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Abstract—Versatile Video Coding (VVC) is the next generation
video coding standard expected by the end of 2020. VVC
introduces several new coding tools that enable better coding
performance compared to the High Efficiency Video Coding
(HEVC) standard. The Multiple Transform Selection (MTS)
concept, as introduced in VVC, relies on three trigonometrical
transforms, and at the encoder side, selects the couple of
horizontal and vertical transforms that maximises the Rate-
Distortion cost. However, the new Discrete Sine Transform (DST)-
VII and Discrete Cosine Transform (DCT)-VIII do not have fast
computing algorithms and rely on matrix multiplication, which
requires high hardware resources especially for large block sizes.

This paper tackles the hardware implementation of an ap-
proximation of MTS module. This approximation consists in
applying adjustment stages, based on sparse block-band ma-
trices, to a variants of DCT-II family mainly DCT-II and its
inverse. Therefore, an efficient 2D hardware implementation
of the forward and inverse approximate transform module is
proposed. The architecture design includes a pipelined and
reconfigurable forward-inverse DCT-II core transform. A unified
2D implementation of 16 and 32-point forward-inverse DCT-
II, approximate DST-VII and DCT-VIII is also presented. The
synthesis results show that the design is able to sustain 2K and
4K videos at 377 and 94 frames per second, respectively, while
using only 18% of Alms, 40% of registers and 34% of Digital
Signal Processing (DSP) blocks of the Arria10 SoC platform.

Index Terms—Versatile Video Coding, Hardware implementa-
tion, Approximation, DCT-II, DST-VII and DCT-VIII.

I. INTRODUCTION

The future video coding standard named VVC is expected
by the end of 2020 [1]. The latest draft version provides
around 30% coding gain with respect to HEVC [2]. This
coding gain is achieved at the expanse of higher computational
complexity [3], [4]. The MTS process is one of the key coding
tools that have been introduced in the VVC standard [5].
The MTS consists in testing, at the encoder side, different
transform types and select the one that provides the best
rate distortion performance [6], [7]. In the early stage of
VVC standardization, this concept included five DCT/DST
transform types [5]: DST-I, DCT-II, DCT-V, DST-VII and
DCT-VIII. Statistical analysis showed that DCT-II, DST-VII
and DCT-VIII are the most used in transform process and
brought more than 90% of the coding gain [8]. Therefore,

regarding complexity and coding efficiency, DCT-V and DST-
I are no longer considered in VVC.

Hardware implementations are meant to reduce the compu-
tational complexity and provide some acceleration to process
such modules. However, supporting multiple transforms has
several consequences related to memory and logic resources
allocation. Therefore, providing high performance design un-
der the hardware constraints of the target device would be a
crucial issue. The evolution of the Field-Programmable Gate
Array (FPGA) chips [9]–[11], equipped with soft and hard
improvements, have encouraged researchers to adopt the im-
plementation of this new transform approach in the objective
to provide efficient implementations. Works in [12]–[15] have
investigated the implementation of the MTS including the five
transform types. They propose different hardware architectures
with several limitations. Mert et al. [12] propose a 2D im-
plementation including all transform types for 4×4 and 8×8
sizes supporting 2D process using adders and shifts instead
of multiplication operations. Although this work presents 2D
hardware implementation of all transform types, it only sup-
ports 4×4 and 8×8 block sizes. However, the transform at larger
block sizes (16×16 and 32×32) are more complex and would
require higher resources. In [13], Garrido et al. have proposed
a pipelined 1D hardware implementation for all block sizes
from 4×4 to 32×32. Although the work supports all block sizes,
it only deals with 1D design. The transform process consists
in 2D operations which could normally be more complex.
Moreover, this design does not consider asymmetric block size
combinations. In [14], Kammoun et al. present a multiplierless
implementation of MTS transform module restricted only to
4×4 block size. Later, their work in [15] proposes a unified and
2D hardware implementation using the Intellectual Property
(IP) Cores multipliers [16] with the DSPs of the Arria 10
FPGA device. This design supports all block sizes and 2D
process with good speedup performance, while it requires high
logic utilization compared to solutions proposed in [12], [13].

Several new contributions have been propped by the Joint
Video Experts Team (JVET) to overcome the complex-
ity/resources allocations issues of these new transforms [17]–
[20]. These solutions are based mainly on approximations
aiming to reduce the computational complexity and required



logic resources. Works in [17], [18] and [19], [20] propose
an approximations of transforms involved in the MTS. The
idea consists in using the DCT-II transform to approximate the
other considered transform types (DST-VII and DCT-VIII). In
fact, both contributions present the same principle except that
the proposal in [20] offers less complexity with practically the
same coding performance according to Bjøntegaard Delta Rate
(BD-BR) metric. The DCT-II is selected as the core transform
since it offers symmetry and recursion properties with practical
decomposition in butterfly structures [21]–[23], and has been
well studied and optimized for previous hybrid video coding
standards.

This work will focus on DCT-II, DST-VII and DCT-VIII
forward and inverse implementation through the approxima-
tion approach. The approximation is based on the adjustment
stage applied on DCT-II and IDCT transforms. The contribu-
tions of this paper are summarized in two points: 1) Propose
an efficient unified and pipelined architecture of both DCT-
II and Inverse DCT-II core transform supporting 4, 8, 16
and 32 block sizes with low computational complexity and
logic resource allocation. 2) Propose a 2D implementation
of Approximate forward and inverse DST-VII and DCT-
VIII design through adjustments stages. The proposed unified
architecture enables a high performance efficiency in terms of
processed frame per second while using a moderate hardware
and logic resources of the FPGA target device.

The rest of the paper is organized as follows. Section II
presents the principle of the VVC transform approximation.
Section III details the proposed hardware implementation of
the 2D approximate transform design. The experimental and
synthesis results of 1D and 2D implementations are presented
and discussed in Section IV. Finally, Section V concludes this
paper.

II. MULTIPLE STAGE APPROXIMATION APPROACH

In order to reduce the computational complexity and the
resource allocation of the transform block, the approximation
approach originally proposed in [17] presents an efficient
alternative that approximates several DCT/DST types. It con-
sists in applying adjustment stages of low complexity to
DCT-II family transforms with practically no loss in coding
performance. The relations between these DCT-II variants
transforms can be expressed as follow:

C3 = CT
2 , S2 = Λ · C2 · Γ, S3 = Γ · CT

2 · Λ (1)

where C2 is the matrix of DCTII coefficients and matrices Λ
and Γ are defined as follows:

Λi,j =

{
1, if j = N − 1 − i
0, otherwise ,Γi,j =

{
(−1)i, if j = i

0, otherwise
(2)

In fact, matrices Λ and Γ can be interpreted by vector reflection
and sign changes, respectively, which are computationally
trivial. Using the transforms of (1), different types of DCTs
and DSTs can be approximated by applying adjustment stages
(pre-processing and post-processing) to the DCT-II family

transforms. The approximation of the DST-VII is computed
as follows:

Ŝ7 = Γ · CT
2 · Λ ·A (3)

where Λ and Γ are defined in (2) and A is the adjustment ma-
trix. The objective is to find the appropriate A that minimizes
the weighted least-squares error between the DST-VII S7 and
its approximated version Ŝ7:

E(A) =

N∑
i=1

ωi

N∑
j=1

(
S7 i,j − Ŝ7 i,j

)2
(4)

where ωi, 1 ≤ i ≤ N is a weight vector of size N which
might account for the relative importance of the components
frequency. When the ωi is constant equal to 1, the error func-
tion corresponds to the squared Frobenius norm. An important
property of orthogonality has to be taken in consideration
for the adjustment matrix A. The second constraint on the
adjustment stages is to be sparse block-band matrix, which
can be computed at lower complexity with a number of taps
θ < N . The conducted experimentsshow that adjustment
stages using ”4 to 6-tap” sparse block-band matrices provide a
good trade-off between coding gain, complexity and memory
usage. For this work, coefficients of 5 tap sparse block-band
adjustment matrices are used (θ = 5). The coefficients of A
matrix are generated by a genetic algorithm as the solution
of the approximation mathematical problem in Equation (4).
This method allows to approximate transform types using only
DCT-II implementation and sparse block-band matrices as
adjustment stages with low additional complexity.Therefore,
the overall complexity is significantly lower than using full
DCT-VII/DST-VII transforms as in the original design [15].

III. 2D HARDWARE IMPLEMENTATION OF TRANSFORM
MODULE

As expressed in (3), the approximation is ensured by
applying adjustment stages to either the forward DCT-II or
its inverse with some changes that are computationally trivial
performed through permutation and sign change matrices Λ
and Γ. In the following we will detail the main transform
core implementation and then how to expand it to support 2D
forward and inverse DST-VII and DCT-VIII implementations.

A. Unified Forward and Inverse DCT-II Core Transform

The DCT-II and IDCT-II 32-point kernels are computed as
given in the following equations:

C32 = P32 ·
(
C16 0
0 O16

)
·
(

I16 J16
−J16 I16

)
(5)

CT
32 =

(
I16 −J16
J16 I16

)
·
(
CT

16 0
0 O′

16

)
· P32 (6)

where P32 is a permutation matrix to reorder the output data
in appropriate from, C16 is the half size DCT matrix, O16

is a matrix of size 16×16 consisting in odd rows of the first
16 columns of the DCT matrix. I16 and J16 are, respectively,
the identity and the cross-identity (reflection) matrices of size



16×16. Finally, O′
16 is a matrix of size 16×16 consisting

of odd rows of the first 16 columns of the IDCT matrix.
Comparing O16 and O′

16, it can be noticed that for i from
0 to 15, O16 ith column has the same coefficients as the
15- ith column of O′

16 but in inverse order. Subsequently,
the O′

16 matrix can be implemented using the same archi-
tecture of O16. This can be achieved with computationally
trivial steps, by inverting the inputs and outputs orders. As a
result, we propose a unified architecture design that embeds
forward and inverse DCT sharing the same 32×32 odd part
of the DCT matrix, which is the most consuming in terms of
multiplication operations. C16 and CT

16 are the half size DCT-
II and IDCT-II, respectively. They include lower modules
order (C8, C4) benefiting from recursion property. 32-point
DCT implementation (or IDCT-II) requires 340 multiplication
operations. The proposed architecture of the unified DCT-
II and IDCT-II requires only 424 multiplication operations
(256 plus 84 multiplication operations for each C16 and CT

16).
Reusing the same architecture of O16 in a unified DCT-
IDCT scheme allows to preserve 256 multiplication operations
and then enables considerable reduction in logic resource.
Fig 1 illustrates the proposed architecture of the unified DCT-
IDCT core transform. From (5) and (6) and benefiting from
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Fig. 1. Proposed architecture of unified 32-point DCT-II and IDCT-II core
transform

butterfly decomposition architecture, the difference between
DCT-II and IDCT-II is the hierarchical application of the
associate butterfly block; as a first or last stage for forward
and inverse processes, respectively, depending on Forward-
Inverse selection signal. In the case of inverse DCT-II, the
32-odd part is computed as O′

16. Trivial pre-processing and
post-processing steps on its associated inputs and outputs are
applied with no additional complexity as explained in (1). The
obtained results, associated with CT

16 implementation (16-point
IDCT-II) outputs go through IDCT butterfly stage in order
to provide the final IDCT 32-point outputs. In the case of
forward DCT-II, 32-point odd part is computed as O16. Then,
the obtained results, with C16 implementation (16-point DCT-
II), form the final outputs of 32-point DCT-II. The design is
not only unified for forward and inverse DCT, but also for all
block sizes from 4 to 32 through a size dependent selection
process.

B. Proposed 2D Implementation of VVC Transform Approxi-
mation

In this work we consider 16 and 32 approximation orders as
they are the most complex cases. 16 and 32-point adjustments
matrices of DST-VII are 5 taps sparse block-band matrices
generated and used in (3). They are placed and used as a
pre-processing stage in the forward transform process, and a
post-processing stage (after transposition) in the inverse one.
Fig 2 presents the proposed architecture for the DST-VII
approximation in forward (”0” selection path) and inverse (”1”
selection path) configurations. Table I gives the computational
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Fig. 2. Proposed architecture of approximate forward-inverse transform design

complexity in number of multiplications required for the pro-
posed implementation of the DCT-II and DST-VII, compared
to the original (ie. butterfly structures with recursion property
for DCT-II and explicit matrices multiplications for DST-VII
[15]). The performance refers to both forward and inverse
transforms. As the approximation approach consists in using
the DCT-II architecture, DST-VII implementation requires
only the number of operations included by the adjustment
matrices implementation over the DCT-II operations.

It is worth noting that not all adjustment matrix rows include
five coefficients, and coefficients with power-of-two values
are implemented using shift operations, which would further
reduce the number of used multipliers. DCT-VIII is obtained
easily using DST-VII architecture according to (7) with no
additional resource requirements

C8 = Γ · S7 · Λ (7)

The proposed 2D circuit is able to compute efficient approxi-
mation of DCT-II, DST-VII and DCT-VIII using a unified 1D
forward-inverse DCT-II core transform and adjustment stages
(sparse block-band matrices with maximum 5 coefficients per
row) with low additional computational complexity. Moreover,
it is unified for both 16 and 32 block sizes and reconfigurable
to perform either forward or inverse transform processes. Input
and output First In First Out (FIFO) memory blocks are
added in both ends of the design to store and display input
and output vectors. For this, a control unit according to a



TABLE I
COMPARISON OF PROPOSED APPROXIMATION IMPLEMENTATION COMPLEXITY IN NUMBER OF MULTIPLIERS WITH RESPECT TO THE ANCHOR [15]

16-point 32-point
For-Inv DCT-II For-Inv DST-VII For-Inv DCT-II For-Inv DST-VII

Anchor Proposed Anchor Proposed Anchor Proposed Anchor Proposed
Multipliers 168 168 512 58 680 424 2048 114

state machine is defined. It is responsible for assigning the
appropriate signals and blocks, and controlling reconfiguration
aspects. In addition, it manages all the different steps of 2D
process.

IV. EXPERIMENTAL AND SYNTHESIS RESULTS

A. Experimental Setup

The proposed 2D transform design is implemented using
the Verilog HDL description language. The architectures of
1D and 2D processes of different orders have been tested
with simulation and synthesis software tools [24], [25] under
Arria 10 FPGA device [10]. Test bench files were used to
validate the output results. The coding performance of the
approximate DST-VII and DCT-VIII transforms are assessed
under the Common Test Condition with the Benchmark Set
(BMS) (including the 5 MTS transforms) software.

B. Rate Distortion Coding Performance

Using 5 tap sparse-band matrices for adjustment stages,
Table II gives the BD-BR coding performance of the approx-
imate DST-VII and DCT-VIII transforms in All Intra (AI)
and Random Access (RA) configurations. These results can

TABLE II
BD-BR CODING PERFORMANCE OF APPROXIMATE VVC TRANSFORM

OVER BMS SOFTWARE FOR AI AND RA CONFIGURATIONS

Cla. All Intra Random Access
Y U V Y U V

A1 0.04% 0.05% 0.10% 0.02% -0.10% 0.13%
A2 0.12% 0.00% 0.03% 0.03% 0.06% -0.09%
B 0.06% 0.02% 0.03% 0.04% 0.10% 0.10%
C 0.04% 0.10% 0.03% 0.01% -0.07% 0.00%
E 0.04% -0.01% -0.02% – – –
Av. 0.06% 0.03% 0.03% 0.03% 0.00% 0.04%

only support the effectiveness of VVC transform approxima-
tion method as they show almost no loss in BD-BR coding
performance with respect to the accurate MTS implementation
(no approximation) in both AI and RA coding configurations.

C. Synthesis Results of the Proposed Approximate Transforms

In order to evaluate the implementation of approximate
DCT-II, DST-VII and DCT-VIII transform types, we can first
have an idea about their explicit implementation in the original
MTS design. They have, each, its own implementation using
the associate kernel (matrix). Synthesis results of pipelined
DCT-II and DST-VII implementations are presented in Ta-
ble III for 16 and 32-point. Results show that it provides
good performance in terms of processed frames per second
up to 135 and 361 of 4K videos for 16 and 32-point modules,

TABLE III
SYNTHESIS RESULTS OF THE 1D 16 AND 32-POINT DCT-II AND

DST-VII [15]

16-point 32-point
DCT-II DST-VII DCT-II DST-VII

Alms 2428 5981 11231 22794
Registers 14041 50135 76711 186418
DSPs 84 186 276 681
Frequency 401 MHz 268 MHz
Cycles 61 61
Fps (2K) 541 1440
Fps (4K) 135 361

respectively. It can also be noticed that 32-point module
implementation requires about 3x hardware resource than 16-
point one. Moreover, it is worth noting that for 32-point
implementation, internal architectures are slightly modified
in a way to reduce logic utilization by more than half and
also the required clock cycles to compute 32×32 block (61
for 32-point) [15]. Otherwise, logic resource would be 6x or
more and then exceed the target device range. In addition, it
could be further reduced by sacrificing the pipeline but that
eventually would affect the coding speed in terms of processed
frames per second (more execution time + lower operational
frequency). Furthermore, information given in Table III refers
only to requirements for forward transform configuration. This
is only to have an idea on how complex and high consuming
multiple transform types implementation is. On the other hand,
the proposed implementation of the approximation method,
aims to maintain the desirable high performance while keeping
minimal logic utilization. It should be noted that the same
hardware architecture implementation and pipeline process of
work in [15] are used for all synthesis. Table IV presents the
synthesis results of the proposed DCT-IDCT core transform
(first part). This latter, configured to operate as Forward

TABLE IV
SYNTHESIS RESULTS OF THE UNIFIED 32-POINT DCT CORE TRANSFORM
AND THE PROPOSED ARCHITECTURE FOR 32-POINT FORWARD-INVERSE

DCT-II,DST-VII AND DCT-VIII APPROXIMATION

DCT-II / IDCT-II Approximation design
16-point 32-point 16-point 32-point

Alms 25271 33327
Registers 90116 112037
DSPs 408 580
Frequency 318 MHz 332 MHz
Cycles 53 97 63 110
Fps (2K) 493 1079 433 993
Fps (4K) 123 297 108 248

or Inverse DCT (as explained in section III), will be used



easily in DST-VII and inverse DST-VII implementation using
adjustment stages with low additional computational complex-
ity. The second part (right) of Table IV gives the synthesis
results of the 1D DST-VII approximation implementation. It
embeds the DCT-II core transform and then the additional
complexity introduced by adjustment stages can be interpreted
or deducted as the difference between DCT-II transform core
and DST-VII approximation results. Finally, the synthesis
results of the unified 2D approximation circuit are summarized
in Table V. The low computational complexity introduced by
adjustment stages will have an impressive impact on the design
performance. In fact, associated with the DCT- core transform,

TABLE V
SYNTHESIS RESULTS OF THE 2D 32-POINT FORWARD-INVERSE

APPROXIMATION DESIGN FOR DCT-II, DST-VII AND DCT-VIII

2D process 16-point 32-point
Alms 45422 (18%)
Registers 136003 (40%)
DSPs 580 (34%)
Frequency 257 MHz
Cycles 130 224
Fps (2K) 162 377
Fps (4K) 40 94

the unified design is able to compute 2D forward and inverse
approximation for DCT-II, DST-VII and DCT-VIII transform
types supporting 16 and 32 sizes. It requires only 18% of
Adaptive Logic Modules (Alms), 40% of registers and 34%
of DSP blocks offered by the target device. Moreover, it is
able to sustain 2K and 4K video processing at 377 and 94
frames per second, respectively.

V. CONCLUSION

In this paper we have proposed an efficient 2D hardware
implementation of approximate VVC transform process. The
approximation methodology consists in applying low cost ad-
justment stages to a DCT-II variant in order to approximate the
other transform types. The proposed 32-point 1D architecture
allows to process 4K videos at 248 frames per seconds. It
used a reconfigurable and pipelined DCT-II core transform to
compute forward and inverse DCT-II sharing the most logic
consuming part. A unified 2D implementation design is also
provided. It can compute forward and inverse DCT-II, DST-
VII and DCT-VIII approximation while using only moderate
hardware resource of the target device. The unified circuit is
able to sustain 2K and 4K video processing at 377 and 94
frames per second, respectively.
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