
HAL Id: hal-02174937
https://hal.science/hal-02174937v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multifidelity Aerodynamic Optimization of a Helicopter
Rotor Blade

Joëlle Bailly, Didier Bailly

To cite this version:
Joëlle Bailly, Didier Bailly. Multifidelity Aerodynamic Optimization of a Helicopter Rotor Blade.
AIAA Journal, 2019, pp.1-13. �10.2514/1.J056513�. �hal-02174937�

https://hal.science/hal-02174937v1
https://hal.archives-ouvertes.fr


* Research Engineer, Aerodynamics Aeroelastics and Acoustics Department, Helicopters, Propellers and
Turbomachinery Unit, 8, rue des Vertugadins, 92190 Meudon, joelle.zibi@onera.fr.
† Research Engineer, Aerodynamics Aerelastics and Acoustics Department, Civil Aircraft Unit, 8, rue des
Vertugadins, 92190 Meudon, didier.bailly@onera.fr

Page 1 of 33

Multi-Fidelity Aerodynamic Optimization of a Helicopter 
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Joëlle Bailly*, and Didier Bailly.† 
ONERA, The French Aerospace Lab, Meudon, 92190, FRANCE 



A multi-fidelity optimization technique is applied to the design of a helicopter rotor blade 

to improve its performance in forward flight. This optimization technique is based on 

surrogate model that replace the high-fidelity CFD/CSD simulations necessary to capture 

the three-dimensional unsteady effects generated in the flow field of a complex blade 

geometry. The single low-fidelity model based on Kriging methodology and generated by 

lifting-line simulations, leads to a power benefit of 2.5%, which is not reproducible by an a 

posteriori high-fidelity CSD/CFD computation. The optimization procedure using Co-

Kriging surrogate models based on two levels of fidelity (lifting line and CSD/CFD 

simulations) leads to a realistic blade planform, for which the power benefit is estimated at 

2.2%. This optimized solution, obtained after a factor 6 reduction in CPU time, shows the 

advantages of using a Co-Kriging surrogate model (rather than a single-fidelity Kriging 

model) for aerodynamic optimizations. 

Nomenclature 

a∞ = free stream velocity of sound, m/s 

c = local chord, m 

M2cd = Mach-scaled sectional drag coefficient, 𝐷𝐷 1
2
𝜌𝜌∞� 𝑎𝑎∞ 

2 𝑐𝑐

M2cn = Mach-scaled sectional normal force coefficient, 𝐿𝐿𝑛𝑛
1
2
𝜌𝜌∞� 𝑎𝑎∞ 

2 𝑐𝑐 

Cov = covariance matrix 

CT/σ = rotor thrust coefficient, 𝑇𝑇/𝜌𝜌∞ 𝑆𝑆𝑆𝑆 (Ω𝑅𝑅)2 

(CxS)f = fuselage drag area, m2 

M2cz = Mach-scaled sectional lift coefficient, 𝑇𝑇 1
2
𝜌𝜌∞� 𝑎𝑎∞ 

2 𝑐𝑐 

D = drag force, N 

Ln = sectional normal loading, N 

mY = mean of the prediction model 

M = Mach number 
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Mx = rotor hub rolling moment, Nm 

Nb = number of rotor blades 

P = required rotor power, kW 

Pind = induced power, kW 

r = radial coordinate, m 

R = rotor radius, m 

Rij = correlation between two data points, i and j 

S = rotor disk surface, m2, 𝜋𝜋𝑅𝑅2 

T = rotor thrust, N 

Vh = advancing velocity, kt 

X = vector of independent variables 

Y = output of the computational functions 

ρ∞ = free stream air density, kg/m3 

σ = Nbc/πR, rotor solidity 

𝑆𝑆2 = Gaussian model variance 

Ω = rotor rotational speed, rad/s 

θ0 = collective pitch angle, deg 

θ1c = lateral cyclic pitch angle, deg 

θ1s = longitudinal cyclic pitch angle, deg 

θel = longitudinal cyclic pitch angle, deg 

ψ = azimuth angle, deg 

ϕ = probability density function 

Φ = cumulative distributive function 

Subscripts 

c,d,e = cheap, difference and expensive functions 
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I. Introduction

HE aerodynamic optimization of helicopter rotor blades is a complex and challenging problem due to unsteady T 
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flow phenomena. For instance, in forward flight, transonic effects on the advancing side of the blade and dynamic 

stall on the retreating side can be encountered. Furthermore, the effects between the aerodynamic behavior and 

the elastic response of an optimized rotor blade are considered through a fluid-structure coupling at a 

great computational cost. Historically, aerodynamic optimization procedures were based on the coupling 

between low-fidelity and fast computational codes, generally based on the lifting line theory, and an optimizer. 

Two types of optimizer were typically applied, either gradient-based (limited number of evaluations, but with the 

risk of reaching a local minimum of the objective function), or based on genetic algorithms (which require a 

great number of evaluations, over a large research domain, which improves the capability to reach the global 

minimum of the objective function).  

Single-objective optimizations with gradient-descent are among the first approaches to have been used due to their 

efficiency and rapidity. At NASA, Walsh and Bingham assessed the power minimization problem sequentially, first 

optimizing in hover flight, and then handling the constraints in forward flight. The chosen optimizer was the 

CONMIN algorithm [1]. At ONERA, the CONMIN optimizer has been coupled with the R85 comprehensive 

code [2] to optimize the geometry (chord, twist, sweep, anhedral) of a rotor blade to reduce its required power in 

forward flight while constraining the values of the pitch link loads [3]. 

Recently, the use of gradient-based algorithms formulated by the discrete steady adjoint of the RANS equations 

has allowed high-fidelity models in hover optimizations, since the cost of the gradient evaluation becomes 

practically independent of the number of design parameters [4][5]. The optimization problem is more complex 

in forward flight. The adjoint formulation for unsteady flows requires either considering the problem as 

periodic to apply a steady adjoint formulation [6] or solving the unsteady adjoint equation backwards in time [7]

[8].  

The second popular approach for optimization is the application of Genetic Algorithms (GA). The main advantage 

of GAs is that they can deal with discontinuities and multimodal functions since they do not use derivative 

information. Furthermore, the optimum point is searched from a large population of points and not only from 

a single point. The risk of obtaining a local optimum of the objective function is greatly reduced.  However, 

GAs require a significant number of evaluations of the objective function. It is therefore recommended to employ 

them coupled with a low-fidelity code, which does not consume excessive CPU time. Results from 

aerodynamic 
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optimizations based on the coupling between a comprehensive code and an evolutionary optimizer actually show the 

effectiveness of this type of optimization procedure to optimize the twist law of a helicopter rotor blade [9].  

For two decades, surrogate models, such as the Kriging model, have been developed (initially in the field of spatial 

statistics and geostatistics) and introduced in optimization procedures for helicopter blade design. Glaz et al. [10] 

studied the effectiveness of various surrogate models and their accuracy when used in optimization procedures to 

minimize helicopter vibrations. Among the methods considered (Polynomial Regression, Kriging and Radial Basis 

Function), the Kriging model appears to be the most effective method to approximate the vibratory loads over the 

design space, and to reach the optimum design location.  

It is now well known that surrogate models are suitable for reducing the computational cost incurred by performing 

a great number of high-fidelity evaluations, and for enabling the use of high-fidelity simulations in the optimization 

loop. For instance, CSD/CFD simulations are necessary to take into account fluid-structure interactions [11][12]. 

Such high-fidelity simulations are especially recommended for complex geometry blades and/or complex flight 

configurations (moderate to high values of the advancing velocity or rotor thrust). The first step is to consider a 

single-level fidelity tool to generate a response surface between the objective function and the design variables. 

Jeong et al. [13] successfully applied a Kriging model to optimize the lift-to-drag ratio of a two-dimensional airfoil. 

It is shown that replacing a CFD solver by a Kriging model to estimate the objective function in an optimization 

procedure using GA is very efficient in terms of computational time reduction. Adding the search of the maximum 

Expected Improvement point is necessary to improve the accuracy of the response surface, as well as to explore the 

global optimum efficiently. Vu et al [14] proposed a process to obtain an optimal helicopter blade shape for 

aerodynamic performance in hover flight. A Kriging model was integrated into a computational Model Center tool, 

in order to quickly predict the optimum design, in conjunction with a gradient-based optimization algorithm. Siguira 

et al [15][16], within the framework of a cooperation between JAXA and ONERA, proposed an optimization 

procedure based on the Kriging model, obtained from GA optimization. The Expected Improvement point of the 

objective function is directly used as a fitness value in the optimization process. GA maximizes the EIs of the 

objective function, in order to find the non-dominated solutions about the EIs, and several points were selected from 

the non-dominated solutions to update the Kriging model. This procedure has been used to optimize the twist 

distribution of a model rotor blade, both in hover and forward flight.   



The second step considers different levels of fidelity to determine the objective function. Collins [17] proposed a 

multi-fidelity framework combining both low- and high-fidelity tools. The connection between the two models was 

the application of a scaling operator that multiplies the value obtained by the low-fidelity model. Recent studies 

performed by Wilke are based on a variable level surrogate model using Hierarchical Kriging [18]. The low- and 

high-fidelity models were built using dynamic inflow models and Euler equations, respectively. The search of the 

minimum required power led to optimized blade planforms in hover and in forward flight and resulted in a 

significant computational cost reduction. This single-objective optimization procedure has been extended to a three-

level fidelity model [19] and to a multi-objective optimization in hover and forward flight [20]. It was shown that 

this technique allows closer approximation to a reference Pareto front than single-fidelity optimization procedure.  

 Previously at ONERA, the optimization methods for advancing flight configurations were based on the coupling 

between a comprehensive analysis code HOST [21] and an optimizer. The performance of the optimized blades was 

checked a posteriori with CFD calculations, more accurate than two-dimensional simulations to predict the three-

dimensional and unsteady effects of the flowfield around a rotor blade with a complex geometry. The optimization 

procedures presented here rely on Kriging and Co-Kriging-based optimization of rotor blades using multi-fidelity 

methods available at ONERA. These methodologies are described in the first part of the paper. These optimization 

procedures are applied to define the sweep law of a helicopter rotor blade to improve its performance in forward 

flight. Aerodynamic analysis of the numerical results obtained for each optimized blade is performed showing 

benefit of taking into account three-dimensional unsteady effects of the flowfield inside the optimization loop, 

through Multi-Fidelity surrogate models.  More precisely, the origin of the loss or benefit in power will be studied, 

as well as the aero-elastic behavior of the optimized blades.  

II. Surrogate Model Methodologies
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Surrogate modeling plays an important role in many areas of aerospace engineering, including aerodynamic 

design optimization, structural design and multidisciplinary optimization. Many methods have been studied, such as 

polynomial models (RSM), moving least-squares (MLS), Radial Basis Function (RBF), Support Vector Machine 

(SVM), Kriging and multi-fidelity methods. 

Surrogate-model-based optimization is a numerical optimization approach that applies surrogate models to guide 

the search for the real model optimum, but at a reasonable computational cost.  



distance between any two points is  𝑑𝑑𝑖𝑖𝑖𝑖 = �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖�2, then the criterion is defined by: Φ𝑝𝑝 = �∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
−𝑝𝑝𝑛𝑛

𝑖𝑖=𝑖𝑖+1
𝑛𝑛−1
𝑖𝑖=1 �1/𝑝𝑝

.

In the case of a multi-fidelity model, a sample point set is defined for each fidelity level. The aerodynamic data 

at sample points are evaluated by the use of respective fidelity level methods. The high-fidelity model is constructed 

with either the Kriging or Co-Kriging approach. If the termination criterion is not fulfilled, iterative refinement is 

performed by adding new sample points. These new data are expected to improve the model accuracy and accelerate 

the search for the optimum.  

A. Kriging and EGO Methodology

Kriging is a statistical interpolation method suggested by Krige [24] and mathematically studied by Matheron

[25]. Its estimation depends on spatial correlation between n sample points, 𝑿𝑿1, … ,𝑿𝑿𝑛𝑛, for which the function values 

have been computed, 𝒀𝒀1, … ,𝒀𝒀𝑛𝑛. The Kriging model is a Gaussian process, Z, with covariance function cov(.,.) 

modeled as:  

 Cov�𝒁𝒁𝑖𝑖 ,𝒁𝒁𝑖𝑖� = 𝑆𝑆2𝑹𝑹(𝒁𝒁i,𝒁𝒁j;𝛉𝛉)                 (1) 

where 𝑆𝑆2 is the variance of the process and R is a correlation function that depends of internal parameters, θ, which 

can be determined by optimizing the likelihood. 

The spatial correlation function measures the proximity between two points. Many correlation functions can be 

applied; within the framework of this study, the Gaussian kernel is chosen: 

𝑹𝑹�𝒁𝒁i ,𝒁𝒁j;𝛉𝛉� = exp �−∑ 𝜃𝜃𝑘𝑘   �𝑧𝑧𝑖𝑖𝑘𝑘 − 𝑧𝑧𝑖𝑖𝑘𝑘�
2𝑁𝑁

𝑘𝑘=1 �             (2)
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ONERA has developed a code, Korrigan, which can build Kriging, gradient- enhanced Kriging and Hessian- 

enhanced Kriging models, as well as Co-Kriging and gradient- enhanced Co-Kriging surrogate models. For all of 

these approaches, the correlation function can be chosen from the Gaussian or compact polynomial kernels. The 

correlation function parameters are determined by using a Genetic Algorithm (GA) developed inside Korrigan. This 

GA also searches for the minimum of the model and maximizes the Expected Improvement (EGO) to update its 

database. 

A model is developed that can approximate the objective function data throughout the parameter space. Sample 

points are generated using a Design-of-Experiment technique with Latin Hypercube Sampling (LHS) [22]. Improved 

space-filling properties of the LHS are achieved by minimizing a distance function Φ𝑝𝑝 [23]. If t he E uclidian 



where 𝜃𝜃𝑘𝑘 are the correlation internal parameters that control the rate of correlation in the kth dimension. The 𝜃𝜃𝑘𝑘 

parameters are determined by maximizing the likelihood function: 

𝐿𝐿 = −  𝑁𝑁
2

 ℓ𝑛𝑛(𝑆𝑆2) −  𝟏𝟏
𝟐𝟐

 𝓵𝓵𝑛𝑛 (|det(𝑹𝑹)|) .        (3) 

L is a function of the internal parameters and measures their plausibility given by the observed data. 

The optimal unbiased linear predictor provided by the Kriging theory is expressed as: 

𝑌𝑌�(𝑿𝑿) = 𝑚𝑚𝑌𝑌 + 𝒓𝒓𝑇𝑇(𝑿𝑿)𝑹𝑹−1(𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌) (4) 

where 

⎩
⎪
⎨

⎪
⎧

𝑅𝑅𝑖𝑖𝑖𝑖 = corr(𝒁𝒁𝑖𝑖 ,𝒁𝒁𝑖𝑖)
𝒓𝒓(𝑿𝑿) = [corr(𝑿𝑿,𝒁𝒁1), … , corr(𝑿𝑿,𝒁𝒁𝑛𝑛)]𝑇𝑇

𝒀𝒀 = [𝑌𝑌𝟏𝟏, … ,𝑌𝑌𝒏𝒏]𝑻𝑻

𝑚𝑚𝑌𝑌 =  𝟏𝟏
𝑻𝑻𝑹𝑹−𝟏𝟏𝒀𝒀
𝟏𝟏𝑻𝑻𝑹𝑹−𝟏𝟏𝟏𝟏

(5) 

Kriging provides also an uncertainty estimator (variance) as: 

𝑆𝑆�2 = (𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌 )𝑇𝑇𝑹𝑹−𝟏𝟏(𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌 ) (6) 

The internal parameters 𝜃𝜃𝑘𝑘 are determined by the use of a genetic algorithm to maximize L. 

To improve the search for the optimum, it may be necessary to enrich the sampling by adding new points to 

improve the accuracy of the Kriging model. The selection of these points can be performed by different means:  the 

model minimum point, and the maximum uncertainty point determined by EGO (Efficient Global Optimization) 

[26]. To improve the model accuracy, the new points must be selected by balanced exploitation and exploration. 

Thus, EGO uses both the predictor and the variance of the model to estimate the expected improvement (EI) defined 

by: 

𝐸𝐸[𝐼𝐼(𝑿𝑿)] = �𝑌𝑌𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑌𝑌�(𝑿𝑿)�Φ�𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚−𝑌𝑌�(𝑿𝑿)
𝜎𝜎�

� + 𝜙𝜙 �𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚−𝑌𝑌�(𝑿𝑿)
𝜎𝜎�

� (7)

where Φ(.) and ϕ(.) are the cumulative distribution function and probability density function, respectively. A new 

selected point corresponds to the maximum of the EI. 

B. Co-Kriging Methodology

The idea of Co-Kriging is to use all available information to estimate unknown high-fidelity information. The

basic Kriging formulation has been extended by many authors [27]-[30] to combine multiple levels of simulation to 

create a more accurate or less expensive high-fidelity model. The Kennedy and O'Hagan approach [27] is based on 

an autoregressive model and consists in approximating the high-fidelity model by multiplying the low-fidelity 
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model,  𝒁𝒁𝒄𝒄, by a scaling factor ρ and by adding a Gaussian process 𝒁𝒁𝒅𝒅 representing the difference between the low 

and high-fidelity data, 

𝒁𝒁𝒆𝒆(𝑿𝑿) = 𝜌𝜌𝒁𝒁𝒄𝒄(𝑿𝑿) + 𝒁𝒁𝒅𝒅(𝑿𝑿) (8) 

where 𝑿𝑿𝑻𝑻 = [𝑿𝑿𝒄𝒄𝑻𝑻,𝑿𝑿𝒆𝒆𝑻𝑻], 𝑿𝑿𝒄𝒄 and 𝑿𝑿𝒆𝒆 represent the low and high-fidelity sampling locations. The covariance matrix 𝐶𝐶 is 

defined by: 

𝑪𝑪 = �
𝑆𝑆𝑐𝑐2𝑹𝑹𝒄𝒄(𝑿𝑿𝒄𝒄,𝑿𝑿𝒄𝒄) 𝜌𝜌𝑆𝑆𝑐𝑐2𝑹𝑹𝒄𝒄(𝑿𝑿𝒄𝒄,𝑿𝑿𝒆𝒆)
𝜌𝜌𝑆𝑆𝑐𝑐2𝑹𝑹𝒄𝒄(𝑿𝑿𝒆𝒆,𝑿𝑿𝒄𝒄) 𝜌𝜌2𝑆𝑆𝑐𝑐2𝑹𝑹𝒄𝒄(𝑿𝑿𝒆𝒆,𝑿𝑿𝒆𝒆) + 𝑆𝑆𝑑𝑑2𝑹𝑹𝒅𝒅(𝑿𝑿𝒆𝒆,𝑿𝑿𝒆𝒆)� (9) 

The correlation functions are written in a similar way to those for the Kriging methodology, and they require that 

twice the number of the internal parameters to be determined. Given that 𝒁𝒁𝒄𝒄 and 𝒁𝒁𝒅𝒅 are considered to be 

independent, the internal parameters of the low-fidelity model can be determined in a similar manner to those of the 

Kriging model. Thus ρ and the internal parameters of the difference process can be determined by optimizing the 

likelihood, but using the difference data: 

𝒅𝒅 = 𝒚𝒚𝒆𝒆 − 𝜌𝜌𝒚𝒚𝒄𝒄(𝑿𝑿𝒆𝒆), (10) 

so that the predictor provided by Co-Kriging is now expressed as: 

𝑌𝑌�𝑒𝑒(𝑿𝑿) = 𝑚𝑚𝑌𝑌 + 𝒄𝒄𝑇𝑇(𝑿𝑿)𝑪𝑪−1(𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌) (11) 

where 

�
𝒀𝒀𝑻𝑻 = �𝑌𝑌𝒄𝒄𝑻𝑻,𝑌𝑌𝒆𝒆𝑻𝑻�

𝑚𝑚𝑌𝑌 =  𝟏𝟏
𝑻𝑻𝑪𝑪−𝟏𝟏𝒀𝒀
𝟏𝟏𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏

(12) 

Kriging also provides an uncertainty estimator (variance) and an estimated mean squared error defined as: 

�
𝑆𝑆𝑑𝑑�

2 = (𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌 )𝑇𝑇𝑪𝑪−𝟏𝟏(𝒀𝒀 − 𝟏𝟏.𝑚𝑚𝑌𝑌 )

 𝑠𝑠�2 ≈ 𝜌𝜌2𝑆𝑆𝑐𝑐�
2 + 𝑆𝑆𝑑𝑑�

2 − 𝒄𝒄𝑇𝑇𝑪𝑪−1𝒄𝒄 + 1−𝟏𝟏𝑇𝑇𝑪𝑪−1𝒄𝒄
𝟏𝟏𝑇𝑇𝑪𝑪−1𝟏𝟏

(13) 

Normalized Root Mean Square Error (NRMSE) on a validation data set of 𝑛𝑛𝑝𝑝 uniformly distributed points is used as 
error metric to asses the surrogate model accuracy. The error metric is expressed as: 

 𝑁𝑁𝑅𝑅𝑁𝑁𝑆𝑆𝐸𝐸 =
�∑

�𝑦𝑦𝑡𝑡
𝑚𝑚−𝑦𝑦𝚤𝚤��
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝
𝑚𝑚=1

max(𝑦𝑦𝑡𝑡)−min (𝑦𝑦𝑡𝑡)
(14) 

where 𝑦𝑦𝑡𝑡 is the vector of true response values. 
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C. Validation on an analytical function

The advantages of the Co-Kriging method are illustrated by the one-dimensional “benchmark” problem given in

Forester et al.[28]. The data are defined by the analytic functions: 

𝑌𝑌𝑙𝑙𝑙𝑙 =
1
2
𝑌𝑌ℎ𝑙𝑙 + 10(𝑥𝑥 − 1)

𝑌𝑌ℎ𝑙𝑙 = (6𝑥𝑥 − 2)2𝑠𝑠𝑠𝑠𝑛𝑛(12𝑥𝑥 − 4)

The four high-fidelity sample data, 𝑋𝑋ℎ𝑙𝑙 =  {0,0.33,0.66,1.0} usually chosen for this test case are not sufficient to 

provide an accurate Kriging model. Fig. 1 illustrates the true function and the Kriging model built from the 𝑋𝑋ℎ𝑙𝑙data. 

Low-fidelity sample data is used 𝑋𝑋𝑙𝑙𝑙𝑙 =  {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. The Kriging model built from 

the 𝑋𝑋𝑙𝑙𝑙𝑙 data and the Co-Kriging model built with the two sample data are also depicted in Fig. 1. When the high-

fidelity data are added to the low-fidelity data, the data are now sufficient for the Co-Kriging theory to improve the 

model. The true function and the Co-Kriging model match very well. It must be noted that, in this case, the very 

good accuracy obtained is due to the fact that the two functions correspond to the autoregressive theoretical model. 

Fig. 1: One-variable example of Kriging and Co-Kriging. 

The error metric evaluated with 𝑛𝑛𝑝𝑝 = 1001 is 𝑁𝑁𝑅𝑅𝑁𝑁𝑆𝑆𝐸𝐸 = 0.0705, which is a very satisfactory value. 

D. Design of Experiments

As previously discussed, the Design of Experiment is built with an improved LHS method. A two-dimensional

test case is defined from the McCormick function [31]: 

𝑌𝑌𝑙𝑙𝑙𝑙 = sin(𝑥𝑥1 + 𝑥𝑥2) + (𝑥𝑥2 − 𝑥𝑥1)2        𝑥𝑥1 ∈ [−1.5,4] 
𝑌𝑌ℎ𝑙𝑙 = 𝑌𝑌𝑏𝑏𝑙𝑙 − 1.5𝑥𝑥1 + 2.5𝑥𝑥2 + 1.         𝑥𝑥2 ∈ [−3. ,4]
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Fig. 2: Comparison between LHS and Hammersley Low-Fidelity RSM (16 samples) 

The sensitivity to the HF and LF samplings has been studied. To start the optimization, the Co-Kriging RSM is built 

with 𝑁𝑁ℎ𝑙𝑙 and 𝑁𝑁𝑙𝑙𝑙𝑙 high and l ow-f idelity point s. Durin g the o ptim ization proce ss, at ea ch itera tion the model 

minimum point and the maximum EI point are determined. Several sampling number associations have been 

evaluated:  𝑁𝑁ℎ𝑙𝑙 ∈ {4,5} and 𝑁𝑁𝑙𝑙 𝑙𝑙 ∈ {8,10,12,14,16}. For each association, the total process is repeated 30 times, with 

a different Design of Experiment sampling generated each time. The mean curves (Fig. 3) have the same global 

properties confirming repeatability. After 15 and 20 HF evaluations the error is, respectively, of order 10-3 and 10-4. 

The convergence rate is greatly decreased with additional HF sampling. A slight improvement is observed when 5 

HF samples are used rather than 4, but this trend is not significant. The insensitivity to the LF sampling is due to the 

fact that in optimization, a global accuracy of the LF model is not necessary. A comparison with a mean 

convergence curve obtained with a Kriging optimization starting with 10 LHS sampling demonstrates the accuracy 

benefit obtained for the same number of HF evaluations. These conclusions and orders of magnitude are valid for 

cases where the number of parameters is very small.  

where Ylf  is the analytical function representing the low-fidelity level, Yhf  the high-fidelity level. The minimum 

value of Yhf (-1.9133) is located at the point (-0.54719,-1.54719), but the minimum value of Ybf (-1) is located at 

(π/4,-π/4). A comparison between the improved LHS and Hammersley sampling methods for 16 samples (Fig. 2) 

yields equivalent in-fill sampling properties and similar low-fidelity Response Surface Models.  



Fig. 3: Convergence curves with respect to HF evaluation number for different Nhf and Nlf associations 

III. Application to Rotor Blade Optimization

The objective of this study is to apply the previously described Kriging and Co-Kriging optimization procedures 

to optimize the sweep of a reference rotor defined by Airbus Helicopters Deutschland to improve its performance in 

forward flight. This rotor is equipped with five blades with an aspect ratio of 18.6. Each blade is rectangular with a 

parabolic blade tip. The blade is formed from the two airfoils OA312 and OA309, where linear interpolation defines 

the transition between these airfoils. A linear geometric twist is defined, and no anhedral is applied at the blade tip. 

The planform of the reference blade is illustrated in Fig. 4. 

Fig. 4: Reference blade planform and location of control points 
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E. Optimization chains

The search for the optimized solution using a single-fidelity model based on Kriging methodology is performed

following the optimization procedure represented in Fig. 5. 
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 The objective function is the minimization of the total power consumed by the main rotor for a selected 

forward-flight configuration. No constraints are considered. Three active decision variables on the sweep are chosen, 

located at 66%, 83% and 100% of the rotor radius R. These variables are parameterized by cubic splines, whose 

control point locations are identified in Fig. 4. The first control point defining the cubic spline is located at 50% of 

the rotor radius, and is imposed at zero, in order to ensure a smooth transition between the initial area (up to 50%) 

and the optimized area (from 50%). The lower and upper bound values are respectively set at 0.20 m and 0.50 m. 

The selected forward-flight speed Vh is equal to 140 kts, and the rotational velocity Ω is 36.34 rad/s (347 rpm), 

which corresponds to an advance ratio µ of 0.36. To correctly perform performance assessment, it is necessary to 

trim the rotor at a prescribed propulsive force. A three-variable objective trims the rotor at prescribed values for lift 

(CT/σ=0.075), propulsive force ((CDS)f/Sσ=0.15), and rolling moment (Mx=0 Nm). The shaft angle is then 

prescribed as equal to the arctangent of the ratio between the drag and the thrust coefficients. With this trim 

approach, the hub pitching moment reaches reasonable negative values given the prescribed setting of the shaft 

angle. 



Fig. 5: Chart of the optimization procedure by Kriging. 

The first step consists in building the Design of Experiment (DoE), based on Latin Hypercube Sampling spatial 

discretization of the design space. Then, the generation of the Kriging model is divided into two steps: the search for 

the minimum point of the model obtained using a classical genetic algorithm optimizer, followed by the search for 

the maximum Expected Improvement. The Design of Experiment is enriched at each step by Low-Fidelity (LF) 

simulations of these points. This procedure is repeated until a prescribed number of evaluations is completed, and a 

check is carried out to verify that the power benefit cannot be improved. 

The optimization procedure based on the multi-level Co-Kriging model is shown in Fig. 6. 
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Fig. 6: Chart of the optimization procedure by Co-Kriging. 

The first step consists in the generation of the two Design of Experiment databases: the first one defining the 

same LF model built for the Kriging approach now using a moderate number of points; the second one defining the 

High-Fidelity (HF) model built from a restricted number of points. Then the generation of the Co-Kriging model 

begins. The model Minimum point and the model maximum Expected Improvement point are sought by using the 

genetic algorithm. To limit the number of very expansive High-Fidelity evaluations, only the Minimum point is 

evaluated by HF simulations when this point and the Expected Improvement point are considered to be close to each 

other. Otherwise both Minimum point and Expected Improvement point are evaluated by HF simulations. The new 

point(s) is (are) then added to enrich the data base. Another optimization loop can begin until the optimized solution 

converges. Convergence is determined by the user.  

F. Numerical Tools for Low-Fidelity Simulations

The Low-Fidelity simulations are performed with the HOST (Helicopter Overall Simulation Tool)

comprehensive rotor code, developed by Airbus Helicopters [21]. 
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The structural model is based on a one-dimensional Euler-Bernoulli beam model. The beam is discretized along 

the pitch axis as an assembly of rigid segments with the elastic properties contained in the joints connecting them. 

The structural properties of the blade (mass, inertia, stiffness per unit length, etc) are given as an input data file for 

HOST. During the aerodynamic optimization, the blade planform is modified, leading to a change of these structural 

data. In 2011, ONERA defined an updating procedure for the structural data used in the HOST code that can be 

integrated into an optimization loop [9]. This procedure is based on the definition of analytical polynomial laws that 

describe the evolutions of the stiffnesses, the distribution of the mass, and the inertia per unit length with respect to 

the chord and the thickness distributions of the profiles of the blade. Some analytical corrections are also performed 

to adjust the elastic axis and the gravity center axis with respect to the pitch axis. This procedure allows realistic 

blade planforms to be obtained with internal structural properties suitable for the new blade design. This procedure 

has been employed within the framework of this study for the optimization of the sweep law of the selected 

reference rotor.  

The HOST comprehensive code is based on a lifting line approach to compute the blade aerodynamic loads. The 

blade is considered as a succession of two-dimensional blade elements, each one shedding a vortex of 

bound circulation generated at its aerodynamic center (quarter-chord). At a given Mach number and for an 

equivalent angle of attack, the lift, drag and pitching moment coefficients can be obtained via two-dimensional semi-

empirical airfoil lookup tables. The compressibility effects and the viscosity are partially assessed in these 

tables. Furthermore, numerical corrections can be applied to include the effects of the blade geometry such as 

sweep and curvature, the effects of rotation, and the effects of dynamic stall and unsteadiness. Sweep corrections 

modify the incidence and the Mach number with respect to the oblique attack of the wind. Curvature effects allow 

operating conditions of the airfoils in the plane perpendicular to the quarter-chord line of the profiles. These 

geometrical corrections increase the accuracy of the lifting line theory and are suitable for moderate evolutive blade 

planforms. 

The wake influences the rotor performance via the induced velocities that it generates at the rotor disk. Within 

the framework of this study, the Airbus Helicopters METAR [32] prescribed-wake model is used. The wake 

geometry is prescribed and considered helical. The induced velocities generated by a vortex segment of the wake are 

computed using the Biot-Savart law. This system is solved iteratively in the trim loop until convergence is obtained, 

when the circulation of the wake is in accordance with the sectional blade lift forces, and when the mean 

induced velocity reaches a threshold value.  



G. Numerical Tools for High-Fidelity Simulations

The HF simulations are performed using a loose coupling procedure [33] between the CSD code, HOST, and the

CFD code developed at ONERA, elsA [34]. The three-dimensional unsteady Navier-Stokes equations are solved by 

the cell-centered second-order Jameson scheme. The time integration is performed by an implicit Euler scheme with 

Gear sub-iterations. The time step is equivalent to 1.2° of blade rotation. The turbulence model is Kok k-ω [35] with 

Menter Shear-Stress Transport (SST) corrections [36], as the flow is assumed to be fully turbulent. The grids are 

generated using the Chimera technique. A multi-block, deformable mesh of O-H type is generated around each 

blade containing 1.7 million points. These blade grids are immersed in a Cartesian background grid containing 13 

million points. Based on prior experience, total mesh of 21.5 million points can be considered as refined [37].  

To obtain a satisfactory level of convergence of the coupling procedure between the CSD and CFD codes, six 

iterations are performed for each design point. The CPU cost for a converged coupling procedure is about 90 hours, 

on 64 processors of the ONERA SGI parallel calculator. 

H. Analysis of Optimization Results with Kriging

The first step of the Kriging optimization procedure is to build the Design of Experiment database. Over the

initial 30 points defined by the Latin Hypercube Sampling procedure, 16 points have reached the numerical 

convergence of the Low-Fidelity simulations performed with the HOST code. Then, the database has been enhanced 

by the search for the optimum points followed by the search for the Expected Improvement points. After 47 

converged HOST evaluations, the Kriging optimization process converged to the global optimum solution (Fig. 7). 
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HOST computations provide the rotor trim characteristics such as the control commands (pitch, flap and lag 

angles), the local aerodynamic loads, the blade elastic deformations, and the shaft power (which is the objective 

function of this study). The CPU cost of one evaluation is between 2 and 5 minutes on a single processor personal 

computer. 



Fig. 7: Convergence of the Kriging optimization procedure. 

This solution is similar (Fig. 8) to that obtained with the CMA-ES evolutionary optimizer [38], but with a large 

reduction of the HOST numerical evaluations. The CPU cost is now reduced by a factor of 5. The power benefit 

with respect to the reference blade is equal to 2.5%. 
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Fig. 8: Optimized blade planform obtained by CMA-ES and Kriging procedures (with updated structural 
data). 

The optimization procedures lead to a modification of the sweep as the optimized blade has a forward sweep of 

50% to 73% of the span, followed by a backward sweep of 73% to 90% of the span, and finally a reduced forward 

sweep up to the tip. This optimized blade planform is less sinuous, with reduced sweep angles in the backward and 

the forward directions when compared to a blade optimized without updating structural data during the optimization 

procedure.  

The optimization procedure leads to a benefit of 2.5% on the total power. The comparison between the reference 

and optimized Kriging rotors of the control angles and the mean elastic tip twist predicted by HOST calculations is 

given in Table 1. 



Rotor θ0 (°) θel(°) θ1c (°) θ1s (°) 
Reference 13.83 -2.98 0.53 -7.97

Optimized with Kriging 10.89 0.68 0.11 -5.64

Table 1: Comparison of control angles and mean elastic tip twist (LF calculations) 

The effect of the control angles can be analyzed on the distribution of the local lift coefficient on the rotor disk, 

for the two rotors, as shown in Fig. 9. 

     V∞ 
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Fig. 9: Distribution of the sectional lift coefficient on the reference and Kriging optimized blades (LF 
calculations) 

The HOST low-fidelity calculations for the Kriging optimized blade predict a reduction of the lifting loads in the 

inner part of the rotor disk during the second quarter, between 90° and 180° of azimuth, with respect to the 

reference, balanced with an increase of the lifting loads at the tip of the front blade, between 180° and 210° of 

azimuth. These discrepancies can be explained by the influence of the pronounced backward sweep on the outer part 

of the blade. The rotation plane is more forwardly inclined by the variation of the θ1S longitudinal cyclic pitch 

(+2.3°), and increasing the local loads in the front blade. The different breaks in the sweep distribution of the 

optimized blade lead to a discontinuous airload distribution on the rotor disk predicted by the HOST code.  

The power assessment predicted by HOST reduces required power by an 11% reduction of the induced power 

(defined as the scalar product between the aerodynamic force vector and the induced velocity vector). The variations 

of the sectional lift coefficient and the vertical induced velocity distribution between the optimized Kriging and the 

reference rotors have a direct effect on the surface distribution of the induced power on the rotor disk, as illustrated 

in Fig. 10. 



Fig. 10: Distribution on the rotor disk of the difference (Kriging – Reference) of sectional lift coefficient, 
vertical induced velocity, and surface induced power (LF calculations) 

The primary areas of induced power reduction occurs (blue areas) mainly correspond to the locations of reduced 

     V∞ 
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values of the vertical induced velocity, located in the inner part of the advancing blade, around the azimuth of 90°, at 

the blade tip near the azimuth of 300°, and in the fourth quadrant. The areas where a gain in the induced power is 

predicted for the Kriging optimized blade with respect to the reference  are predominantly in regions where an 

increase in the induced power occurs (red areas), especially at the tip of the front b lade, corresponding to the rotor 

disk location where the lifting loads are largely increasing.  

The blade sweep optimization also has an influence on the elastic torsion deformation and on the flap 

displacement at the blade tip, as observed in Fig. 11. 



Fig. 11: Elastic torsion and dimensionless flap deformations (mean removed) near the blade tip for the 
reference and the Kriging optimized blades (LF simulations). 

Due to its forward sweep planform, the optimized blade obtained by the Kriging optimization procedure has a 

higher elastic torsional response than the reference in terms of amplitude (about 4° instead of 2°). The increase of 

the torsion amplitude can be linked to the reduced value of the collective pitch angle. From Table 1 the decrease of 

the collective pitch angle compensates for the increase of the mean elastic twist at the tip. A strong steady twist is 

equivalent to a reduction of the collective pitch angle. The sum of these two values is of the same order of 

magnitude for both rotors. The flap displacement is less sensitive than the torsion angle in the blade optimization 

when applying a similar evolution. 

I. Analysis of Optimization Results with Co-Kriging

In the Kriging optimization process, the first step is to evaluate the objective function (shaft power consumed by

the main rotor) with the High-Fidelity numerical tool over a very limited number of points to build the High-Fidelity 

Design of Experiment. Four points have been chosen among the 30 initial ones resulting from the Latin Hypercube 

Sampling procedure. 
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Blade planform % (LF) % (HF) 

LHS2 

+14.2 +36.7

LHS4 

+1.5 -0.3

LHS7 

+2.7 +2.4

LHS9 

+4.1 +0.4

Optim Kriging 

-2.5 +0.7
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Fig. 12: Blade planforms and power benefits estimated by LF and HF simulations for the HF DoE and the 
optimized rotor by Kriging. 

It is very interesting that the hierarchy between the different rotors can differ with respect to the level of fidelity 

of the numerical tools (Fig. 12). In particular, the HF simulations predict a loss of performance for the optimized 

blade resulting from the Kriging procedure. The HOST lifting line theory is not accurate enough to correctly predict 

the performance of blades with a pronounced curvature in geometry, especially with significant sweep at the tip. 

Three-dimensional unsteady effects can have a major influence on rotor blades, especially those designed with a 

double sweep. Hence it is important to include these effects in the optimization procedure by using surrogate 

models, such as Co-Kriging, and supplying CFD computations. 

The convergence of the optimization procedure with Co-Kriging is illustrated in Fig. 13. Only the evaluations of 

the different Minimum points are presented. 



Fig. 13: Convergence of the optimization procedure with Co-Kriging (Minimum points only presented) 

12 HF simulations are required to obtain an optimized solution: four for the generation of the Design of 
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Experiment, 7 for the search for the Minimum Point, and 1 for the search for the Expected Improvement point. This 

demonstrates the efficiency of the Co-Kriging method in reaching an optimum point that requires at minimum 60 to 

70 evaluations with the Kriging method. The gain in CPU time with the Co-Kriging method is approximately a 

factor of 6 with respect to the Kriging method. 

Until the 6th evaluation, the minimum point and the maximum Expected Improvement point of the Co-kriging 

model are very close. Therefore, only HF evaluations are performed on the Minimum points. This is done to avoid 

the correlation matrix from being ill-conditioned, highlighted by a sharp increase of the condition number. For the 

OPT6 point, the difference between the minimum of the model and the estimation of this minimum point by HF 

calculations is less than 2%, which is considered to be satisfactory for design. 

Beyond the OPT6 point, the Expected Improvement EI6 point (for which a significant difference appears with 

respect to the OPT6 point) and the next OPT7 optimization point have been sought by the procedure, and then 

evaluated by HF calculations. As shown in Fig. 14, the EI6 design does not provide any power benefit estimation. 

The estimated power benefit provided by the OPT7 optimized design is lower than that obtained by the OPT6 point, 

which can be considered the best optimization point of the Co-Kriging procedure. 



Blade planform % (HF) 

OPT6 = Optim Co-Kriging 

-2.2

EI6 

+0.02

OPT7 

-0.7

Fig. 14: Blade planforms and power benefits estimated by HF simulations during the Co-Kriging 
optimization procedure. 

The Co-Kriging optimization procedure results in a blade planform presenting a forward and then a backward 

sweep, evolving in a smoother manner than the blade planform generated by the Kriging optimization. The sweep 

angles are also reduced with the Co-Kriging optimization procedure. Thus, this blade planform appears more 

realistic than the optimized Kriging blade. The sweep break for the optimized blade planforms corresponds to the 

location of the first optimized control point (at mid-span), where the sweep distribution is parameterized by a cubic 

spline. These designs have been generated within the framework of a theoretical study and should be adapted if 

necessary. 

The shapes of the models obtained by Kriging and Co-Kriging optimization procedures, from which the 

respective optimum points were obtained, are plotted against the three dimensionless decision variables (defined 

between 0 and 1) in Fig. 15.  

Kriging Co-Kriging 

Fig. 15: Shapes of the Kriging and the Co-Kriging models. 
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Rotor θ0 (°) θel (°) θ1c (°) θ1s (°) 
Reference 13.98 -3.09 1.17 -8.07

Optimized with Kriging 10.98 1.09 1.01 -6.26

Optimized with Co-Kriging 13.58 -1.76 1.91 -9.55

Table 2: Comparison of control angles and mean elastic tip twist (HF simulations) 

Significant discrepancies are noticeable between the two optimized blades, especially in terms of the longitudinal 

cyclic pitch angle. Once again, the increase of the mean elastic twist at the blade tip is equivalent to a reduction in 

the collective pitch control.  

The power benefit for the optimized blade obtained with the Co-Kriging model with respect to the reference 

rotor is estimated at 2.2% by High-Fidelity computations, which is very encouraging. The different optimized blade 

planforms lead to modifications of the sectional lift distribution on the rotor disk, estimated by the HF simulations 

(Fig. 16) for the reference and the optimized rotors resulting from the Kriging and the Co-Kriging procedures, 

respectively. 
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Three zones can be detected on the Kriging and the Co-Kriging models: two with a maximum level and one with 

a minimum level. However, their shapes are quite different. For the Kriging model, the minimum point is inside an 

area close to the upper boundary of the search domain. For the Co-Kriging model, the minimum point is detected in 

a more extended region inside the domain. The Co-Kriging domain results in a large modification of the shape of the 

surface response and not only an improvement of the accuracy of the Kriging model.    

The values of the control angles predicted by HF simulations for the reference and the optimized rotors obtained 

by Kriging and Co-Kriging models are given in Table 2. 



     V∞ 
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Fig. 16: Distribution on the rotor disk of the sectional lift coefficient for the reference, the Kriging and the 
Co-Kriging optimized rotors (HF simulations). 

The increased negative value of the longitudinal cyclic pitch angle for the Co-Kriging optimized blade with 

respect to the Kriging blade (-3.3°) (Table 2) can explain the vanishing of the over-loaded area at the blade tip in the 

front region, as no backward sweep evolution is predicted. The local lift is then increased at the rear part of the Co-

Kriging optimized blade. A reduction of the negative peak of the lifting loads at the blade tip in the second quadrant 

is also noticeable. The optimization of the sweep by the Co-Kriging procedure, taking into account the three-

dimensional effects, leads to a smoother distribution of the sectional lift coefficient than for the reference and the 

Kriging- optimized blades. This distribution of the lifting loads with reduced peak to peak variations can explain the 

benefit of the total power. 



For Peer Review
     V∞ 
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Fig. 17: Distribution on the rotor disk of the sectional drag coefficient for the reference, the Kriging, and the 
Co-Kriging optimized rotors (HF simulations) 

For the Co-Kriging optimized blade, the positive values of the drag coefficient are reduced in the first and 

second quadrants, and the negative values are less negative in the third quadrant with respect to the reference and the 

Kriging optimized blades. This distribution of the drag loads can be beneficial to reduce the total power. 

   The blade tip deformations in torsion and flap obtained by the reference and two optimized rotors are 

examined in Fig. 18.  

The influence of the optimized blade planforms on the distribution of the local drag coefficient over the rotor 

disk, between the reference, the Kriging, and Co-Kriging optimized blades, predicted by HF calculations, can be 

analyzed in Fig. 17.  



Fig. 18: Elastic torsion and dimensionless flap deformations (mean removed) near the blade tip for the 
reference, the Kriging and the Co-Kriging optimized blades (HF simulations). 

Thanks to its smooth and realistic planform, the torsional deformation of the Co-Kriging optimized blade has a 

peak-to-peak amplitude reduced by 3° compared to that of the Kriging optimized blade. The flap evolution of the 

Co-Kriging optimized blade is also smoother than that of the Kriging optimized blade. 

IV. Concluding Remarks

The optimization of helicopter rotor blades is a challenging problem, as increasingly complex blade planforms 

are considered. The primary issue is an accurate prediction of the three-dimensional unsteady effects in the 

optimization loop, necessary for realistic blade planforms and accurate estimation of the power consumed by the 

main rotor. As the CFD codes are computationally expensive and time-consuming, it is suitable to use surrogate 

models to replace these high-fidelity simulations. 

Two aerodynamic optimization procedures have been presented to define an optimized sweep distribution, by 

using low and high-fidelity levels of surrogate models, respectively based on Kriging and Co-Kriging 

methodologies. 

The primary findings obtained in this study are: 

- The optimization procedure with lifting-line computations replaced by a Kriging model provide an equivalent
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solution to the optimization procedure based on the coupling between lifting-line and CMA-ES optimizer, but with a 

factor of 5 reduction in CPU resources. 

- A posteriori evaluation of the shaft power of the optimized Kriging rotor with high-level computations

CSD/CFD weak coupling predicts a loss of about 1% in the shaft power with respect to the reference rotor. This 

indicates that the accuracy of the lifting-line computations and the Kriging models is not sufficient. Inclusion of 



high-fidelity evaluations in the optimization loop is mandatory and can be effective through the use of a Co-Kriging 

model. 

- The blade planform of the optimized rotor resulting from the Co-Kriging optimization procedure is smoother

and more realistic than the rotor optimized with a Kriging model. The power benefit is estimated at about 2% via 

CFD computations. A limited number of High Fidelity simulations is required to obtain a satisfactory optimized 

solution. A factor of 6 in CPU time can be estimated with respect to what would have been required the Kriging 

optimization procedure based on HF simulations. 

Further efforts will consist in introducing constraints on the structural loads and stability to ensure realistic 

optimized blade planforms in terms of aeroelastic behavior. It would also be interesting to validate gradient- 

enhanced Kriging and Co-Kriging models. This will permit the reduction in the number of points in the database, 

which will lead to a reduction in the CPU time of the optimization procedure. Finally, developing and validating 

different models to quantify the uncertainty propagation from selected aleatory and/or epistemic variables would 

provide further insights before performing robust optimization procedures. 
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