Lower bound for the Néron-Tate height Éric Gaudron (joint work with Vincent Bosser)

We propose a totally explicit lower bound for the Néron-Tate height of algebraic points of infinite order of abelian Let k be a number field of degree D = [k : Q]. Let A be an abelian variety defined over a fixed subfield of k, of dimension g. Let L be a polarization of A. We denote by b h L the Néron-Tate height on A(k) relative to L. It is well-known that, for p 2 A(k), we have b h L (p) = 0 if and only if p is a torsion point, i.e. np = 0 for some positive integer n. The general problem of bounding from below b h L (p) when p 2 A(k) is not a torsion point has been often tackled in the literature, overall from the point of view of the dependence on D (Lehmer's problem) or on the Faltings height h F (A) of A (Lang-Silverman conjecture). Moreover most of results concern elliptic curves or abelian varieties with complex multiplication. Let us cite two emblematic results due to David Masser, valid in great generality (A tors is the set of torsion points) [START_REF] Masser | Small values of heights on families of abelian varieties[END_REF][START_REF] Masser | Letter to Daniel Bertrand[END_REF].

Theorem (Masser, 1985-86) In the above setting, there exist positive constants c(A, ") and c(k, g), depending only on A, " and on k, g respectively, such that, for all " > 0 and all

p 2 A(k) \ A tors , one has b h L (p) 1  c(A, ")D 2g+1+" and b h L (p) 1  c(k, g) max (1, h F (A)) 2g+1 .
Unfortunately, there is no bound which takes into account both degree and Faltings height (at this level of generality). Up to now, there is only one published bound for b h L (p) 1 which is totally explicit in all parameters. It is due to Bruno Winckler (PhD thesis, 2015, [START_REF] Winckler | Intersection arithmétique et problème de Lehmer elliptique[END_REF]) valid for a CM elliptic curve A. His bound looks like Dobrowolski-Laurent's one: c(A)D(max (1, log D)/ max (1, log log D)) 3 with a constant c(A) quite complicated (but explicit). We propose here the following much simpler bound. 

h L (p) 1  max (D + g g , h F (A)) 10 5 g
. Note that the bound does not depend on the polarization L. The proof of this theorem involves two ingredients, namely a generalized period theorem and Minkowski's convex body theorem.

Let us explain the first one. Let : k ,! C be a complex embedding. By extending the scalars we get a complex abelian variety A = A ⇥ Spec C isomorphic to the torus t A /⌦ A composed with the tangent space at the origin t A and with the period lattice ⌦ A of A . From the Riemann form associated to L , we get an hermitian norm k • k L, on t A (see for instance [1, § 2.4]). For ! 2 ⌦ A , let A ! be the smallest abelian subvariety of A such that ! 2 t A! . Actually A ! is an abelian variety defined over a number field K/k of relative degree  2(9g) 2g

(Silverberg [START_REF] Silverberg | Fields of definition for homomorphisms of abelian varieties[END_REF]). A period theorem consists of bounding from above the geometrical degree deg L A ! in terms of g, D, k!k L, and h F (A). Such a theorem is useful to bound the minimal isogeny degree between two isogeneous abelian varieties ( [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF][START_REF] Gaudron | Polarisations et isogénies[END_REF][START_REF] Masser | Periods and minimal abelian subvarieties[END_REF][START_REF] Masser | Factorization estimates for abelian varieties[END_REF]). A generalized period theorem consists of replacing ! by a logarithm u 2 t A of a k-rational point p 2 A(k) (we have (p) = exp A (u)). In this setting we have the following bound (written in a very simplified form).

Theorem 2. If u 6 = 0 then (deg L A u ) 1/(2 dim Au)  ⇣ D b h L (p) + kuk 2 L, ⌘ max (D + g g , h F (A))
50 . The proof of Theorem 2 extends that of the period theorem [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF] using Gel'fond-Baker's method with Philippon-Waldschmidt's approach and some adelic geometry. Since it is long enough, we shall only explain in the rest of the exposition how to deduce Theorem 1 from Theorem 2. The very classical argument is to use the pigeonhole principle. Here we replace it by the more convenient Minkowski's first theorem. Let E be the R-vector space R ⇥ t A endowed with the Euclidean norm

k(a, x)k 2 := a 2 D b h L (p) + ka.u + xk 2 L, . In (E, k • k) stands the lattice Z ⇥ ⌦ A whose determinant is D b h L (p)h 0 (A, L) 2 . So, by Minkowski, there exists (`, !) 2 Z ⇥ ⌦ A \ {0} such that (?) D b h L (`p) + k`u + !k 2 L,  2g+1 ⇣ D b h L (p)h 0 (A, L) 2 ⌘ 1/(2g+1)
where 2g+1  g + 1 is the Hermite constant. Since p is assumed to be nontorsion, the logarithm `u + ! of (`p) is not 0 and Theorem 2 gives a lower bound for the left-hand side of inequality (?), involving a lower bound for b h L (p). Nevertheless, at this stage, the dimension h 0 (A, L) of the global sections space of the polarization is still in the bound. To remove it, we use Zarhin's trick by replacing A with (A ⇥ b A) 4 (here b A is the dual abelian variety), endowed with a principal polarization compatible to L. Then the Néron-Tate height of p remains unchanged whereas Faltings height and dimension of A are multiplied by 8, ruining the numerical constant but also making h 0 (A, L) disappear.

Theorem 1 .

 1 Let (A, L) be a polarized abelian variety over k and p 2 A(k) \ A tors . Then we have b