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1 Introduction
Developers of quantum programming languages have the difficult task to create programs or lan-
guages that they can’t easily test or debug. Indeed, quantum programming is, by nature, dedicated
to run algorithms that cannot be run by classical computers. Furthermore, at least in the first ages
of it, quantum computing must be costly, so that test runs might not be available at will as it is the
case with classical computing. In addition, a future quantum developer won’t have the possibility
to suspend the execution of a system to inspect its state at some point.

The question of correctness of quantum programs is then paramount. In the literatures, sev-
eral techniques have been proposed to tackle this issue. A first approach attempts at extending
model-checking techniques to the quantum case [8, 15]. The drawback is the non-parametricity of
the specifications, and their limitations in terms of number of qubits, A second approach is the
language Qwire [11,12], embedded in the Coq proof assistant which features a powerful dependent
type-system. The first problem of this approach is the lack of automation: in Coq, proofs are au-
tomatically checked but must be given by the user. The second issue comes with the combination
of types and specifications: the type annotations are complex and their proofs need to be given
up front for the program to compile. A last approach is the extension of Hoare Logic (QHL) to
quantum programming [1,4,13]. QHL [13] interprets density operators as quantum predicates which
are atoms in an Hoare-style logic. Efforts are currently made for the generation of invariants in
QHL [14,16] and theorem proving for checking QHL formulas in Isabelle/HOL [10]. The shortcom-
ing of the QHL approach lies in the restrictive specification formalism, as predicates are limited to
positive operators.

1.1 Our goal
Our goal is to answer the shortcomings of the existing approaches and provide a scalable verification
framework for quantum programming. In particular, we aim at
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• intuitive specifications with a clear separation between type and specification,

• support for proof automation,

• and reuse of best practices in classical program verification.

Our approach relies on the embedding of the dedicated language and logic in a robust tool
that have been used in conventional, industrial settings: Why3 [2, 6]. Why3 has been designed
for proving properties of classical programs written in several real-life languages: algorithm [3], C,
Java [5], ADA through traduction [7, 9].

1.2 Why3 in a nutshell
In deductive program verification, programs are decorated with assertions such as pre and post-
conditions for functions or loop invariants. These decorations form contracts for the user, ensuring
that, providing the inputs of a function respects this function preconditions, then its outputs respect
the post condition. That the execution of the function on a preconditioned input ensures the
postcondition constitutes a proof obligation for the developer.

The Why3 tool [2, 5] is a verification environment featuring an ML like language both for
programming and for writing specifications. From a specified language, it generates a set of proof
obligations to be fulfilled for the certification of a program. These proofs can be manipulated
through a dedicated GUI .

Why3 also provides an interactive proof assistant. To prove a theorem thanks to Why3, one can
indeed call for a set of automatic SMT solvers (CV, Z3, Alt-ergo. . . ) accessible from the GUI. One
can also help the solvers by indicating proof steps, or proposing proof simplifications. The proof
steps could be expressed using a Why3 program, so even if it is possible, it is exceptional to resort
to send the proof obligation to a proof assistant such as Coq.

2 Why3 for certifying quantum programming
We believe that Why3 offers a particularly good user experience as the pre-post conditions formalism
is particularly intuitive and fits well with an interactive process of program specifications and
verifications, as witnessed by several industrial success stories [9].

The current state of the work consists in the design of a core functional programing language
embedded in Why3 language: a minimum circuit description language with a matrix-based seman-
tics written and certified in Why3, using an algebra library, offering the standard Hilbert space and
matrix formalism of quantum computing.

So far, it consists in approximatively 2000 lines of Why3 code. We have written the algebra
library, with basic matrix operations: addition, scalar product, matrix product and tensor product.
These are used to develop a set of high-level reasoning facilities to prove the natural properties on
these objects.

The next steps are to link the library with the circuit-description language to develop a full
verification framework. In parallel, we plan to validate the overall concepts and choices on standard
quantum algorithms, such as Shor’s factoring algorithm.
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