
HAL Id: hal-02175112
https://hal.science/hal-02175112v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward certified quantum programming
Sébastien Bardin, François Bobot, Valentin Perelle, Christophe Chareton,

Benoît Valiron

To cite this version:
Sébastien Bardin, François Bobot, Valentin Perelle, Christophe Chareton, Benoît Valiron. Toward
certified quantum programming. 2nd International Workshop on Quantum Compilation, Nov 2018,
San Diego, United States. �hal-02175112�

https://hal.science/hal-02175112v1
https://hal.archives-ouvertes.fr


Toward certified quantum programming∗

Sébastien Bardin1, François Bobot1, Christophe Chareton1, Valentin Perelle1, and
Benoît Valiron2

1CEA, LIST, Software Reliability and Security Laboratory
F-91911 Gif-sur-Yvette Cedex, France

firstname.lastname@cea.fr
2LRI, CentraleSupélec, Université Paris-Saclay, Orsay, France

benoit.valiron@lri.fr

1 Introduction
Developers of quantum programming languages have the difficult task to create programs or lan-
guages that they can’t easily test or debug. Indeed, quantum programming is, by nature, dedicated
to run algorithms that cannot be run by classical computers. Furthermore, at least in the first ages
of it, quantum computing must be costly, so that test runs might not be available at will as it is the
case with classical computing. In addition, a future quantum developer won’t have the possibility
to suspend the execution of a system to inspect its state at some point.

The question of correctness of quantum programs is then paramount. In the literatures, sev-
eral techniques have been proposed to tackle this issue. A first approach attempts at extending
model-checking techniques to the quantum case [8, 15]. The drawback is the non-parametricity of
the specifications, and their limitations in terms of number of qubits, A second approach is the
language Qwire [11,12], embedded in the Coq proof assistant which features a powerful dependent
type-system. The first problem of this approach is the lack of automation: in Coq, proofs are au-
tomatically checked but must be given by the user. The second issue comes with the combination
of types and specifications: the type annotations are complex and their proofs need to be given
up front for the program to compile. A last approach is the extension of Hoare Logic (QHL) to
quantum programming [1,4,13]. QHL [13] interprets density operators as quantum predicates which
are atoms in an Hoare-style logic. Efforts are currently made for the generation of invariants in
QHL [14,16] and theorem proving for checking QHL formulas in Isabelle/HOL [10]. The shortcom-
ing of the QHL approach lies in the restrictive specification formalism, as predicates are limited to
positive operators.

1.1 Our goal
Our goal is to answer the shortcomings of the existing approaches and provide a scalable verification
framework for quantum programming. In particular, we aim at

∗This work was supported by the French National Research Agency (ANR), project SoftQPro, ANR-17-CE25-0009

1



• intuitive specifications with a clear separation between type and specification,

• support for proof automation,

• and reuse of best practices in classical program verification.

Our approach relies on the embedding of the dedicated language and logic in a robust tool
that have been used in conventional, industrial settings: Why3 [2, 6]. Why3 has been designed
for proving properties of classical programs written in several real-life languages: algorithm [3], C,
Java [5], ADA through traduction [7, 9].

1.2 Why3 in a nutshell
In deductive program verification, programs are decorated with assertions such as pre and post-
conditions for functions or loop invariants. These decorations form contracts for the user, ensuring
that, providing the inputs of a function respects this function preconditions, then its outputs respect
the post condition. That the execution of the function on a preconditioned input ensures the
postcondition constitutes a proof obligation for the developer.

The Why3 tool [2, 5] is a verification environment featuring an ML like language both for
programming and for writing specifications. From a specified language, it generates a set of proof
obligations to be fulfilled for the certification of a program. These proofs can be manipulated
through a dedicated GUI .

Why3 also provides an interactive proof assistant. To prove a theorem thanks to Why3, one can
indeed call for a set of automatic SMT solvers (CV, Z3, Alt-ergo. . . ) accessible from the GUI. One
can also help the solvers by indicating proof steps, or proposing proof simplifications. The proof
steps could be expressed using a Why3 program, so even if it is possible, it is exceptional to resort
to send the proof obligation to a proof assistant such as Coq.

2 Why3 for certifying quantum programming
We believe that Why3 offers a particularly good user experience as the pre-post conditions formalism
is particularly intuitive and fits well with an interactive process of program specifications and
verifications, as witnessed by several industrial success stories [9].

The current state of the work consists in the design of a core functional programing language
embedded in Why3 language: a minimum circuit description language with a matrix-based seman-
tics written and certified in Why3, using an algebra library, offering the standard Hilbert space and
matrix formalism of quantum computing.

So far, it consists in approximatively 2000 lines of Why3 code. We have written the algebra
library, with basic matrix operations: addition, scalar product, matrix product and tensor product.
These are used to develop a set of high-level reasoning facilities to prove the natural properties on
these objects.

The next steps are to link the library with the circuit-description language to develop a full
verification framework. In parallel, we plan to validate the overall concepts and choices on standard
quantum algorithms, such as Shor’s factoring algorithm.

2



References
[1] Alexandru Baltag and Sonja Smets. Lqp: the dynamic logic of quantum information. Mathe-

matical structures in computer science, 2006.

[2] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd Your Herd of Provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, Wroclaw, Poland, 2011.

[3] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Let’s verify
this with why3. STTT, 2015, 2015.

[4] Yuan Feng, Runyao Duan, Zheng-Feng Ji, and Mingsheng Ying. Proof rules for the correctness
of quantum programs. Theor. Comput. Sci., 386(1-2):151–166, 2007.

[5] Jean Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for de-
ductive program verification. In ICCAD, CAV’07, 2007.

[6] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs meet provers. In
Programming Languages and Systems - 22nd European Symposium on Programming, ESOP
2013, pages 125–128, 2013.

[7] Clément Fumex, Claude Marché, and Yannick Moy. Automating the verification of floating-
point programs. In VSTTE, 2017.

[8] Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou. QMC: A model checker for
quantum systems. In Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 543–547, 2008.

[9] Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman. Spark 2014 and gnat-
prove. STTT, 17(6), 2015.

[10] Tao Liu, Yangjia Li, Shuling Wang, Mingsheng Ying, and Naijun Zhan. A theorem prover for
quantum hoare logic and its applications. arXiv:1601.03835, 2016.

[11] Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core language for quantum
circuits. ACM SIGPLAN Notices, 2017.

[12] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE practice: Formal verification of
quantum circuits in coq. arXiv:1803.00699, 2018.

[13] Mingsheng Ying. Floyd–hoare logic for quantum programs. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 33(6):19, 2011.

[14] Mingsheng Ying. Toward automatic verification of quantum programs. Formal Aspects of
Computing, pages 1–23, 2016.

[15] Mingsheng Ying, Yangjia Li, Nengkun Yu, and Yuan Feng. Model-checking linear-time prop-
erties of quantum systems. ACM Trans. Comput. Log., 15(3):22:1–22:31, 2014.

[16] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. Invariants of quantum programs: charac-
terisations and generation. ACM SIGPLAN Notices, 2017.

3


	Introduction
	Our goal
	Why3 in a nutshell

	Why3 for certifying quantum programming

