for all j = 1..4. Combining the linearity of evaluation with the uniqueness of normal forms,
we deduce from what precedes that

~w1 + ~w2 = λ1 · ~w0,1 ~w1 + i · ~w2 = λ3 · ~w0,3

~w1 + (−1) · ~w2 = λ2 · ~w0,2 ~w1 + (−i) · ~w2 = λ4 · ~w0,4

Using the polarization identity (Prop. A.6), we conclude that:

〈~w1 | ~w2〉 = 1
4

(
‖~w1 + ~w2‖2 − ‖~w1 + (−1) · ~w2‖2 − i‖~w1 + i · ~w2‖2 + i‖~w1 + (−i) · ~w2‖2

)
= 1

4 (λ2
1‖~w0,1‖2 − λ2

2‖~w0,2‖2 − iλ2
3‖~w0,3‖2 + iλ2

4‖~w0,4‖2) = 1
4 (λ2

1 − λ2
2 − iλ2

3 + iλ2
4)

= 1
4 (λ2

1‖~u0,1‖2 − λ2
2‖~u0,2‖2 − iλ2

3‖~u0,3‖2 + iλ2
4‖~u0,4‖2)

= 1
4

(
‖~u1 + ~u2‖2 − ‖~u1 + (−1) · ~u2‖2 − i‖~u1 + i · ~u2‖2 + i‖~u1 + (−i) · ~u2‖2

)
= 〈~u1 | ~u2〉 .

Lemma A.8. Given a valid typing judgment of the form ∆, x :]A, y :]B ` ~s : C, a substitution σ ∈ J∆K, and value
distributions ~u1, ~u2 ∈ J]AK and ~v1, ~v2 ∈ J]BK such that 〈~u1 | ~u2〉 = 〈~v1 | ~v2〉 = 0, there are value distributions ~w1, ~w2 ∈ JCK
such that

~s〈σ, x := ~uj , y := ~vj〉 �� ~wj (j = 1..2) and 〈~w1 | ~w2〉 = 0 .

Proof. From Lemma A.5, we know that there are ~u0 ∈ J]AK, ~v0 ∈ J]BK and λ, µ ∈ C such that

~u2 + (−1) · ~u1 = λ · ~u0 and ~v2 + (−1) · ~v1 = µ · ~v0 .

For all j, k ∈ {0, 1, 2}, we have σ, x := ~uj , y := ~vk ∈ J∆, x :]A, y :]BK, hence there is ~wj,k ∈ JCK such that ~s〈σ, x :=
~uj , y := ~vk〉 �� ~wj,k. In particular, we can take ~w1 := ~w1,1 and ~w2 := ~w2,2. Now, we observe that

1) ~u1 + λ · ~u0 = ~u1 + ~u2 + (−1) · ~u1 = ~u2 + 0 · ~u1, so that from the linearity of substitution, the linearity of evaluation and
from the uniqueness of normal forms, we get

as well as
~w1,k + λ · ~w0,k = ~w2,k + 0 · ~w1,k

~w2,k + (−λ) · ~w0,k = ~w1,k + 0 · ~w2,k (for all k ∈ {0, 1, 2})

2) ~v1 + µ · ~v0 = ~v1 + ~v2 + (−1) · ~v1 = ~v2 + 0 · ~v1, so that from the linearity of substitution, the linearity of evaluation and
from the uniqueness of normal forms, we get

as well as
~wj,1 + µ · ~wj,0 = ~wj,2 + 0 · ~wj,1

~wj,2 + (−µ) · ~wj,0 = ~wj,1 + 0 · ~wj,2 (for all j ∈ {0, 1, 2})

3) 〈~u1 | ~u2〉 = 0, so that from Lemma A.7 we get 〈~w1,k | ~w2,k〉 = 0 (for all k ∈ {0, 1, 2})
4) 〈~v1 | ~v2〉 = 0, so that from Lemma A.7 we get 〈~wj,1 | ~wj,2〉 = 0 (for all j ∈ {0, 1, 2})

From the above, we get:

〈~w1 | ~w2〉 = 〈~w1,1 | ~w2,2〉 = 〈~w1,1 | ~w2,2 + 0 · ~w1,2〉
= 〈~w1,1 | ~w1,2 + λ · ~w0,2〉 (from (1), k = 2)
= 〈~w1,1 | ~w1,2〉+ λ〈~w1,1 | ~w0,2〉
= 0 + λ〈~w1,1 | ~w0,2〉 (from (4), j = 1)
= λ〈~w1,1 + 0 · ~w2,1 | ~w0,2〉
= λ〈~w2,1 + (−λ) · ~w0,1 | ~w0,2〉 (from (1), k = 1)
= λ〈~w2,1 | ~w0,2〉 − |λ|2〈~w0,1 | ~w0,2〉
= λ〈~w2,1 | ~w0,2〉 − 0 (from (4), j = 0)
= 〈~w2,1 | ~w2,2 + (−1) · ~w1,2〉
= 〈~w2,1 | ~w2,2〉 − 〈~w2,1 | ~w1,2〉
= 0− 〈~w2,1 | ~w1,2〉 (from (4), j = 2)

Hence 〈~w1 | ~w2〉 = 〈~w1,1 | ~w2,2〉 = −〈~w2,1 | ~w1,2〉. Exchanging the indices j and k in the above reasoning, we also get
〈~w1 | ~w2〉 = 〈~w1,1 | ~w2,2〉 = −〈~w1,2 | ~w2,1〉, so that we have 〈~w1 | ~w2〉 = −〈~w2,1 | ~w1,2〉 = −〈~w2,1 | ~w1,2〉 ∈ R. If we now
replace ~u2 ∈ J]AK with i ~u2 ∈ J]AK, the very same technique allows us to prove that i〈~w1 | ~w2〉 = 〈~w1 | i ~w2〉 ∈ R. Therefore
〈~w1 | ~w2〉 = 0.

Lemma A.9. Given a valid typing judgment of the form ∆, x :]A, y :]B ` ~s : C, a substitution σ ∈ J∆K, and value
distributions ~u1, ~u2 ∈ J]AK and ~v1, ~v2 ∈ J]BK, there are value distributions ~w1, ~w2 ∈ JCK such that

~s〈σ, x := ~uj , y := ~vj〉 �� ~wj (j = 1..2) and 〈~w1 | ~w2〉 = 〈~u1 | ~u2〉〈~v1 | ~v2〉 .

Proof. Let α = 〈~u1 | ~u2〉 and β = 〈~v1 | ~v2〉. We observe that

〈~u1 | ~u2 + (−α) · ~u1〉 = 〈~u1 | ~u2〉 − α〈~u1 | ~u1〉 = α− α = 0

and, similarly, that 〈~v1 | ~v2 + (−β) · ~v1〉 = 0. From Lemma A.5, we know that there are ~u0 ∈ J]AK, ~v0 ∈ J]BK and λ, µ ∈ C
such that

~u2 + (−α) · ~u1 = λ · ~u0 and ~v2 + (−β) · ~v1 = µ · ~v0 .

For all j, k ∈ {0, 1, 2}, we have σ, x := ~uj , y := ~vk ∈ J∆, x :]A, y :]BK, hence there is ~wj,k ∈ JCK such that ~s〈σ, x :=
~uj , y := ~vk〉 �� ~wj,k. In particular, we can take ~w1 := ~w1,1 and ~w2 := ~w2,2. Now, we observe that

1) λ ·~u0 +α ·~u1 = ~u2 + (−α) ·~u1 +α ·~u1 = ~u2 + 0 ·~u1, so that from the linearity of substitution, the linearity of evaluation
and from the uniqueness of normal forms, we get

λ · ~w0,k + α · ~w1,k = ~w2,k + 0 · ~w1,k (for all k ∈ {0, 1, 2})

2) µ ·~v0 +β ·~v1 = ~v2 + (−β) ·~v1 +β ·~v1 = ~v2 + 0 ·~v1, so that from the linearity of substitution, the linearity of evaluation
and from the uniqueness of normal forms, we get

µ · ~wj,0 + β · ~wj,1 = ~wj,2 + 0 · ~wj,1 (for all j ∈ {0, 1, 2})

3) 〈~u1 | λ · ~u0〉 = 〈~u1 | ~u2 + (−α) · ~u1〉 = 0, so that from Lemma A.7 we get

〈~w1,k | λ · ~w0,k〉 = 0 (for all k ∈ {0, 1, 2})

(The equality 〈~w1,k | λ · ~w0,k〉 = 0 is trivial when λ = 0, and when λ 6= 0, we deduce from the above that 〈~u1 | ~u0〉 = 0,
from which we get 〈~w1,k | ~w0,k〉 = 0 by Lemma A.7.)

4) 〈~v1 | µ · ~v0〉 = 〈~v1 | ~v2 + (−β) · ~v1〉 = 0, so that from Lemma A.7 we get

〈~wj,1 | µ · ~wj,0〉 = 0 (for all j ∈ {0, 1, 2})

5) 〈~u1 | λ · ~u0〉 = 〈~v1 | µ · ~v0〉 = 0, so that from Lemma A.8 we get

〈~w1,1 | λµ · ~w0,0〉 = 0

(Again, the equality 〈~w1,1 | λµ · ~w0,0〉 = 0 is trivial when λ = 0 or µ = 0, and when λ, µ 6= 0, we deduce from the
above that 〈~u1 | ~u0〉 = 〈~v1 | ~v0〉 = 0, from which we get 〈~w1,1 | ~w0,0〉 = 0 by Lemma A.8.)

From the above, we get

~w2,2 + 0 · ~w1,2 + 0 · ~w0,1 + 0 · ~w1,1

= λ · ~w0,2 + α · ~w1,2 + 0 · ~w0,1 + 0 · ~w1,1 (from (1), k = 1)
= λ · (~w0,2 + 0 · ~w0,1) + α · (~w1,2 + 0 · ~w1,1)
= λ · (µ · ~w0,0 + β · ~w0,1) + α · (µ · ~w1,0 + β · ~w1,1) (from (2), j = 0, 1)
= λµ · ~w0,0 + βλ · ~w0,1 + αµ · ~w1,0 + αβ · ~w1,1

Therefore:
〈~w1 | ~w2〉 = 〈~w1,1 | ~w2,2 + 0 · ~w1,2 + 0 · ~w0,1 + 0 · ~w1,1〉

= 〈~w1,1 | λµ · ~w0,0 + βλ · ~w0,1 + αµ · ~w1,0 + αβ · ~w1,1〉
= 〈~w1,1 | λµ · ~w0,0〉+ β〈~w1,1 | λ · ~w0,1〉+ α〈~w1,1 | µ · ~w1,0〉+ αβ〈~w1,1 | ~w1,1〉
= 0 + 0 + 0 + αβ · 1 = 〈~u1 | ~u2〉 〈~v1 | ~v2〉

from (5), (3) (with k = 1) and (4) (with j = 1), and concluding with the definition of α and β.

Lemma A.10. For all ~t, ~s,~s1, ~s2 ∈ ~Λ(X) and ~v,~v1, ~v2, ~w ∈ ~V(X):
1) inl(~v)〈x := ~w〉 = inl(~v〈x := ~w〉)
2) inr(~v)〈x := ~w〉 = inr(~v〈x := ~w〉)

3) If x /∈ FV(~v1), then (~v1, ~v2)〈x := ~w〉 = (~v1, ~v2〈x := ~w〉)
4) If x /∈ FV(~v2), then (~v1, ~v2)〈x := ~w〉 = (~v1〈x := ~w〉, ~v2)
5) If x /∈ FV(~s), then (~s~t)〈x := ~w〉 = ~s ~t〈x := ~w〉
6) If x /∈ FV(~t), then (~s~t)〈x := ~w 〉 = ~s〈x := ~w〉 ~t
7) If x /∈ FV(~s), then (~t;~s)〈x := ~w〉 = ~t〈x := ~w〉;~s
8) If x /∈ FV(~s), then (let (x1, x2) = ~t in ~s)〈x := ~w〉 = let (x1, x2) = ~t〈x := ~w〉 in ~s
9) If x /∈ FV(~s1, ~s2), then (match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈x := ~w〉 = match ~t〈x := ~w〉 {inl(x1) 7→

~s1 | inr(x2) 7→ ~s2}

Proposition V.3. The typing rules of Table VI are valid.

Proof. (Axiom) It is clear that dom](x : A) ⊆ {x} = dom(x : A). Moreover, given σ ∈ Jx : AK, we have σ = {x := ~v} for
some ~v ∈ JAK. Therefore x〈σ〉 = x〈x := ~v〉 = ~v A.
(Sub) Obvious since { A} ⊆ { A′}.
(App) Suppose that both judgments Γ ` ~s : A⇒ B and ∆ ` ~t : A are valid, that is:
• dom](Γ) ⊆ FV(~s) ⊆ dom(Γ) and ~s 〈σ〉 A⇒ B for all σ ∈ JΓK.
• dom](∆) ⊆ FV(~t) ⊆ dom(∆) and ~t 〈σ〉 A for all σ ∈ J∆K.

From the above, it is clear that dom](Γ,∆) ⊆ FV(~s ~t) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆

for some σΓ ∈ JΓK and σ∆ ∈ J∆K. And since FV(~t) ∩ dom(σΓ) = ∅ and FV(~s) ∩ dom(σ∆) = ∅, we deduce from
Lemma A.10 (5), (6) p. 19 that

(~s ~t)〈σ〉 = (~s ~t)〈σΓ〉〈σ∆〉 = (~s〈σΓ〉 ~t)〈σ∆〉 = ~s〈σΓ〉 ~t〈σ∆〉 .

We conclude that (~s ~t)〈σ〉 = ~s〈σΓ〉 ~t〈σ∆〉 B from Lemma A.4.
(PureLam) Given a context Γ = x1 : A1, . . . , x` : A` such that [Ai ' Ai for all i = 1..`, we suppose that the judgment
Γ, x : A ` ~t : B is valid, that is:
• dom](Γ, x : A) ⊆ FV(~t) ⊆ dom(Γ, x : A) and ~t 〈σ〉 B for all σ ∈ JΓ, x : AK.

From the above, it is clear that dom](Γ) ⊆ FV(λx .~t) ⊆ dom(Γ). Now, given σ ∈ JΓK, we want to prove that (λx .~t)〈σ〉
A → B. Due to our initial assumption on the context Γ, it is clear that σ = {x1 := v1, . . . , x` := v`} for some closed pure
values v1, . . . , v`. Hence

(λx .~t)〈σ〉 = (λx .~t)[x1 := v1] · · · [x` := v`] = λx .~t [x1 := v1] · · · [x` := v`]

(since the variables x1, . . . , x` are all distinct from x). For all ~v ∈ JAK, we observe that

(~t [x1 := v1] · · · [x` := v`])〈x := ~v 〉 = ~t 〈σ, {x := ~v }〉 B ,

since σ, {x := ~v } ∈ JΓ, x : AK. Therefore (λx .~t)〈σ〉 A→ B.
(UnitLam) Suppose that the judgment Γ, x : A ` ~t : B is valid, that is:
• dom](Γ, x : A) ⊆ FV(~t) ⊆ dom(Γ, x : A) and ~t 〈σ〉 B for all σ ∈ JΓ, x : AK.

From the above, it is clear that dom](Γ) ⊆ FV(λx .~t) ⊆ dom(Γ). Now, given σ ∈ JΓK, we want to prove that (λx .~t)〈σ〉
A⇒ B. For that, we write:
• Γ = x1 : A1, . . . , x` : A` (where x1, . . . , x` are all distinct from x);
• σ = {x1 := ~v1, . . . , x` := ~v`} (where ~vi ∈ JAiK for all i = 1..`);
• ~vi =

∑ni

j=1 αi,j · vi,j (in canonical form) for all i = 1..`.
Now we observe that

(λx . t)〈σ〉 =
∑n1

i1=1 · · ·
∑n`

i`=1 α1,i1 · · ·α`,i` · (λx .~t)[x1 := v1,i1] · · · [x` := v`,i`]

=
∑n1

i1=1 · · ·
∑n`

i`=1 α1,i1 · · ·α`,i` · λx .~t [x1 := v1,i1] · · · [x` := v`,i`]

=
∑
i∈I αi · λx .~ti

writing
• I := [1..n1]× · · · × [1..n`] the (finite) set of all multi-indices i = (i1, . . . , i`);
• αi := α1,i1 · · ·α`,i` and ~ti := ~t [x1 := v1,i1] · · · [x` := v`,i`] for each multi-index
i = (i1, . . . , i`) ∈ I .

We now want to prove that
(∑

i∈I αi · λx .~ti
)
∈ S1. For that, we first observe that∑

i∈I |αi|2 =
∑n1

i1=1 · · ·
∑n`

i`=1 |α1,i1 · · ·α`,i` |2 =
(∑n1

i1=1 |α1,i1 |2
)
× · · · ×

(∑n`

i`=1 |α`,i` |2
)

= 1 .

Then we need to check that the λ-abstractions λx .~ti (i ∈ I) are pairwise distinct. For that, consider two multi-indices
i = (i1, . . . , i`) and i′ = (i′1, . . . , i

′
`) such that i 6= i′. This means that ik 6= i′k for some k ∈ [1..`]. From the latter, we deduce

that nk ≥ 2, hence ~vk =
∑nk

j=1 αk,j · vk,j is not a pure value, and thus JAkK 6= [JAkK. Therefore xk ∈ dom](Γ), from which
we deduce that xk ∈ FV(~t) from our initial assumption. Let us now consider the first occurrence of the variable xk in the
(raw) term distribution ~t. At this occurrence, the variable xk is replaced

• by vk,ik in the multiple substitution ~t [x1 := v1,i1] · · · [x` := v`,i`] (= ~ti), and
• by vk,i′k in the multiple substitution ~t [x1 := v1,i′1

] · · · [x` := v`,i′`] (= ~ti′).

And since vk,ik 6= vk,i′k (recall that ~vk =
∑nk

j=1 αk,j · vk,j is in canonical form), we deduce that ~ti 6= ~ti′ . Which concludes the
proof that

(∑
i∈I αi ·λx .~ti

)
∈ S1. Now, given ~v ∈ JAK, it remains to show that

∑
i∈I αi ·~ti〈x := ~v〉 B. For that, it suffices

to observe that:∑
i∈I αi · ~ti〈x := ~v〉 =

(∑
i∈I αi · ~ti

)
〈x := ~v 〉

=
(∑n1

i1=1 · · ·
∑n`

i`=1 α1,i1 · · ·α`,i` · ~t [x1 := v1,i1] · · · [x` := v`,i`]
)
〈x := ~v 〉

=
(
~t〈σ〉)〈x := ~v 〉 = ~t〈σ, {x := ~v }〉 B

since σ, {x := ~v } ∈ JΓ, x : AK. Therefore (λx .~t)〈σ〉 =
∑
i∈I αi · ~ti ∈ JA⇒ BK ⊆ { A⇒ B}.

(Void) Obvious.

(Seq) Suppose that the judgments Γ ` ~t : U and ∆ ` ~s : A are valid, that is:

• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 �� ∗ for all σ ∈ JΓK.
• dom](∆) ⊆ FV(~s) ⊆ dom(∆) and ~s〈σ〉 A for all σ ∈ J∆K.

From the above, it is clear that dom](Γ,∆) ⊆ FV(~t;~s) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆

for some σΓ ∈ JΓK and σ∆ ∈ J∆K. From our initial hypotheses, we get

(~t;~s)〈σ〉 = (~t;~s)〈σΓ〉〈σ∆〉 = (~t〈σΓ〉;~s)〈σ∆〉 �� (∗;~s)〈σ∆〉 �� ~s〈σ∆〉 A

(using Lemma A.10 (7) p. 19 and Lemma A.3 (7), (10) p. 16).

(SeqSharp) Suppose that the judgments Γ ` ~t :]U and ∆ ` ~s :]A are valid, that is:

• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉]U for all σ ∈ JΓK.
• dom](∆) ⊆ FV(~s) ⊆ dom(∆) and ~s〈σ〉]A for all σ ∈ J∆K.

From the above, it is clear that dom](Γ,∆) ⊆ FV(~t;~s) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆

for some σΓ ∈ JΓK and σ∆ ∈ J∆K. From our first hypothesis, we get ~t〈σΓ〉 �� α · ∗ for some α ∈ C such that |α| = 1. And
from the second hypothesis, we have ~s〈σ∆〉]A, and thus α · ~s〈σ∆〉]A (since |α| = 1). Therefore, we get

(~t;~s)〈σ〉 = (~t;~s)〈σΓ〉〈σ∆〉 = (~t〈σΓ〉;~s)〈σ∆〉 �� (α · ∗;~s)〈σ∆〉 = α · (∗;~s)〈σ∆〉 �� α · ~s〈σ∆〉 A

(using Lemma A.10 (7) p. 19 and Lemma A.3 (7), (10) p. 16).

(Pair) Suppose that the judgments Γ ` ~v : A and ∆ ` ~w : B are valid, that is:

• dom](Γ) ⊆ FV(~v) ⊆ dom(Γ) and ~v〈σ〉 A for all σ ∈ JΓK.
• dom](∆) ⊆ FV(~w) ⊆ dom(∆) and ~w〈σ〉 B for all σ ∈ J∆K.

From the above, it is clear that dom](Γ,∆) ⊆ FV((~v, ~w)) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆

for some σΓ ∈ JΓK and σ∆ ∈ J∆K. From our initial hypotheses, we deduce that ~v〈σΓ〉 A and ~w〈σ∆〉 B, which
means that ~v〈σΓ〉 ∈ JAK and ~w〈σ∆〉 ∈ JBK (from Lemma IV.3), since ~v〈σΓ〉 and ~w〈σ∆〉 are value distributions. And since
FV(~v) ∩ dom(σ∆) = ∅ and FV(~w) ∩ dom(σΓ) = ∅, we deduce from Lemma A.10 (3), (4) p. 19 that

(~v, ~w)〈σ〉 = (~v, ~w)〈σΓ〉〈σ∆〉 = (~v〈σΓ〉, ~w)〈σ∆〉 = (~v〈σΓ〉, ~w〈σ∆〉) ∈ JA×BK

from the definition of JA×BK.

(LetPair) Suppose that the judgments Γ ` ~t : A×B and ∆, x : A, y : B ` ~s : C are valid, that is:

• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 A×B for all σ ∈ JΓK.
• dom](∆, x : A, y : B) ⊆ FV(~s) ⊆ dom(∆, x : A, y : B) and
~s〈σ〉 C for all σ ∈ J∆, x : A, y : BK.

From the above, it is clear that dom](Γ,∆) ⊆ FV(let (x, y) = ~t in ~s) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe
that σ = σΓ, σ∆ for some σΓ ∈ JΓK and σ∆ ∈ J∆K. Since σΓ ∈ JΓK, we know from our first hypothesis that ~t〈σΓ〉 A×B,
which means that ~t〈σΓ〉 �� (~v, ~w) for some ~v ∈ JAK and ~w ∈ JBK. So that we get

(let (x, y) = ~t in ~s)〈σ〉 = (let (x, y) = ~t in ~s)〈σΓ〉〈σ∆〉
= (let (x, y) = ~t〈σΓ〉 in ~s)〈σ∆〉 (by Lemma A.10 (8))
�� (let (x, y) = (~v, ~w) in ~s)〈σ∆〉 (by Lemma A.3 (8), (10))
�� (~s〈x := ~v〉〈y := ~w〉)〈σ∆〉 (by Lemma A.3 (2), (10))

= ~s〈σ∆, x := ~v, y := ~w〉 C

using our second hypothesis with the substitution σ∆, {x := ~v, y := ~w} ∈ J∆, x : A, y : BK.

(LetTens) Suppose that the judgments Γ ` ~t : A⊗B and ∆, x :]A, y :]B ` ~s :]C are valid, that is:
• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 A⊗B for all σ ∈ JΓK.
• dom](∆, x :]A, y :]B) ⊆ FV(~s) ⊆ dom(∆, x :]A, y :]B) and
~s〈σ〉]C for all σ ∈ J∆, x :]A, y :]BK

From the above, it is clear that dom](Γ,∆) ⊆ FV(let (x, y) = ~t in ~s) ⊆ dom(Γ,∆). Now, given σ ∈ JΓ,∆K, we observe
that σ = σΓ, σ∆ for some σΓ ∈ JΓK and σ∆ ∈ J∆K. Since σΓ ∈ JΓK, we know from our first hypothesis that ~t〈σΓ〉 A⊗B,
which means that ~t〈σΓ〉 ��

∑n
i=1 αi · (~ui, ~vi) for some α1, . . . , αn ∈ C, ~u1, . . . , ~un ∈ JAK and ~v1, . . . , ~vn ∈ JBK, with∥∥∑n

i=1 αi · (~ui, ~vi)
∥∥ = 1. For each i = 1..n, we also observe that σ∆, x := ~ui, y := ~vi ∈ J∆, x :]A, y :]BK. From our

second hypothesis, we get ~s〈σ∆, x := ~ui, y := ~vi〉]C, hence there is ~wi ∈ J]CK such that ~s〈σ∆, x := ~ui, y := ~vi〉 �� ~wi.
Therefore, we have:

(let (x, y) = ~t in ~s)〈σ〉 = (let (x, y) = ~t in ~s)〈σΓ〉〈σ∆〉
= (let (x, y) = ~t〈σΓ〉 in ~s)〈σ∆〉
��

(
let (x, y) =

∑n
i=1 αi · (~ui, ~vi) in ~s

)
〈σ∆〉

=
∑n
i=1 αi · (let (x, y) = (~ui, ~vi) in ~s)〈σ∆〉

��
∑n
i=1 αi · (~s〈x := ~ui, y := ~vi〉)〈σ∆〉

=
∑n
i=1 αi · ~s〈σ∆, x := ~ui, y := ~vi〉

��
∑n
i=1 αi · ~wi ∈ span(JCK)

To conclude, it remains to show that
∥∥∑n

i=1 αi · ~wi
∥∥ = 1. For that, we observe that:∥∥∑n

i=1 αi · ~wi
∥∥2

=
〈∑n

i=1 αi · ~wi
∣∣ ∑n

j=1 αj · ~wj
〉

=
∑n
i=1

∑n
j=1 ᾱiαj 〈~wi | ~wj〉

=
∑n
i=1

∑n
j=1 ᾱiαj 〈~ui | ~uj〉〈~vi | ~vj〉 (by Lemma A.9)

=
∑n
i=1

∑n
j=1 ᾱiαj 〈(~ui, ~vi) | (~uj , ~vj)〉 (by Prop. A.2)

=
〈∑n

i=1 αi · (~ui, ~vi)
∣∣ ∑n

j=1 αj · (~uj , ~vj)
〉

=
∥∥∑n

i=1 αi · (~ui, ~vi)
∥∥2

= 1 .

(InL) Suppose that the judgment Γ ` ~v : A is valid, that is:
• dom](Γ) ⊆ FV(~v) ⊆ dom(Γ) and ~v〈σ〉 A for all σ ∈ JΓK.

From the above, it is clear that dom](Γ) ⊆ FV(inl(~v)) ⊆ dom(Γ). Now, given σ ∈ JΓK, we know that ~v〈σ〉 A, which
means that ~v〈σ〉 ∈ JAK (by Lemma IV.3), since ~v〈σ〉 is a value distribution. So that by Lemma A.10 (1), we conclude that
inl(~v)〈σ〉 = inl(~v〈σ〉) ∈ JA+BK.

(InR) Analogous to (InL).

(PureMatch) Suppose that the judgments Γ ` ~t : A+B, ∆, x1 : A ` ~s1 : C and ∆, x2 : B ` ~s2 : C are valid, that is:
• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 A+B for all σ ∈ JΓK.
• dom](∆, x1 : A) ⊆ FV(~s1) ⊆ dom(∆, x1 : A) and ~s1〈σ〉 C for all σ ∈ J∆, x1 : AK.
• dom](∆, x2 : B) ⊆ FV(~s2) ⊆ dom(∆, x2 : B) and ~s2〈σ〉 C for all σ ∈ J∆, x2 : BK.

From the above, it is clear that dom](Γ,∆) ⊆ FV(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}) ⊆ dom(Γ,∆). Now, given a
substitution σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆ for some σΓ ∈ JΓK and σ∆ ∈ J∆K. And since FV(~s1, ~s2)∩dom(σΓ) = ∅,
we deduce from Lemma A.10 (9) that

(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ〉
= (match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σΓ〉〈σ∆〉
= (match ~t〈σΓ〉 {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉 .

Moreover, since σΓ ∈ JΓK, we have ~t〈σΓ〉 A+B (from our first hypothesis), so that we distinguish the following two cases:
• Either ~t〈σΓ〉 �� inl(~v) for some ~v ∈ JAK, so that

(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ〉
= (match ~t〈σΓ〉 {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
�� (match inl(~v) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
�� (~s1〈x1 := ~v〉)〈σ∆〉 = ~s1〈σ∆, x1 := ~v〉 C

using our second hypothesis with the substitution σ∆, {x1 := ~v} ∈ J∆, x1 : AK.
• Either ~t〈σΓ〉 �� inr(~w) for some ~w ∈ JBK, so that

(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ〉
= (match ~t〈σΓ〉 {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
�� (match inr(~w) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
�� (~s1〈x2 := ~w〉)〈σ∆〉 = ~s1〈σ∆, x2 := ~w〉 C

using our third hypothesis with the substitution σ∆, {x2 := ~w} ∈ J∆, x2 : BK.

(Weak) Suppose that the judgment Γ ` ~t : B is valid, that is
• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 B for all σ ∈ JΓK.

Given a type A such that [A ' A, it is clear from the above that dom](Γ, x : A) (= dom](Γ)) ⊆ FV(~t) ⊆ dom(Γ, x : A).
Now, given σ ∈ JΓ, x : AK, we observe that σ = σ0, {x := v} for some substitution σ0 ∈ JΓK and for some pure value
v ∈ JAK (= [JAK). Therefore, we get

~t〈σ〉 = ~t〈σ0〉[x := v] = ~t [x := v]〈σ0〉 = ~t〈σ0〉 B (since x /∈ FV(~t) and σ0 ∈ JΓK)

(Contr) Given a type A such that [A ' A, suppose that Γ, x : A, y : A ` ~t : B, that is:
• dom](Γ, x : A, y : A) (= dom](Γ)) ⊆ FV(~t) ⊆ dom(Γ, x : A, y : A)

and ~t〈σ〉 B for all σ ∈ JΓ, x : A, y : AK.
From the above, it is clear that dom](Γ, x : A) (= dom](Γ)) ⊆ FV(~t [y := x]) ⊆ dom(Γ, x : A). Now, given σ ∈ JΓ, x : AK,
we observe that σ = σ0, {x := v} for some substitution σ0 ∈ JΓK and for some pure value v ∈ JAK (= [JAK). Therefore, we
have

(~t[y := x])〈σ〉 = (~t [y := x])〈σ0, {x := v}〉 = ~t [y := x][x := v]〈σ0〉
= ~t [x := v][y := v]〈σ0〉 = ~t〈σ0, {x := v, y := v}〉 B

since σ0, {x := v, y := v} ∈ JΓ, x : A, y : AK.

Fact A.11. For all n 6= 1, one has: n̄ 6 (]B⇒]B)⇒ (]B⇒]B).

Proof. Let F := 3
5 ·
(
λx . 5

6 ·x
)

+ 4
5 ·
(
λx . 5

8 ·x
)
. We observe that

∣∣ 3
5

∣∣2 +
∣∣ 4

5

∣∣2 = 9+16
25 = 1. Moreover, for all ~v ∈ JBK, we have

3
5 ·
(

5
6 · x

)
〈x := ~v〉+ 4

5 ·
(

5
8 · x

)
〈x := ~v〉 = 1

2 · ~v + 1
2 · ~v = ~v]B ,

hence F]B⇒]B. Now, we observe that when n 6= 1, we have

n̄ F tt = 3
5 · n̄

(
λx . 5

6 · x
)
tt + 4

5 · n̄
(
λx . 5

8 · x
)
tt

�� 3
5

(
5
6

)n · tt + 4
5

(
5
8

)n · tt =
(

3
5

(
5
6

)n
+ 4

5

(
5
8

)n) · tt /∈ J]BK ,

since 3
5

(
5
6

)n
+ 4

5

(
5
8

)n
= 7

5 > 1 when n = 0 and 3
5

(
5
6

)n
+ 4

5

(
5
8

)n
< 3

5 ·
5
6 + 4

5 ·
5
8 = 1 when n ≥ 2. Hence n̄ F tt 6]B,

and therefore n̄ 6 (]B⇒]B)⇒ (]B⇒]B).

Proposition V.7. The rule (UnitaryMatch) is valid.

Proof. Suppose that the judgments Γ ` ~t : A1 ⊕A2 and ∆ ` (x1 :]A1 ` ~s1) ⊥ (x2 :]A2 ` ~s2) :]C are valid, that is:
• dom](Γ) ⊆ FV(~t) ⊆ dom(Γ) and ~t〈σ〉 A1 ⊕A2 for all σ ∈ JΓK.
• For i = 1, 2, dom](∆, xi :]Ai) ⊆ FV(~si) ⊆ dom(∆, xi :]Ai) and ~si〈σ, σi〉]C for all σ ∈ J∆K and σi ∈ Jxi :]AiK.
• For i = 1, 2, ~si〈σ, σi〉 �� ~vi with 〈~v1|~v2〉 = 0.

From the above, it is clear the dom](Γ,∆) ⊆ FV(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}) ⊆ dom(Γ,∆). Now, given a
substitution σ ∈ JΓ,∆K, we observe that σ = σΓ, σ∆ for some σΓ ∈ JΓK and σ∆ ∈ J∆K. And since FV (~s1, ~s2)∩dom(σΓ) = ∅,
we deduce from Lemma A.10 (8) that

(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ〉

= (match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σΓ〉〈σ∆〉
= (match ~t〈σΓ〉 {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉 .

Moreover, since σΓ ∈ JΓK, we have ~t〈σΓ〉 A1 ⊕A2 (from our first hypothesis), so that we have ~t〈σΓ〉 �� α · inl(~v1) + β ·
inr(~v2) for some ~v1 ∈ JA1K and ~v2 ∈ JA2K. Therefore

(match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ〉
= (match ~t〈σΓ〉 {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
�� (match α · inl(~v1) + β · inr(~v2) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
= α · (match inl(~v1) {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉

+β · (match inr(~v2) {inl(x2) 7→ ~s1 | inr(x2) 7→ ~s2})〈σ∆〉
= α · ~s1〈x1 := ~v1〉〈σ∆〉+ β · ~s2〈x2 := ~v2〉〈σ∆〉]C

using the last two hypotheses, with the substitution σ∆, 〈xi := ~vi〉 ∈ J∆, xi :]AiK.

D. Proofs related to Section VI

Typing rules of the standard judgements for λQ

∆, x : A `C x : A ∆ `C ∗ : U
∆, x : A `C t : B

∆ `C λx.t : A→ B

∆ `C t : A→ B ∆ `C r : A

∆ `C tr : B

∆ `C t : A ∆ `C r : B

∆ `C (t, r) : A×B
∆ `C t : A×B
∆ `C π1t : A

∆ `C t : A×B
∆ `C π2t : B ∆ `C tt : bit ∆ `C ff : bit

∆ `C t : bit ∆ `C r : A ∆ `C s : A

∆ `C if t {r | s} : A

Lemma VI.2. For all classical types A, [LAM ' LAM.

Proof. We proceed by structural induction on A.
• LUM = U = {∗} ' [{∗} = [U.
• LA→ BM = LAM→ LBM ' [(LAM→ LBM) by rule (FlatPureArrow).
• LA×BM = LAM× LBM ' [LAM× [LBM ' [(LAM× LBM), using the induction hypothesis and rules (ProdMono) and (FlatProd).
• LbitM = B = U + U = [U + [U = [(U + U) = [LbitM using rules (SumMono) and (FlatSum).
• LAQ(BQM = U→ (LAQM⇒ LBQM) ' [(U→ (LAQM⇒ LBQM)) by rule (FlatPureArrow).

Lemma VI.3. For all qbit types AQ,]LAQM ' LAQM.

Proof. First notice that for any A from the unitary linear algebraic lambda-calculs, we have]A ']]A. Indeed, by rule
(SharpIntro)]A ≤]]A, and by rules (SubRefl) and (SharpLift),]]A ≤]A. Now we proceed by structural induction on AQ.
• LqbitM =]B ']]B =]LqbitM.
• LAQ ⊗BQM =](LAQM⊗ LBQM) ']](LAQM⊗ LBQM) =]LAQ ⊗BQM.

Theorem VI.5. Translation preserves typeability:
1) If Γ `Q t : AQ then LΓM ` LtM : LAQM.
2) If ∆|Γ `C t : A then L∆M, LΓM ` LtM : LAM.
3) If [Q,L, t] : A then ` L[Q,L, t]M : LAM.

Proof. Since `Q depends on `C , we prove items (1) and (2) at the same time by induction on the typing derivation.
• ∆, x : A `C x : A

By Lemma VI.2, [L∆M ' L∆M, hence, by rules (Axiom) and (Weak), we have L∆M, x : LAM ` x : LAM.

• ∆ `C ∗ : U
By Lemma VI.2, [L∆M ' L∆M, hence, by rules (Void) and (Weak) we conclude L∆M ` ∗ : U.

•
∆, x : A `C t : B

∆ `C λx.t : A→ B
By the induction hypothesis, L∆M, x : LAM ` LtM : LBM and by Lemma VI.2, [L∆M ' L∆M, hence, by rule (PureLam), L∆M `
λx.LtM : LAM→ LBM.

•
∆ `C t : A→ B ∆ `C r : A

∆ `C tr : B

By the induction hypothesis, L∆M ` LtM : LAM→ LBM and L∆M ` LrM : LAM. Hence, by rules (SubArrows) and (Sub), we have
L∆M ` LtM : LAM ⇒ LBM, and also, we have L∆M[σ] ` LrM[σ] : LAM, where σ is a substitution of every variable in ∆ by
fresh variables. Then, by rule (App) we can derive, L∆M, L∆M[σ] ` LtMLrM[σ] : LBM. By Lemma VI.2, we have [L∆M ' L∆M,
hence, by rule (Contr), we get L∆M ` LtMLrM : LBM.

•
∆ `C t : A ∆ `C r : B

∆,∆ `C (t, r) : A×B
By the induction hypothesis, L∆M ` LtM : LAM and L∆M ` LrM : LBM. Hence, by rule (Pair), L∆M, L∆M ` (LtM, LrM) : LAM×LBM.

•
∆ `C t : A1 ×A2

∆ `C πit : Ai
By the induction hypothesis, L∆M ` LtM : LA1M×LA2M. By Lemma VI.2, LAiM ' [LAiM for i = 1, 2, hence, by rules (Axiom)
and (Weak), we have x1 : LA1M, x2 : LA2M ` xi : LAiM. Therefore, by rule (LetPair), we can derive L∆M ` let (x1, x2) =
LtM in xi : LAiM.

• ∆ `C tt : bit
By Lemma VI.2, [L∆M ' L∆M, so, by rules (Void), (InL), and (Weak), we can derive L∆M ` tt : B.

• ∆ `C ff : bit
By Lemma VI.2, [L∆M ' L∆M, so, by rules (Void), (InR), and (Weak), we can derive L∆M ` ff : B.

•
∆ `C t : bit ∆ `C r1 : A ∆ `C r2 : A

∆ `C if t {r1 | r2} : A
By the induction hypothesis, L∆M ` LtM : B = U + U and for i = 1, 2, L∆M ` LriM : LAM. By rules (Axiom) and (Seq), we
can derive L∆M, xi : U ` xi; LriM : LAM we also have L∆M[σ] ` LtM[σ] : U + U, where σ is a substitution of every variable
in ∆ by fresh variables. Then, by rule (PureMatch), L∆M, L∆M[σ] ` match LtM[σ] {inl(x1) 7→ x1; LrM | inr(x2) 7→
x2; LsM} : LAM. By Lemma VI.2, we have [L∆M ' L∆M, hence, by rule (Cont), we conclude L∆M ` match LtM {inl(x1) 7→
x1; LrM | inr(x2) 7→ x2; LsM} : LAM

• ∆|x : AQ ` x : AQ
By Lemma VI.2, [L∆M ' L∆M, hence, by rules (Axiom) and (Weak), we have L∆M, x : LAM ` x : LAM.

•
∆|Γ1 `Q s : AQ ∆|Γ2 `Q t : BQ

∆|Γ1,Γ2 `Q s⊗ t : AQ ⊗BQ
By the induction hypothesis, L∆M, LΓ1M ` LsM : LAQM and L∆M, LΓ2M ` t : LBQM. Then, we can derive L∆M[σ], LΓ1M `
LsM[σ] : LAQM, where σ is a substitution on every variable in ∆ by fresh variables. Hence, by rule (Pair), we can derive
L∆M[σ], LΓ1M, L∆M, LΓ2M ` (LsM[σ], LtM) : LAQM × LBQM. By Lemma VI.2, [L∆M ' L∆M, hence, by rule (Contr), we have
L∆M, LΓ1M, LΓ2M ` (LsM, LtM) : LAQM× LBQM. Finally, by rules (SharpIntro) and (Sub), we have L∆M, LΓ1M, LΓ2M ` (LsM, LtM) :
LAQM⊗ LBQM.

•
∆|Γ `Q t : qbit

∆|Γ `Q U(t) : qbit
By the induction hypothesis, L∆M, LΓM ` LtM :]B. By Proposition IV.11, ` Ū :]B→]B, hence, by rules (SubArrows) and
(Sub), we have ` Ū :]B⇒]B. Therefore, by rule (App), we can derive L∆M, LΓM ` ŪLtM :]B.

•
∆|Γ1 `Q s : AQ ⊗BQ ∆|Γ2, x : AQ, y : BQ `Q t : CQ

∆|Γ1,Γ2 `Q let x⊗ y = s in t : CQ
By the induction hypothesis, L∆M, LΓ1M ` LsM : LAQM ⊗ LBQM and L∆M, LΓ2M, x : LAQM, y : LBQM ` LtM : LCQM. Then, we
also have L∆M[σ], LΓ1M ` LsM[σ] : LAQM⊗ LBQM, where σ is a substitution on every variable in ∆ by fresh variables. By
Lemma VI.3, LAQM ']LAQM, LBQM ']LBQM, and LCQM ']LCQM. Hence, L∆M, LΓ2M, x :]LAQM, y :]LBQM ` LtM :]LCQM.
Therefore, by rule (LetTens), L∆M[σ], LΓ1M, L∆M, LΓ2M ` let (x, y) = LsM[σ] in LtM :]LCQM. By Lemma VI.2, [L∆M ' L∆M,
hence, by rule (Contr), we get L∆M, LΓ1M, LΓ2M ` let (x, y) = LsM in LtM :]LCQM. Finally, using the fact that]LCQM ' LCQM,
we get L∆M, LΓ1M, LΓ2M ` let (x, y) = LsM in LtM : LCQM.
Notice that we have used the following unproved rule: If Γ, x : A ` t : B and A ' C, then Γ, x : C ` t : B. Hence, we
prove that this rule is true. Assume Γ, x : A ` t : B, then, t〈σ〉 JBK for every σ ∈ JΓ, x : AK = JΓ, x : CK, and so
Γ, x : C ` t : B.

•
∆ `C t : bit

∆|∅ `Q new(t) : qbit

By the induction hypothesis, L∆M ` LtM : B. We conclude by rules (SharpIntro) and (Sub) that L∆M ` LtM :]B.

•
∆|x : AQ `Q t : BQ

∆ `C λQx.t : AQ(BQ
By the induction hypothesis L∆M, x : LAQM ` LtM : LBQM. Since U ' [U, by rule (Weak), we have L∆M, z : U, x : LAQM `
LtM : LBQM Then, by rules (UnitLam) and (PureLam), we can derive L∆M ` λzx.LtM : U→ (LAQM⇒ LBQM).

•
∆ `C s : AQ(BQ ∆|Γ `Q t : AQ

∆|Γ `Q s@t : BQ
By the induction hypothesis, L∆M ` LsM : U → (LAQM ⇒ LBQM) and L∆M, LΓM ` LtM : LAQM. Then, L∆M[σ], LΓM `
LtM[σ] : LAQM, where σ is a substitution on every variable in ∆ by fresh variables. By rules (SubArrows) and (Sub),
we have L∆M ` LsM : U ⇒ (LAQM ⇒ LBQM). In addition, by rule (Void), ` ∗ : U. Hence, by rule (App) twice, we get
L∆M, LΓM, L∆M[σ] ` (LsM∗)LtM[σ] : LBQM. By Lemma VI.2, [L∆M ' L∆M, hence, by rule (Contr), L∆M, LΓM ` (LsM∗)LtM : LBQM.

Now we prove item (3).
Let

[

m∑
i=1

αi · |yi1, . . . , yin〉, {x1 := p(1), . . . , xn := p(n)}, t] : AQ

that means ∅|FV(t) : qbit `Q t : AQ. We must show that

` L[
m∑
i=1

αi · |yi1, . . . , yin〉, {x1 := p(1), . . . , xn := p(n)}, t]M : LAM

that is

`
m∑
i=1

αi · LtM[x1 := ȳip(1), . . . , xn := ȳip(n)] : LAQM (1)

From item (1) we have FV(t) :]B ` LtM : LAQM. Then, by definition, we have LtM〈σ〉 LAQM for every σ ∈ JFV (t) :]BK. In
particular, [σi] = [x1 := ȳip(1), . . . , xn := ȳip(n)] ∈ JFV (t) :]BK, so LtM〈σi〉 = LtM[σi] LAQM. By Lemma VI.3, LAQM ']LAQM,
and so, we have

∑m
i=1 αi · LtM[σi] LAQM, which is, by definition, the same as (1)

Lemma A.12. For any terms t and r, Lt[x := r]M = LtM[x := LrM].

Proof. By a straightforward structural induction on t.

Lemma A.13. For all value distributions ~v and ~v, for all term distributions ~t, ~s, ~s1, ~s2 and for all pure values w, we have
the equalities:
• (~v,~v′)[x := w] = (~v[x := w], ~v′[x := w])
• inl(~v)[x := w] = inl(~v[x := w])
• inr(~v)[x := w] = Inr~v[x := w]
• (~s~t)[x := w] = ~s[x := w]~t[x := w]
• (~t;~s)[x := w] = ~t[x := w];~s[x := w]
• (let (x1, x2) = ~t in ~s)[x := w] = let (x1, x2) = ~t[x := w] in ~s[x := w] (if x1, x2 /∈ FV(w) ∪ {x})
• (match ~t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2})[x := w] = match ~t[x := w] {inl(x1) 7→ ~s1[x := w] | inr(x2) 7→
~s2[x := w]}

Proof. Let us treat the case of the pair destructing let-construct. Given term distributions ~t =
∑n
i=1 αi · ti and ~s, and a pure

value w such that x1, x2 /∈ FV(w) ∪ {x}, we observe that

(let (x1, x2) = ~t in ~s)[x := w]
=

(∑n
i=1 αi · let (x1, x2) = ti in ~s

)
[x := w] (def. of extended let)

=
∑n
i=1 αi · (let (x1, x2) = ti in ~s)[x := w] (linearity of pure substitution)

=
∑n
i=1 αi · let (x1, x2) = ti[x := w] in ~s[x := w] (pure substitution in a let-construct)

= let (x1, x2) = (
∑n
i=1 αi · ~ti[x := w]) in ~s[x := w] (def. of extended let)

= let (x1, x2) = ~t[x := w] in ~s[x := w] (linearity of pure substitution)

The other cases are treated similarly.

Remark A.14 (Parallel substitution). The operation of parallel substitution [x1 := w1, . . . , xn := wn] (where x1, . . . , xn are
pairwise distinct variables) can be easily implemented as a sequence of pure substitutions, by temporarily replacing the xi’s
with fresh names in order to avoid undesirable captures between successive pure substitutions. For instance, we can let

~t[x1 := w1, . . . , xn := wn] :=

~t[x1 := z1] · · · [xn := zn][z1 := w1] · · · [zn := wn]

where z1, . . . , zn are fresh names w.r.t. ~t, x1, . . . , xn, w1, . . . , wn. Note that this precaution is useless when the substituands
w1, . . . , wn are closed, since in this case, parallel substitution amounts to the following sequential substitution (whose order
is irrelevant):

~t[x1 := w1, . . . , xn := wn] = ~t[x1 := w1] · · · [xn := wn] .

Lemma A.15. For all term distributions ~t and for all closed value distributions ~v and ~w:

~t 〈x := ~v 〉〈y := ~w 〉 = ~t 〈y := ~w 〉〈x := ~v 〉 (provided x 6= y)

Theorem VI.6 (Adequacy). If [Q,L, t]→ [Q′, L′, r], then L[Q,L, t]M �� L[Q′, L′, r]M.

Proof. We proceed by induction on the rewrite relation of λQ. We only give the cases where C(·) = {·}, as other cases are
simple calls to the induction hypothesis. In all the cases, we consider Q =

∑m
i=1 αi|ui1, . . . , yin〉, L = {x1 := p(1), . . . , xn :=

p(n)}, and [σi] = [x1 := ȳip(1), . . . , xn := ȳip(n)].
• [Q,L, (λx.t)u]→ [Q,L, t[x := u]].

L[Q,L, (λx.t)u]M =
∑m
i=1 αi · ((λx.LtM)LuM)[σi]

=
∑m
i=1 αi · ((λx.LtM[σi])LuM[σi]) (Lemma A.13)

��
∑m
i=1 αi · LtM[σi][x := LuM[σi]]

=
∑m
i=1 αi · LtM[x := LuM][σi] (Lemma A.15)

=
∑m
i=1 αi · Lt[x := u]M[σi] (Lemma A.12)

= L[Q,L, t[x := u]]M

• [Q,L, (λQx.t)@u]→ [Q,L, t[x := u]].

L[Q,L, (λQx.t)@u]M =
∑m
i=1 αi · (((λzx.LtM)∗)LuM)[σi]

=
∑m
i=1 αi · (((λzx.LtM[σi])∗)LuM[σi]) (Lemma A.13)

��
∑m
i=1 αi · ((λx.LtM[σi])LuM[σi])

��
∑m
i=1 αi · LtM[σi][x := LuM[σi]]

=
∑m
i=1 αi · LtM[x := LuM][σi] (Lemma A.15)

=
∑m
i=1 αi · Lt[x := u]M[σi] (Lemma A.12)

= L[Q,L, t[x := u]]M

• [Q,L, π1(u, v)]→ [Q,L, u].

L[Q,L, π1(u, v)]M =
∑m
i=1 αi · (let (x, y) = (LuM, LvM) in x)[σi]

=
∑m
i=1 αi · (let (x, y) = (LuM[σi], LvM[σi]) in x) (Lemma A.13)

��
∑m
i=1 αi · LuM[σi]

= L[Q,L, u]M

• [Q,L, πs(u, v)]→ [Q,L, v].

L[Q,L, π2(u, v)]M =
∑m
i=1 αi · (let (x, y) = (LuM, LvM) in y)[σi]

=
∑m
i=1 αi · (let (x, y) = (LuM[σi], LvM[σi]) in y) (Lemma A.13)

��
∑m
i=1 αi · LvM[σi]

= L[Q,L, v]M

• [Q,L, if tt {t | r}]→ [Q,L, t]

L[Q,L, if tt {t | r}]M
=
∑m
i=1 αi · (match inl(∗) {inl(z1) 7→ z1; LtM | inr(z2) 7→ z2; LrM})[σi]

=
∑m
i=1 αi · match inl(∗) {inl(z1) 7→ z1; LtM[σi] | inr(z2) 7→ z2; LrM[σi]} (Lemma A.13)

��
∑m
i=1 αi · ∗; LtM[σi]

��
∑m
i=1 αi · LtM[σi]

= L[Q,L, t]M

• [Q,L, if ff {t | r}]→ [Q,L, r]

L[Q,L, if ff {t | r}]M
=
∑m
i=1 αi · (match inr(∗) {inl(z1) 7→ z1; LtM | inr(z2) 7→ z2; LrM})[σi]

=
∑m
i=1 αi · match inr(∗) {inl(z1) 7→ z1; LtM[σi] | inr(z2) 7→ z2; LrM[σi]} (Lemma A.13)

��
∑m
i=1 αi · ∗; LrM[σi]

��
∑m
i=1 αi · LrM[σi]

= L[Q,L, r]M

• [Q,L, let x⊗ y = t⊗ r in s]→ [Q,L, s[x := t, y := r]].

L[Q,L, let x⊗ y = t⊗ r in s]M
=
∑m
i=1 αi · (let (x, y) = (LtM, LrM) in LsM)[σi]

=
∑m
i=1 αi · (let (x, y) = (LtM[σi], LrM[σi]) in LsM[σi]) (Lemma A.13)

��
∑m
i=1 αi · LsM[σi][x := LtM[σi]][y := LrM[σi]]

=
∑m
i=1 αi · (LsM[x := LtM][y := LrM])[σi] (Lemma A.15)

=
∑m
i=1 αi · (Ls[x := t, y := r]M)[σi] (Lemmas A.12 and Remark A.14)

= L[Q,L, s[x := t, y := r]]M

• [∅, ∅, new(tt)]→ [|1〉, {x 7→ 1}, x]

L[∅, ∅, new(tt)]M = Lnew(tt))M = tt = x[x := tt] = L[|1〉, {x 7→ 1}, x]M

• [∅, ∅, new(ff)]→ [|0〉, {x 7→ 1}, x]

L[∅, ∅, new(ff)]M = Lnew(ff)M = ff = x[x := ff] = L[|0〉, {x 7→ 1}, x]M

• [|ψ〉, {x 7→ 1}, U(x)]→ [U |ψ〉, {x 7→ 1}, x].
Let U |0〉 = γ0|0〉+ δ0|1〉 and U |1〉 = γ1|0〉+ δ1|1〉. Then,

L[α|0〉+ β|1〉, {x 7→ 1}, U(x)]M = α · LU(x)M[x := tt] + β · LU(x)M[x := ff]

= α · Ūtt + β · Ūff
�� α · (γ0 · tt + δ0 · ff) + β · (γ1 · tt + δ1 · ff)

= (αγ0 + βγ1) · tt + (αδ0 + βδ1) · ff
= (αγ0 + βγ1) · x[x := tt] + (αδ0 + βδ1) · x[x := ff]

= L[(αγ0 + βγ1)|0〉+ (αδ0 + βδ1)|1〉, {x 7→ 1}, x]M

