
HAL Id: hal-02174936
https://hal.science/hal-02174936

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model execution tracing: a systematic mapping study
Fazilat Hojaji, Tanja Mayerhofer, Bahman Zamani, Abdelwahab

Hamou-Lhadj, Erwan Bousse

To cite this version:
Fazilat Hojaji, Tanja Mayerhofer, Bahman Zamani, Abdelwahab Hamou-Lhadj, Erwan Bousse.
Model execution tracing: a systematic mapping study. Software and Systems Modeling, 2019,
�10.1007/s10270-019-00724-1�. �hal-02174936�

https://hal.science/hal-02174936
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Model Execution Tracing: A Systematic Mapping Study

Fazilat Hojaji · Tanja Mayerhofer · Bahman Zamani · Abdelwahab

Hamou-Lhadj · Erwan Bousse

Received: date / Revised version: date

Abstract Model Driven Engineering is a development

paradigm that uses models instead of code as primary

development artifacts. In this paper, we focus on exe-

cutable models, which are used to abstract the behavior

of systems for the purpose of verifying and validating

(V&V) a system’s properties. Model execution tracing

(i.e., obtaining and analyzing traces of model execu-

tions) is an important enabler for many V&V tech-

niques including testing, model checking, and system

comprehension. This may explain the increase in the

number of proposed approaches on tracing model exe-

cutions in the last years. Despite the increased atten-

tion, there is currently no clear understanding of the

state of the art in this research field, making it difficult

to identify research gaps and opportunities. The goal

of this paper is to survey and classify existing work on
model execution tracing, and identify promising future

research directions. To achieve this, we conducted a sys-

tematic mapping study where we examined 64 primary

studies out of 645 found publications. We found that

the majority of model execution tracing approaches has

been developed for the purpose of testing and dynamic

analysis. Furthermore, most approaches target specific

Fazilat Hojaji
E-mail: f.hojaji@eng.ui.ac.ir

Tanja Mayerhofer
E-mail: mayerhofer@big.tuwien.ac.at
https://big.tuwien.ac.at/people/tmayerhofer/

Bahman Zamani
E-mail: zamani@eng.ui.ac.ir

Abdelwahab Hamou-Lhadj
E-mail: wahab.hamou-lhadj@concordia.ca

Erwan Bousse
E-mail: bousse@big.tuwien.ac.at
https://big.tuwien.ac.at/people/ebousse/

modeling languages and rely on custom trace represen-

tation formats, hindering the synergy among tools and

exchange of data. This study also revealed that most ex-

isting approaches were not validated empirically, raising

doubts as to their effectiveness in practice. Our results

suggest that future research should focus on develop-

ing a common trace exchange format for traces, design-

ing scalable trace representations, as well as conducting

empirical studies to assess the effectiveness of proposed

approaches.

Keywords Model Driven Engineering, Executable

Models, Model Execution Tracing, Dynamic Analysis

of Model Driven Systems, Systematic Mapping Study

1 Introduction

Model Driven Engineering (MDE) is a software devel-

opment paradigm that aims to decrease the complexity

of software systems development, by raising the level of

abstraction through the use of models and well-defined

modeling languages [98]. Two main types of model-

ing languages are used: General-Purpose Modeling Lan-

guages (GPMLs), such as UML, that can be used for

modeling systems regardless of the domain, and Domain-

Specific Modeling Languages (DSMLs) that are each

designed specifically for a given domain [15]. Models

are very useful for analyzing a system’s quality proper-

ties to explore design alternatives or identify potential

improvements, which requires checking both functional

and non-functional properties, by examining the struc-

tural and behavioral aspects of a system. In the case

of behavioral aspects, the focus of this paper, dynamic

V&V techniques are typically used. This family of tech-

niques necessitate the ability to execute models. To this



2 Fazilat Hojaji et al.

end, many efforts have been made to support the exe-

cution of models, such as methods that ease the devel-

opment of executable DSMLs (xDSMLs) [11, 21, 56, 84,

102], or to support the execution of UML models [19].

This endeavor includes both facilitating the definition

of the execution semantics of modeling languages, and

the development of dynamic V&V methods that are

tailored to these executable languages.

Yet, a very important prerequisite for most dynamic

V&V tools is the ability to trace the execution of ex-

ecutable models. For example, model checking tech-

niques as proposed by Meyers et al. [86], Jhala et al. [65],

Hilken et al. [60] and Hegedus et al. [57] check whether

execution traces satisfy a system’s temporal properties

and rely on execution traces for representing counter

examples. Omniscient debugging as, for instance, pro-

posed by Barr et al. [8] and Bousse et al. [10, 12] utilizes

execution traces to go back in the execution and re-

visit previous states. Semantic model differencing tech-

niques, such as the ones proposed by Langer et al. [73]

and Maoz et al. [80], compare execution traces of two

models to identify semantic differences between them.

In the last decade, there has been a noticeable in-

crease in the number of papers on tracing techniques

for model executions (a detailed discussion of this trend

will follow in Section 3.2.1.2). However, the direction in

which the field is heading is not clear at the moment,

as are the advantages and limitations of existing tech-

niques. We believe this is due to the lack of a survey

of the state of the art and of a classification of exist-

ing work in the area of model execution tracing. While

there are a few surveys available in literature that cover

related topics, such as techniques and tools for the ex-

ecution of UML models surveyed by Ciccozzi et al. [19]

and approaches for using models at runtime investi-

gated by Szvetits and Zdun [101], none of these studies

focuses on model execution tracing. We discuss the re-

lated surveys and their relationship to our work in more

detail in Section 7.

To overcome the limitations of existing studies, we

conducted a systematic mapping study of existing model

execution tracing techniques, following the guidelines

presented by Kitchenham and Charters [16, 69], and

Petersen et al. [93]. We examined 64 research studies

from an initial set of 645, and classified them based on

the following facets: (1) the types of models that are

traced, (2) the supported execution semantics defini-

tion techniques, (3) the traced data, (4) the purpose of

model execution tracing, (5) the data extraction tech-

nique, (6) the trace representation format, (7) the trace

representation method, (8) the language specificity of

the trace structure, (9) the data carrier format used

for storing traces, and (10) the maturity level of the

supporting model execution tracing tools, if provided.

Using this classification, we evaluated the state of the

art of model execution tracing techniques, and identi-

fied promising future research directions in this area.

The main contributions of this study are: (i) a frame-

work for classifying and comparing model execution

tracing techniques, (ii) a systematic review of the cur-

rent state of the art in model execution tracing, and (iii)

an exploration of open research challenges in model ex-

ecution tracing.

This study targets researchers and practitioners who

want to gain insight into existing model execution trac-

ing techniques, and/or contribute further to the devel-

opment of this field of study.

This study focuses on model execution tracing ap-

proaches. Other tracing techniques employed in MDE,

such as maintaining traceability links between source

and target models of model transformations and trac-

ing the execution of model transformations, are out of

the scope of this paper. We also exclude tracing tech-

niques for programs written in general-purpose pro-

gramming languages (e.g., [53], because the require-

ments for tracing models differ from those that ap-

ply to tracing programs. In particular, xDSMLs usually

provide concepts at a higher level of abstraction than

those in programming languages. This requires trace

formats that are usually quite different from trace for-

mats for general-purpose programming languages. For

instance, while for the execution of programs written

in general-purpose programming languages, traces com-

monly capture information about threads and function

calls, those concepts are not generally applicable to

modeling languages. Consider, for instance, the UML

state machine language where the primary concepts are

states and transitions, but neither threads nor func-

tion calls are part of the language. Also, xDSMLs and

general-purpose programming languages reside in dif-

ferent technological spaces.

The remainder of this paper is structured as fol-

lows. In Section 2, we present background information

related to model execution tracing. In Section 3, we

describe the research method used for conducting the

mapping study and the classification scheme applied

for the research. Section 4 reports the main findings.

In Section 5, we present identified open challenges and

present future research directions. In Section 6, we eval-

uate our approach and findings by discussing limita-

tions and threats to validity. Section 7 outlines the re-

lated work. Section 8 summarizes the results and con-

cludes the paper.



Model Execution Tracing: A Systematic Mapping Study 3

2 Background

In this section, we define the concepts of executable

modeling languages, executable models, and model ex-

ecution traces.

2.1 Executable Modeling Languages

An executable modeling languages is a specific type

of modeling languages that supports the execution of

models, and thus enables the application of dynamic

V&V techniques.We want to note that modeling lan-

guages can be considered as programming languages

that raise the level of abstraction beyond code to ex-

press information on systems in a structure that is de-

fined by a consistent set of rules. The rules are used

for interpretation of the meaning of components in the

structure [66]. The main difference between code-based

programming languages and modeling languages is the

higher level of abstraction.

To support the execution of models, an executable

modeling language must provide execution semantics.

There are three different approaches for defining the ex-

ecution semantics: the denotational semantics approach,

the translational semantics approach, and the opera-

tional semantics approach [17]. The denotational se-

mantics, which is also known as mathematical seman-

tics, describes the semantics of a language by defin-

ing algebraic/mathematical terms [100]. In the transla-

tional approach, the model is translated into another

executable language for execution. This can be done

through exogenous model transformations or through

code generation if the target language possesses a gram-

mar. In the operational approach, the execution behav-

ior of models conforming to an executable modeling lan-

guage is defined by an interpreter (a virtual machine).

The interpreter first constructs a representation of the

execution state of a model and then modifies this rep-

resentation by executing the model through a series of

transitions from one execution state to the next one.

To build the initial representation of a model’s execu-

tion state, an exogenous model transformation is used.

The transitions between execution states are realized as

in-place model transformations.

In summary, we define the terms executable mod-

eling language and executable model as follows. These

definitions are based on the ones proposed by Bousse

et al. [14].

Definition 1 An executable modeling language is a mod-

eling language with execution semantics that can be

used to define and execute models. Execution seman-

tics specifies the execution behavior of models.

Definition 2 An executable model is a model conform-

ing to an executable modeling language. It defines an

aspect of the behavior of a system in sufficient detail to

be executed.

In MDE, many different executable modeling lan-

guages have been developed and used to express the

behavior of systems. Examples include Petri nets [94],

fUML [91], BPMN [90], live sequence charts [28], and

story diagrams [39].

To illustrate the concept how a model can be exe-

cuted, we use the Petri net model in Figure 1. The mod-

eling concepts provided by the Petri net language are

places and transitions where places and transitions can

be connected with each other. Our example model con-

sists of four places p1 to p4 and two transitions t1 and

t2. We define the execution semantics of the Petri net

language following the operational semantics approach.

In particular, we define the execution state of a Petri

net by a distribution of tokens among places (e.g., in

the initial state, the place p1 holds one token) and two

transformations run and fire that change the execution

state. The rule fire fires transition, i.e., removes one to-

ken of each input place of the transition and adds one

token to each output place of a transition. The rule run

calls the rule fire for all enabled transitions, i.e., transi-

tions whose input places contain at least one token. In

our example, first the transition t1 is fired, because its

only input place p1 holds one token. Thereafter, there

is one token at each of the places p2 and p3, which are

the input places of transition t2. Thus, the transition t2

can be fired in the next execution step completing the

execution of the Petri net with one token at place p4.

Metrics that can be captured about the execution of a

Petri net are manifold including the reached markings

(i.e., token distributions), the number of transition fir-

ings in the complete model or per transition, and the

number of tokens flowing through places. More com-

plex analyses may be performed on the basis of this

data, such as loop detection.

2.2 Model Execution Traces

There exist many definitions of the term tracing in the

literature, such as the use of logging mechanisms to

record information about a program’s execution [70] or

a protocol to capture the behavior of a running pro-

gram [85]. For this work, we define model execution

traces as follows:

Definition 3 A model execution trace captures rele-

vant information about the execution of an executable

model. This information may include execution states,



4 Fazilat Hojaji et al.

p1

p3

p2t1

fire(t1) fire(t2)

run()

t2 p4 p1

p3

p2t1 t2 p4 p1

p3

p2t1 t2 p4

Fig. 1 Example of a Petri net model execution

events that occurred during the execution, execution

state changes, processed inputs, and produced outputs.

Tracing a model execution is needed to support var-

ious dynamic V&V activities at the model level. Per-

forming dynamic V&V tasks at the early stages of model-

driven development processes is desirable to improve

quality and prevent rework at later stages. Typical ex-

amples of dynamic V&V include debugging, testing,

model checking, trace analysis for program comprehen-

sion, and many other dynamic analysis tasks (see [51]

for examples). These techniques rely typically on exe-

cution traces as a representation of the behavior of the

system.

The content of traces depends on the degree of ab-

straction required by the desired dynamic V&V tech-

nique and the runtime concepts provided by the lan-

guages as well. Alawneh and Hamou-Lhadj [2] have cat-

egorized traces of code-centric systems into statement-

level traces, routine call traces, inter-process traces, and

system call level traces. In the case of executable mod-

els, execution traces may contain different kinds of in-

formation depending on the considered executable mod-

eling language. Furthermore, instead of tracing threads

and function call stacks, which are general concepts

of programming languages, concepts like transitions,

states, and actions are often traced in model execution

tracing.

The information to be traced may be extracted from

a model execution in different ways. For instance, for

executable modeling languages with operational seman-

tics, the interpreter of the executable modeling lan-

guage may provide features to record execution traces

(e.g., applied by Combemale et al. [21]), and for exe-

cutable modeling languages with translational seman-

tics, additional elements may be inserted in the target

model/code that are responsible for producing traces

(e.g., applied by Want et al. [103]).

An execution trace must conform to a trace format,

which defines the concepts required for representing ex-

ecution traces. A trace format may be defined using dif-

ferent techniques, such as XML schema (e.g., applied

by Kemper and Tepper [67, 68]), metamodels (e.g., ap-

plied by Hegedus et al. [56, 57]), and grammars (e.g.,

applied by Fernández-Fernández and Simons [37, 38]).

Furthermore, it may be specific to the specific aspects

of an executable modeling language (e.g., UML state

machines) or generic and applicable to any executable

modeling language. The generated execution traces can

be stored on a disk using different encoding techniques,

e.g. they may be recorded in databases (e.g., applied

by Domı́nguez [35]), as simple text files (e.g., applied

by Crane and Dingel [26]) or as XML documents (e.g.,

applied by Combemale et al. [23]).

Thus, there are many different dimensions (trace

purpose, trace content, trace data extraction technique,

trace format, etc.) that can be used to classify and com-

pare existing model execution tracing solutions. Our

classification schema developed as part of this system-

atic mapping study is introduced in Section 3.2.2.

3 Research Method

To conduct this systematic mapping study, we followed

the guidelines presented by Kitchenham and Charters [16,

69], and Petersen et al. [93]. The goal of this study is

to answer the following research questions.

Q1 (Type of Models): Which executable modeling

languages are targeted by model execution tracing

approaches?

Q2 (Semantics Definition Technique): Which tech-

niques are used to define the execution semantics of

executable modeling languages targeted by model

execution tracing approaches?

Q3 (Trace Data): What kind of data is captured in

model execution traces?

Q4 (Purpose): For what purposes is model execu-

tion tracing used?

Q5 (Data Extraction Technique): Which techniques

are used for extracting runtime information from

model executions in order to construct execution

traces?

Q6 (Trace Representation Format): Which data rep-

resentation format is used for defining the trace data

structure?

Q7 (Trace Representation Method): How is the trace

data structure defined?



Model Execution Tracing: A Systematic Mapping Study 5

Q8 (Language Specificity of Trace Structure): Is the

data structure specific to the considered executable

modeling language, specific to a particular kind of

executable modeling language, or considered inde-

pendent of any executable modeling language (i.e.,

generic)?

Q9 (Data carrier format): Which data carrier for-

mat is used for storing traces?

Q10 (Maturity Level): How mature are available

tools for model execution tracing?

The study protocol includes three phases, namely

planning, conducting, and reporting. In the following,

we discuss the planning and conducting of the study.

The study results are reported in Section 4.

3.1 Review Planning

The first phase of our survey process is planning, which

consists of defining the search strategy and review pro-

cess. In the following, we explain the search strategy.

The review process is outlined as part of the discussion

of the review conduction in Section 3.2.

We used the following online libraries to find re-

search studies related to model execution tracing. With

this list of online libraries, we aimed at achieving a com-

prehensive coverage of publication venues from all ma-

jor publishers in the field of software engineering.

– ACM Digital Library (http://dl.acm.org)

– IEEE Xplore (http://ieeexplore.ieee.org)

– ScienceDirect (http://www.sciencedirect.com)

– Springer Link (http://www.springer.com)

– Scopus (http://www.scopus.com)

The terms we used to select relevant research stud-

ies are as follows. Each term includes several keywords

meaning that at least one of the keywords has to be

present in a paper.

A = model tracing, model-based trace, execution trace,

tracing, trace

B = MDE, model-driven, model-level, model-based

C = meta-model, metamodel, modeling language

D = model execution, model verification, dynamic anal-

ysis, executable model, xDSML

The overall search string can be combined in the

following way:

Search String = (A ∧ (B ∨ C ∨ D)) (1)

The rationale behind using this search string is to

identify the largest number of research studies related

to model execution tracing. We performed an advanced

search in the aforementioned online research databases

and search engines using this search string.

Furthermore, we defined two types of inclusion and

exclusion criteria to decide whether a publication found

in the search should be included in the study or ex-

cluded. The first type is a set of format-related crite-

ria, such as publication language and publication type.

These criteria have been selected based on the guide-

lines suggested by Adams et al. [1] and Petersen et

al. [93]. The second type is a set of content-related cri-

teria. The selection criteria used in this study are given

below. The publications have been selected on the basis

of these criteria through a manual analysis of their ti-

tles, abstracts, and keywords. When in doubt, also the

conclusions of a publication have been considered.

Inclusion Criteria:

1. Publications in peer-reviewed journals, conferences,

and workshops

2. Publications that address problems in the field of

model execution tracing

3. Publications dealing with recording execution traces

for models or designing execution trace formats for

executable modeling languages

Exclusion Criteria:

1. Books, web sites, technical reports, dissertations,

pamphlets, and whitepapers (based on the guide-

lines suggested by Adams et al. [1] and Petersen et

al. [93]).

2. Summary, survey, or review publications

3. Non peer-reviewed publications

4. Publications not written in English
5. Publications after February 2018, the time the final

search for primary studies was conducted

6. Publications on traceability in model transforma-

tion

7. Publications that do not consider executable models

8. Publications not focusing on MDE (e.g., execution

tracing in code-centric approaches)

3.2 Review Conduction

The second phase of our study process, review con-

duction, consists of three main activities: article selec-

tion, data extraction, and article classification, which

are elaborated in the following.

3.2.1 Article Selection

The article selection comprised a pilot study, the actual

selection of primary studies, and the assessment of the

quality of the selected primary studies.



6 Fazilat Hojaji et al.

3.2.1.1 Pilot Study

Before the actual selection of articles, we performed

a pilot study as suggested by Kitchenham and Char-

ters [16, 69] and Petersen et al. [93] to confirm the re-

liability of our selection criteria.

In this pilot study, a set of ten articles was pres-

elected from different sources and publishers. This list

was defined based on the bibliography of one of our ear-

lier papers [62]. This selection included seven articles

that should be included in the study as primary studies

and three articles that should be excluded. The selec-

tion was done by Fazilat Hojaji and Bahman Zamani.

The selected articles were then given to Abdelwahab

Hamou-Lhadj, a domain expert who was not involved

in the planning phase of the study process. Therefore,

he was not biased by the search process. He was asked

to decide based on the defined inclusion and exclusion

criteria which of the selected articles should be consid-

ered as primary studies and which ones should be ex-

cluded from the mapping study. The results were then

cross-checked against the initial classification of the pre-

selected articles in primary studies and non primary

studies.

Pilot study results: The first execution of the pi-

lot study failed. Out of the ten articles, only six were

correctly classified. In particular, five articles were cor-

rectly identified as primary studies and one was cor-

rectly identified as non primary study. Based on these

results, the selection criteria were refined and the pi-

lot study re-executed. After the second execution, the

results were acceptable: Seven articles were correctly

identified as primary studies and one was correctly iden-

tified as non primary study. The two articles that were

assessed differently focused on dynamic analysis in code-

centric approaches, which is beyond the scope of this

mapping study. This led us to add an extra exclusion

criterion excluding tracing approaches not focusing on

MDE (exclusion criterion 8).

3.2.1.2 Primary Studies Selection

This step comprised the search for relevant publications

using the search string introduced in Section 3.1, the

elimination of duplicate publications found in multiple

online libraries, and the filtering of the publications by

applying the aforementioned selection criteria.

Figure 2 shows the selection process of the primary

studies along with the obtained results of the tasks.

The initial search process returned 942 results including

297 duplicates. For the studies that were identified in

more than one online library, we considered their orig-

inal publisher. In order to assess the relevance of the

found studies to our topic, we reviewed their titles, ab-

Initial Search

Removing 
Duplicates

First Filtering 
(Abstract, Title, 
keywords, Intro, 

Conclusion)

Snowballing 

Applying 
Inclusion/Exclusion 

Criteria

Finalizing Primary
Studies

942 studies found

297 studies removed
645 studies remained

506 studies removed
139 studies remained

68 studies removed
71 studies remained

18 studied removed
53 studies remained

11 new studies added 

64 final primary studies

Detailed Filtering

Fig. 2 Primary studies selection process

stracts, keywords, introduction sections, and if needed

conclusion sections. In this step, 506 studies were re-

jected, while 139 moved on to the next step. Next, we

applied the inclusion and exclusion criteria. The result

was a set of 71 studies. In the next step, a more detailed

filtering was applied by inspecting the entire content of

the remaining 71 studies. Most of the studies eliminated

in this step were related to traceability in model trans-

formation, and also dynamic analysis in code-centric

approaches. The filtering yielded 53 remaining studies.

In order to minimize the risk of missing any relevant

studies, we performed a snowballing step by checking

the references of the remaining 53 studies and identified

11 more studies fulfilling the inclusion criteria. Hence,

these studies were added to the primary studies. The

final set of primary studies investigated in this mapping

study consists of 64 studies.

Publication trends: Figure 3 shows for each used

online library the total number of studies that were re-

trieved using the defined search string (initial studies),

the number of studies remaining after the removal of

duplicates and first filtering (potential studies), and the

number of studies finally included in the mapping study

after applying inclusion and exclusion criteria and de-

tailed filtering (primary studies). Figure 4 shows the

publication years of the primary studies. As can be seen

in this figure, first publications on the topic of model

execution tracing appeared around the year 2000, but

only in 2007, the topic gained more interest by the sci-

entific community leading to an increase in publications

on this topic per year with the highest number of publi-

cations in the year 2014. Finally, Figure 5 presents the

distribution of the selected primary studies based on the

publication type. We only included studies published



Model Execution Tracing: A Systematic Mapping Study 7

183
174

165

102

21
16

42

31 35

15
10

15

2

21

5

0

20

40

60

80

100

120

140

160

180

200

ACM Springer ScienceDirect IEEE Scopus

Initial studies Potential studies Primary studies

Fig. 3 Studies retrieved through online libraries

1 1 1

4

5

6

4

6

8

4

11

7

3

2

1

0

2

4

6

8

10

12

1999 2001 2004 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 4 Primary studies per year

40

14
10

0
5

10
15
20
25
30
35
40
45

Conference Journal Workshop

Fig. 5 Primary studies per publication type

in peer-reviewed workshops, conferences, and journals.

Please note that we considered symposia and congresses

also as conferences. From the 40 primary studies shown

in Figure 5 as conference papers, 4 have been presented

at symposia and 1 at a congress. The figure shows that

studies in the field of model execution tracing have been

mostly published in conference proceedings.

3.2.1.3 Quality Assessment

We also evaluated the quality of the selected primary

studies as suggested by Kitchenham and Charters [16,

69] and Petersen et al. [93] to make sure that they are

72%

53%

61%
64%

38%

28%

36% 38%
33%

45%

0%

11%

2% 3%

17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

QA1 QA2 QA3 QA4 QA5

Yes Partially No

Fig. 6 Results of quality assessment of primary studies

QA1
23%

QA2
19%

QA3
21%

QA4
21%

QA5
16%

Fig. 7 Total score for quality assessment questions

of sufficient quality to be included in a systematic map-

ping study. For this, we developed a checklist containing

five quality assessment questions as presented in Ta-

ble 1. The questions are based on the suggestions given

in [16, 69] and [93], as well as the questions used in a

study by Santiago et al. [96]. The questions have been

answered for all primary studies by Fazilat Hojaji and

Bahman Zamani. Thereby, the score values were ‘Yes’

= 1, ‘Partly’ = 0.5 or ‘No’ = 0.

Figure 6 shows the percentages of primary studies

assigned ‘Yes’, ‘Partly’, or ‘No’ on the five quality as-

sessment questions. It shows that for each of the five

questions, most of the studies (83%-100%) score ’Yes’

or ’Partly’, which confirms that the selected primary

studies are of sufficient quality to be included in this

mapping study. We also calculated (“% total score”)

for each quality assessment question, which shows the

percentage of scores obtained by all the primary studies

assigned for a given quality assessment question over

sum of the scores obtained by all primary studies for

all QA1 to QA5. The arithmetic mean of the scores is

3.77 and the standard deviation 0.95. Figure. 7 shows

a pie chart depicting the distribution of scores for the

assessment questions. It illustrates that QA1 obtained



8 Fazilat Hojaji et al.

Table 1 Quality assessment questionnaire

ID Topic Question

QA1 Objective Did the study clearly define the research objectives?
QA2 Related work Did the study provide a review of previous work?
QA3 Research methodology Was the research methodology clearly established?
QA4 Validity and reliability Did the study include a discussion on the validity

and reliability of the procedure used?
QA5 Future work Did the study point out potential further research?

the highest score (%23) over the total score, while QA5

has the least (%16).

3.2.2 Data Extraction and Classification Scheme

In this section, we describe how we classified the se-

lected primary studies. We developed a classification

scheme by inspecting the content of all 64 selected pri-

mary studies with the goal of addressing our research

questions. In particular, for each research question, we

assigned keywords to the primary studies, which pro-

vide answers to the research question. For example, we

assigned the keyword “interactive model-level debug-

ging” for research question Q4 if the purpose of the

model execution tracing approach presented in a pri-

mary study was to realize this type of dynamic V&V

technique. Subsequently to this key-wording phase, the

keywords assigned for each research question were clus-

tered and for each cluster, a keyword encompassing all

clustered keywords was assigned. The result was a set

of attributes for each research question that was used to

classify the primary studies for this research question.

The attribute sets are described in the following.

3.2.2.1 Types of Models (Q1)

This attribute set is used to characterize model exe-

cution tracing approaches concerning supported exe-

cutable modeling languages. For this, we defined the

following attributes.

– Any : refers to approaches that can be applied to

any executable modeling language, i.e., approaches

that can be used to trace the execution of models

conforming to any executable modeling language.

– UML models: refers to approaches specifically de-

signed to trace the execution of models conforming

to UML or a subset of UML.

– Workflow models: refers to approaches specifically

designed to trace the execution of workflow models

that define the flow of work in processes. Workflow

models can be expressed in executable modeling lan-

guages like Petri nets and BPMN.

– Other : refers to approaches that are designed to

trace the execution of models conforming to partic-

ular executable modeling languages or kinds of ex-

ecutable modeling languages other than UML and

workflow modeling languages. Note that approaches

in this category are applicable to a restricted set of

executable modeling languages, while approaches in

the category Any can be applied to any executable

modeling language.

3.2.2.2 Semantics Definition Techniques (Q2)

This attribute set refers to the way execution seman-

tics are defined for the executable modeling languages

supported by a model execution tracing approach. As

introduced in Section 2.1, we distinguish denotational,

translational and operational semantics. Hence, the at-

tributes are defined as follows.

– Denotational : refers to approaches applicable to ex-

ecutable modeling languages whose execution se-

mantics are defined in algebraic/mathematical terms.

– Translational : refers to approaches applicable to ex-

ecutable modeling languages whose execution se-

mantics are defined in a translational way.

– Operational : refers to approaches applicable to exe-

cutable modeling languages whose execution seman-

tics are defined in an operational way.

– Unknown: refers to approaches where no informa-

tion about the kind of supported execution seman-

tics is provided in the associated primary studies.

3.2.2.3 Trace Data (Q3)

With this attribute set, we characterize model execu-

tion tracing approaches concerning the data recorded

in execution traces. In particular, we used the following

attributes.

– Event : refers to approaches that trace events occur-

ring during the execution of a model.

– State: refers to approaches that trace information

about the evolution of the execution state of a model.

– Parameter : refers to approaches that trace inputs

processed by the execution of a model or outputs

produced by the execution of a model.



Model Execution Tracing: A Systematic Mapping Study 9

3.2.2.4 Purpose (Q4)

This attribute set is concerned with the purpose of

the investigated model execution tracing approaches,

in particular, the purpose of execution traces produced

by the individual approaches. We determined the pur-

poses from the primary studies by considering the appli-

cations of execution traces mentioned or explicitly pre-

sented by the authors as part of their contribution. This

way, we identified the following purposes of model ex-

ecution traces that serve as attributes for this research

question.

– Debugging : refers to techniques to interactively con-

trol and observe the execution of a model in order

to find and correct defects. Model execution traces

can be utilized in different ways for the purpose of

debugging executable models. For instance, execu-

tion traces can be used in omniscient debugging to

travel back in time in the execution to visit previous

execution states, to replay past executions, or to re-

trieve the runtime information about the execution

of a model that should be shown to a user.

– Testing : refers to techniques for testing models con-

cerning functional or non-functional properties or

for testing applications with the help of models con-

cerning functional and non-functional properties. Ex-

ecution traces can be used in testing, for instance, as

oracles or as basis for evaluating test cases provid-

ing the necessary runtime information to determine

the success or failure of a test case.

– Manual analysis: refers to techniques for manually

analyzing the execution behavior of a model or the

modeled system. Such techniques are mostly con-

cerned with the visualization and querying of model

execution traces.

– Dynamic analysis: refers to the analysis of runtime

information gathered from the execution of a model,

similar to the definition of dynamic analysis of pro-

grams given in [24]. Thereby, gathered runtime in-

formation can be analyzed for different properties,

including general behavioral properties, functional

properties, and non-functional properties. Execution

traces have a natural application in dynamic anal-

ysis as they record runtime information about a

model or program execution.

– Model checking : refers to techniques in which all

the possible execution states of a model are checked

with respect to some property. Model checking may

rely on execution traces for representing the state

space of model or for representing counter examples

found for violated properties.

– Semantic differencing : refers to techniques that com-

pare execution traces of models to understand the

semantic differences between them.

3.2.2.5 Data Extraction Techniques (Q5)

This attribute set focuses on the techniques used for

the extraction of the traced runtime information during

model execution. We categorized the data extraction

techniques identified in the investigated primary studies

using the following attributes.

– Source instrumentation: Elements are added to the

executable model, which are responsible for the con-

struction of execution trace.

– Target instrumentation: This data extraction tech-

nique only concerns model execution tracing ap-

proaches considering executable modeling languages

with translational semantics. In this technique, ele-

ments are added to the target model or target code

generated from a model for its execution. These in-

troduced elements are responsible for the construc-

tion of execution traces.

– Interpreter : This data extraction technique only con-

cerns model execution tracing approaches consider-

ing executable modeling languages with operational

semantics. In this technique, execution traces are

constructed by the interpreter of an executable mod-

eling language (i.e., by the executable modeling lan-

guage’s operational semantics), or by the execution

engine responsible for executing the operational se-

mantics of an executable modeling language.

– External tool : The runtime information to be re-

corded in an execution trace is provided by an ex-

ternal tool. Such an external tool could be, for in-

stance, a model checker.

– Other : This attribute is assigned to approaches that

use none of the data extraction techniques repre-

sented by the other attributes.

3.2.2.6 Trace Representation Format (Q6)

This attribute set refers to the kind of format used

for the representation of execution traces. We catego-

rized the trace representation formats of model execu-

tion tracing approaches using the following attributes.

– Metamodel : the data structure used for representing

traces is defined using a metamodel.

– Text format : the data structure used for represent-

ing traces is defined through some well-defined text

format. In particular, approaches defining a formal

grammar for representing traces or producing traces



10 Fazilat Hojaji et al.

in the form of well-structured log outputs fall into

this category.

– Other : this attribute is assigned to model execution

tracing approaches that use trace representation for-

mats other than the ones captured by the attributes

given above.

– Unknown: this attribute is assigned to approaches

where the associated primary studies do not men-

tion the used trace representation format.

3.2.2.7 Trace Representation Method (Q7)

This attribute set refers to the method used for defining

the trace representation format. It includes the follow-

ing attributes.

– FR (framework): refers to approaches that provide a

framework for defining custom trace representation

formats.

– AG (automatically generated): refers to approaches

that automatically generate a trace representation

format for a given executable modeling language.

– MD (manually developed): refers to approaches that

use a trace representation format manually devel-

oped for the respective approach.

– AE (already existing): refers to approaches that rely

on some existing trace representation format.

– Unknown: refers to approaches where the associated

primary studies do not mention the used trace rep-

resentation method.

3.2.2.8 Language Specificity of Trace Structure

(Q8)

This attribute set categorizes model execution tracing

approaches concerning the language-specificity of the

used trace data structure. For this categorization, we

defined the following attributes.

– Language-independent : refers to approaches that ei-

ther rely on generic data structures for representing

execution traces, i.e., data structures that can be

used to represent execution traces of models con-

forming to any executable modeling language, or

approaches that support the creation of executable

modeling language-specific trace data structures but

for any executable modeling language.

– Language-specific: refers to approaches that rely on

a data structure specific to a particular executable

modeling language.

– Specific to a certain kind of language: refers to ap-

proaches that rely on a data structure that is spe-

cific to a particular kind of executable modeling lan-

guage, i.e., trace data structures that do not only

support the tracing of the execution of models con-

forming to a single executable modeling language

but that are not general enough to trace models of

any executable modeling language.

3.2.2.9 Data Carrier Format (Q9)

This attribute set refers to the format used to store exe-

cution traces. Based on the investigated primary stud-

ies, we identified the following used data carrier for-

mats.

– Text : refers to approaches storing execution traces

in simple text files.

– XML: refers to approaches storing execution traces

in XML syntax, which includes, for instance, XMI

files.

– Database: refers to approaches storing execution traces

in databases.

– Unknown: refers to approaches where the associated

primary studies do not discuss the supported data

carrier formats.

3.2.2.10 Maturity Level (Q10)

With this attribute set, we capture whether model ex-

ecution tracing approaches offer tool support and how

mature this tool support is. To measure the maturity

level of approaches, we used the four-level scale pro-

posed by Cuadros Lopéz et al. [27] defined as follows:

– Level 1 (not implemented): The approach is not im-

plemented in a tool.

– Level 2 (partially implemented): The approach is im-

plemented in a prototype tool but not all features

are supported.

– Level 3 (fully implemented): The approach is com-

pletely implemented in a tool. The tool has been

used for several applications to validate the approach.

– Level 4 (empirical evaluation): The approach is com-

pletely implemented in a tool and the tool has been

evaluated empirically.

3.2.3 Article Classification

This step comprised the assignment of attributes to

the selected primary studies, the summarization of pri-

mary studies into distinct model execution tracing ap-

proaches, and the analysis of the resulting classification

of investigated approaches to summarize the research

body.

3.2.3.1 Attribute Assignment

We classified the selected primary studies based on the

attribute sets defined above. We achieved this by read-



Model Execution Tracing: A Systematic Mapping Study 11

ing the complete content of the primary studies. In par-

ticular, the first author did the initial classification by

reading the paper and applying the classification, and

one of the other authors reviewed the classification by

also completely reading the paper and assigning the

classification attributes. In case there was a disagree-

ment about the classification, in-depth discussions were

done and the paper was re-read by both to come to a

common classification. In some cases, we had to review

the same primary study several times to make sure that

we interpret its content correctly. The classification was

done in a spreadsheet that was shared among the au-

thors and also used to keep notes about additional de-

tails of the primary studies and exchange comments on

individual classifications.

3.2.3.2 Summarization of primary studies

There are cases where multiple primary studies present

the same model execution tracing approach but on dif-

ferent levels of detail or in different development stages.

For instance, some journal articles selected as primary

studies are extensions of earlier work of the authors

published in the proceedings of conferences or work-

shops, which were also selected as primary studies. Thus,

we decided to summarize such tightly related primary

studies as one approach and analyze the classification

of approaches instead of the classification of primary

studies. Thereby the classification of an approach is the

union of the attributes assigned to all primary stud-

ies summarized in this approach. This summarization

step yielded 33 approaches from the 64 selected primary

studies.

3.2.3.3 Classification Results

The attribute assignment and summarization of the 64

selected primary studies resulted in a classification of

33 approaches, which can be regarded as the body of

knowledge in model execution tracing. The results of

the classification are presented in Figure 8, which shows

the frequency in which the individual attributes have

been assigned to the investigated model execution trac-

ing approaches per research question. These results are

discussed in detail in Section 4. The attributes assigned

to each individual approach are shown in Table 2 (for

Q1-Q3), Table 3 (for Q4-Q5), and Table 4 (for Q6-Q10),

which are given in the end of this paper. In these tables,

the investigated approaches are numbered from A01 to

A33.

All artifacts prepared for this work including the

spreadsheet containing the classification of the selected

primary studies and bibliographic information have been

collected in a replication package that has been made

publicly available1.

4 Results

In this section, we discuss the classification results of

the investigated approaches for each research question

as given in Fig. 8 and Table 2-4.

4.1 Types of Models (Q1)

We found that concerning the targeted executable mod-

eling languages, the investigated model execution trac-

ing approaches can be classified into three categories

where each category comprises around one third of the

approaches: 36% of the approaches target UML models,

30% target workflow models (attribute ’Worflow mod-

els’ assigned to 9% of approaches) or models conform-

ing to other executable modeling languages (attribute

’Other’ assigned to 21% of approaches), and 33% are

independent of any executable modeling language.

Most of the approaches targeting UML models are

geared towards tracing UML activity diagrams or UML

state machines. Other behavioral UML diagrams, such

as UML sequence diagrams, have been a target only by

a few approaches in this category. Note that we classi-

fied approaches as supporting UML models only if the

authors explicitly stated this in the respective paper.

A small number of approaches 9% is devoted to

workflow models. Other executable modeling languages

are targeted by 21% approaches: MCSE description mod-

els [18] are targeted in A01 [92], stochastic discrete

event simulation models in A10 [67, 68], COLA mod-

els [72] in A12 [49, 50], CCSL clock constraint specifi-

cations in A16 [29, 30, 44], story diagrams in A18 [71],

live sequence charts in A28 [74], and Event-B models

in A30 [64]. It is worth noting that each of these exe-

cutable modeling languages is targeted by exactly one

of the investigated approaches, i.e., none of them is ad-

dressed in two or more approaches.

Especially in recent years it seems that more atten-

tion is directed towards approaches that provide generic

tracing mechanisms that are applied on models con-

forming to any executable modeling language: 64% of

these approaches (seven out of eleven) appeared in the

last five years (publication dates from 2013 to 2018),

while only 36% (four out of eleven) occurred between

2008 and 2011.

1 https://drive.google.com/drive/folders/

1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?usp=sharing

https://drive.google.com/drive/folders/1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?usp=sharing
https://drive.google.com/drive/folders/1wX1xu10bd5vmXp_UDIjRFB2_WhmFBx5-?usp=sharing


12 Fazilat Hojaji et al.

33%

36%

9%

21%

52%

42%

3%

6%

97%

58%

12%

15%

33%

24%

30%

21%

9%

3%

30%

36%

27%

6%

45%

18%

6%

30%

12%

15%

36%

12%

24%

30%

39%

30%

24%

24%

3%

48%

6%

12%

73%

9%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Any

UML

Workflow models

Other

Translational

Operational

Denotational

Unknown

Event

State

Parameter

Debugging

Testing

Manual analysis

Dynamic analysis

Model checking

Semantic differencing

Source instrumentation

Target instrumentation

Interpreter

External tool

Other

Metamodel

Text format

Other

Unknown

FR

AG

MD

AE

Unknown

language independent

language-Specific

Specific kind of language

XML

Text

Database

Unknown

Not implemented

Partially implemented

Fully implemented

Used in industry

Q
1

Ty
p

es
 o

f 
M

o
d

el
s

Q
2

Se
m

an
ti

cs
 

D
ef

in
it

io
n

Te
ch

n
iq

u
e

Q
3

Tr
ac

e 
D

at
a

Q
4

P
u

rp
o

se
Q

5
D

at
a 

Ex
tr

ac
ti

o
n

Te
ch

n
iq

u
e

Q
6

Tr
ac

e 
R

ep
re

se
n

ta
ti

o
n

Fo
rm

at

Q
8

La
n

gu
ag

e
Sp

ec
if

ic
it

y

Q
7

Tr
ac

e
R

ep
re

se
n

ta
ti

o
n

M
et

h
o

d

Q
9

D
at

a 
C

ar
ri

er
Fo

rm
at

Q
1

0
M

at
u

ri
ty

Fig. 8 Classification of model execution tracing approaches



Model Execution Tracing: A Systematic Mapping Study 13

4.2 Semantics Definition Technique (Q2)

Concerning the semantics definition technique, we dis-

covered that about one half of the investigated model

execution tracing approaches assume that the execution

semantics of supported executable modeling languages

are defined in a translational way (52%), while the other

half of the approaches rely on operational semantics

(42%). Only one approach, A07 [20, 21, 22], supports

both translational and operational semantics. However,

the authors introduce only a very abstract pattern of

how to design executable modeling languages as well

as tracing infrastructures for such executable modeling

languages, rather than providing a concrete tracing in-

frastructure or tooling that could be directly used.

Approach A26 [37, 38] considers denotational se-

mantics; hence, it falls into the category “denotational”.

For two approaches, we could not identify the sup-

ported semantics definition techniques from the respec-

tive papers. We assigned them to the category “Un-

known”.

We conclude that the majority of existing model ex-

ecution tracing approaches supports executable mod-

eling languages with either operational semantics or

translational semantics, while there are no concrete so-

lutions for offering model execution tracing capabilities

to executable modeling languages irrespective of how

their execution semantics are defined.

Another interesting finding is that the majority of

approaches applicable to any executable modeling lan-

guage, namely 64%, rely on operational semantics. In

contrast, 67% of the approaches targeting UML rely on

translational semantics. The latter confirms the finding

by Ciccozzi et al. [19] that translational semantics are

predominantly used for the execution of UML models—

in 85% of the investigated solutions—rather than oper-

ational semantics.

4.3 Trace Data (Q3)

All of the investigated approaches except one (97%)

trace events that occur during the execution of a model.

Thereby, 42% of all approaches only trace execution

events by producing traces that are basically sequences

of events that occur during a model execution. Equally

many approaches (again 42%) do trace besides execu-

tion events also information about the evolution of the

execution state of models. Only a very small fraction of

the investigated studies, namely 12% capture rich traces

that record execution events, execution states, as well

as inputs and outputs. This applies to the approaches

A09 [77, 78, 79], A12 [49, 50], A20 [82, 83, 84, 87, 88],

and A21 [80, 81]. Approach A02 [106] is the only one

that does not trace execution events but only execution

state information.

4.4 Purpose (Q4)

Most existing model execution tracing approaches have

been used for testing 33% or dynamic analysis 30%.

They are followed by 24% of approaches applied for

manual analysis of model behaviours, and 21% of tech-

niques used for model checking. Only few approaches

have been applied for debugging and semantic model

differencing, namely 15% and 9%.

The low number of approaches applied for debug-

ging and semantic model differencing is due to two

reasons: First, in modeling, traces are typically used

for a specific type of debugging, omniscient debugging

and debugging previous execution (i.e., replaying ex-

ecutions). The second reason is that semantic model

differencing is relatively a new research area, at early

research development stages.

Interestingly, most of the investigated approaches,

namely 70%, have been applied on one type of model

analysis technique only, whereas only 27% of approaches

have been applied to realize two different kinds model

analysis techniques. The most common combination of

model analysis techniques is the combination of man-

ual analysis and dynamic analysis, which is reported

by 15% of the investigated approaches (or 56% of the

approaches applied on a combination of two analysis

techniques). It is also worth mentioning that manual

analysis is the model analysis technique that has been
most often combined with other model analysis tech-

niques (in 21% of all approaches or 78% of approaches

applied on a combination of two analysis techniques).

There is only one approach, A20 [82, 83, 84, 87, 88],

which uses traces for realizing three different types of

model analysis tasks, namely testing, dynamic analysis,

and debugging.

Another interesting finding is that more than half

of the investigated model execution tracing approaches

that are applicable to any executable modeling lan-

guage are used for model checking, namely 55%. The

other model analysis techniques are only considered by

1-2 approaches each. In contrast, half of the approaches

targeting UML have been applied for model testing, fol-

lowed by 33% of approaches applied for manual anal-

ysis, and 25% of approaches applied for dynamic anal-

ysis. Only two of the approaches targeting UML have

been applied for debugging, and one each for model

checking and semantic model differencing.



14 Fazilat Hojaji et al.

4.5 Data Extraction Techniques (Q5)

The most common data extraction techniques used by

the investigated model execution tracing approaches

are tracing by an interpreter (36%), tracing through

target instrumentation (30%), and tracing by an exter-

nal tool (27%).

As already discussed in Section 3.2.2, tracing by

an interpreter only concerns executable modeling lan-

guages with operational semantics. From the model ex-

ecution tracing approaches supporting operational se-

mantics, 86% rely on this data extraction technique.

The other 14% rely on external tools for extracting the

runtime data to be traced.

Similarly, tracing through target instrumentation is

only applicable for approaches supporting translational

semantics. From the approaches supporting translational

semantics, 59% rely on target instrumentation for data

extraction. The majority of the remaining model exe-

cution tracing approaches supporting translational se-

mantics extract runtime data through external tools,

namely 29%. Only one approach supporting transla-

tional semantics, approach A02 [106], relies on source

instrumentation for data extraction, and one approach,

approach A12 [49, 50], relies on a middleware that is

part of the targeted execution platform for data ex-

traction and is hence classified as “Other” for the data

extraction technique.

It is also worth mentioning that approach A07 [20,

21, 22], which supports both translational and opera-

tional semantics (cf. Section 4.2), uses a model checker

(i.e., an external tool) for constructing traces when ex-

ecution semantics are defined in a translational way,

and construct traces through the interpreter when the

execution semantics are defined in an operational way.

Looking at the “External Tool” category, 44% of

the approaches assigned to this category support only

translational semantics, 22% support only operational

semantics, and 11% (1 approach) support both transla-

tional and operational semantics. For 22% of the ap-

proaches extracting data through external tools, the

supported semantics definition technique is unknown.

For the “Other” category, we already mentioned ap-

proach A12 [49, 50], which supports translational se-

mantics and relies on a middleware for extracting the

runtime information to trace. The second approach as-

signed to this category, approach A26 [37, 38], sup-

ports denotational semantics and traces are directly

constructed through the denotational semantics imple-

mented in Haskell.

From this data, we conclude that for model execu-

tion tracing approaches supporting operational seman-

tics, runtime data is extracted primarily by the inter-

preter, while for approaches supporting translational

semantics, runtime data is extracted primarily through

target instrumentation or external tools.

4.6 Trace Representation Format (Q6)

Our results on trace representation formats clearly in-

dicate that metamodels are most frequently used to de-

fine the data structure for representing model execu-

tion traces. In particular, 45% of the investigated ap-

proaches rely on metamodels. This result was expected,

since we study execution tracing approaches for exe-

cutable models and executable models commonly in-

stantiate metamodels as well.

More surprisingly, only 18% of model execution trac-

ing approaches define textual trace representation for-

mats and from these approaches, only one approach,

approach A26 [37, 38], actually defines a grammar for

representing traces while the others use a less formal

trace format, such as structured logs.

Approach A10 [67, 68] uses an XML format for rep-

resenting traces and approach A31 [58, 59] uses a graph-

based representation. These two approaches (6%) have

been classified as “Other”.

For almost one third of the investigated approaches

(30%), we could not identify the used trace represen-

tation format. Hence, these approaches have been as-

signed to the category “Unknown” for Q6.

4.7 Trace Representation Method (Q7)

Our classification results show that nearly half of the

investigated model execution tracing approaches (48%)

use a selected trace representation format. In particular,

more than one third of the approaches (36%) use trace

representation formats that were manually developed

particularly for the respective approach, while only 12%

rely on existing trace formats. An example of the latter

case is approach A30 [64] which reuses event trace di-

agrams (ETDs) proposed by Rumbaugh et al. [95]) as

trace format.

In contrast, 27% of approaches support custom trace

representation formats that are tailored towards the ex-

ecutable modeling language used to define the traced

executable models. In particular, 15% of approaches

automatically generate trace representation formats for

executable modeling languages, while 12% of approaches

provide a framework for manually defining custom trace

representation formats. However, it has to be noted

that this kind of approaches are a minority. An ex-

ample of an automated approach is the generative ap-

proach A23 [9, 10, 12, 13, 14], which automatically de-



Model Execution Tracing: A Systematic Mapping Study 15

rives multidimensional domain-specific trace metamod-

els for xDSMLs. Approach A22 [4, 5, 6, 7] is an example

of a framework for manually defining custom trace for-

mats. In particular, it allows the definition of textual

trace formats for UML models using so-called trace di-

rectives.

For the last category of approaches comprising 24%,

the trace representation method is unknown, i.e., not

mentioned by the associated primary studies.

4.8 Language Specificity of Trace Structure (Q8)

Concerning the language specificity of the used trace

data structure, the investigated approaches can be cat-

egorized into three groups of almost equal size: 39% of

the approaches use a trace data structure that includes

concepts specific to a certain executable modeling lan-

guage, 30% of the approaches use a trace data structure

that can be reused for executable modeling languages of

a specific kind, and 30% of the approaches use a trace

data structure that is independent of any executable

modeling language.

The majority of the approaches using a trace data

structure specific to a particular executable modeling

language target the UML language, namely 61%. In

contrast, no particular trend could be observed for the

approaches using trace data structures specific to a cer-

tain kind of executable modeling language. The ap-

proaches using a language-independent trace format tar-

get no particular executable modeling language or type

of executable modeling language but support any exe-

cutable modeling language.

4.9 Data Carrier Format (Q9)

Only little information could be extracted from the

primary studies concerning used data carrier formats

for storing execution traces: For almost half of the ap-

proaches (48%), no data carrier formats have been men-

tioned.

The other half of the investigated approaches either

uses an XML format or a plain text format for storing

execution traces, namely 24% each.

Only one approach, approach A19 [35], persists ex-

ecution traces in a database. In this approach, a UML

profile is generated for tracing system executions using

a UML state machines. A persistence component trans-

mits the runtime data obtained from the execution to

a trace database.

4.10 Maturity Level (Q10)

Our results for the classification of model execution

tracing approaches concerning maturity level show that

the majority of investigated approaches (73%) is fully

implemented. From this we conclude that the field of

model execution tracing has reached a moderate level of

maturity. However, among the investigated approaches,

only three (9%) have been subjected to an empirical

evaluation, namely approach A05 [40, 41, 42, 43] imple-

mented in the Populo tool, approach A31 [58, 59] im-

plemented in the TRACE tool, and approach A33 [97]

implemented for the tool UPPAAL. In fact, the most

common method used to validate the investigated ap-

proaches is through case studies. While the majority of

the case studies demonstrate the complete implementa-

tion of the approaches, they fail to show the approaches’

usefulness in industrial settings. Hence, little is known

about the value of existing model execution tracing ap-

proaches in industry and evaluations of this aspect are

hence needed to further mature this research field.

5 Future Research Directions

In the following, we discuss directions for future work

on model execution tracing, building upon our research

results presented in Section 4. In our opinion, it is nec-

essary to address the following topics not only from a

research perspective, but in collaboration with tool ven-

dors and end users to ensure widespread tool support

and to achieve industry adoption.

Scalable trace data structure: From the results

obtained for research question Q3 on the kind of traced

data, we can see that in fact a lot of data is recorded

by existing model execution tracing approaches: Almost

all approaches record information about occurred ex-

ecution events and more than 40% keep detailed ex-

ecution state information. This means, however, that

traces are expected to grow large, which may cause

scalability issues in both memory needed for storing

traces and time needed for processing them. Neverthe-

less, we could only identify three of the investigated

approaches that aim at addressing these scalability is-

sues. In particular, Bousse et al. aim to address this

issue in their approach A23 [9, 10, 12, 13, 14] by shar-

ing data among captured states so that only changes

in data are recorded. Similarly, Hegedus et al. propose

in their approach A14 [57] to reduce traced state in-

formation by only capturing state modifications and

events related to state modifications. In contrast, Kem-

per and Tepper propose in their approach A10 [67, 68]

to remove repetitive fragments from traces using heuris-

tic methods, such as cycle reduction. While the afore-



16 Fazilat Hojaji et al.

mentioned approaches consider some sort of trace com-

paction, they utilize different optimization potentials

and leave open whether the achievable compaction is

sufficient for industry applications. Thus, we see the

need for more detailed studies on scalable model exe-

cution tracing solutions. One direction is to investigate

the use of techniques for simplifying execution traces

used in code-centric approaches such as the ones pre-

sented by Cornelissen et al. [25] and Hamou-Lhadj et

al. [54].

Common trace exchange format: The results

obtained for research question Q7 on trace representa-

tion methods clearly shows that most existing model

execution tracing approaches rely on their own custom

trace formats. Only four of the investigated approaches

reuse an already defined trace format. Giving this large

variety of trace formats, it is apparent that a common

format for exchanging model execution traces is needed.

Such an exchange format, however, has to support the

representation of executable modeling language-specific

concerns in different levels of detail. This is indicated

by the results obtained for the research questions Q3

and Q8 that show that existing model execution trac-

ing approaches record information specific to partic-

ular executable modeling languages, and that besides

execution events, information about execution states

and processed inputs are also relevant to be traced in

specific contexts. A common trace format should be

expressive enough to capture the required runtime in-

formation for any executable modeling language. Also,

it should represent traces in a compact form to en-

able scalability of the analysis tools. Thereby, scala-

bility should be considered as a key requirement when

defining a common trace format. Examples of trace for-

mats for traces generated from code-centric approaches

are Compact Trace Format(CTF) proposed by Hamou-

Lhadj and Lethbridge [52, 55] and Message Passing In-

terface Trace Format (MTF) proposed by Alawneh and

Hamou-Lhadj [3]. These trace formats model traces of

routine calls and inter-process traces, respectively, in a

compact way, in order to facilitate efficient interchange

of traces among trace analysis tools. A similar effort

should be invested in defining standard trace formats

for traces of model executions that would facilitate in-

teroperability among V&V tools and hence make V&V

tools available to a broader user base.

Support of multiple semantics definition tech-

niques: Our results for research question Q2 show that

all approaches except one support either translational

semantics or operational semantics but not both. Ex-

ecutable languages use many different techniques for

defining operational semantics/ interpreters (e.g., pro-

gramming languages, action languages, and model trans-

formation languages) and translational semantics/ com-

pilers (e.g., model-to-model transformation languages,

target modeling languages, code generators, target pro-

gramming languages) [84]. Model execution tracing ap-

proaches focus on one of these techniques (either trans-

lational or operational). Therefore, they are applicable

in a very narrow scope. By supporting different seman-

tics definition techniques, we can reuse the same model

tracing approach in more scenarios. It is based on the

separation of concerns principle in order to separate

the concern of how to implement an executable lan-

guage (i.e., semantics definition technique) from how to

trace model executions. This would enable a broader

adoption of model execution tracing techniques for ex-

ecutable modeling languages implemented in different

ways. This would also enable the application of V&V

tools for executable modeling languages defined with

either semantics definition technique.

Empirical validation: While the majority of in-

vestigated model execution tracing approaches has been

implemented in prototype tools, there exists very lit-

tle empirical evidence about the usefulness of these ap-

proaches for industry. Even with complete demonstra-

tions, a considerable amount (more than 90%) of the

approaches also lacks any empirical evaluation, as shown

by our results obtained for research question Q10. No

approaches have been evaluated in industrial settings.

To mature the field of model execution tracing, empir-

ical validations of existing solutions and validations in

industry settings need to be performed.We intend in the

future to work on investigating the state of adoption of

model execution tracing in industry. We also intend to

work with developers of model-driven systems to under-

stand the state of practice of model execution tracing

and what the challenges developers face when using the

related techniques.

6 Limitations and Threats to Validity

Despite the care taken in the definition of the research

method, our mapping study is subject to known threats

and limitations. The most serious threats to the validity

of our research results are researchers’ bias in search-

ing, selecting, and classifying studies. To mitigate this

risk, we applied and strictly followed the guidelines sug-

gested by Kitchenham and Charters [16, 69] and Pe-

tersen et al. [93].

To mitigate the risk of missing relevant studies, we

have performed automated searches in the most pop-

ular digital online libraries in the field of software en-

gineering. The search strings used for this have been

derived from the defined research questions. Further-

more, we have performed a forward snowballing step



Model Execution Tracing: A Systematic Mapping Study 17

to identify additional studies that could be relevant for

our research.

To ensure the reliability of our selection criteria for

primary studies as well as ensure the quality of selected

primary studies, we have also performed a pilot study

and a quality assessment. Through the pilot study, we

could improve the original selection criteria and the

quality assessment showed that the selected primary

studies are of good quality.

In order to reduce the threat of misclassifying the

selected primary studies, we reviewed their full texts

thoroughly instead of reviewing only abstracts, intro-

ductions, and conclusions. Furthermore, the classifica-

tion of each primary study was reviewed by at least

one of the authors that was not involved in the original

classification. Any discrepancies were resolved by read-

ing the affected primary study again and discussing its

classification in detail.

7 Related Work

There exist several systematic review studies that have

been conducted in the context of MDE. However, none

of these studies target approaches for model execution

tracing approaches. To the best of our knowledge, this

is the first study that aims to survey the state of the

art in this area. In this section, we summarize recent

surveys in the domain of MDE that are related to our

study.

Ciccozzi et al. [19] conduced a systematic review of

research studies and tools concerned with the execu-

tion of UML models, which is also considered in 36%

of model execution tracing approaches investigated in

our work. The authors analyzed the identified research

studies on UML model execution concerning publica-

tion trends, technical characteristics, and evidence pro-

vided on industry adoption. Tools were analyzed con-

cerning technical characteristics only, such as UML mod-

eling characteristics (required diagrams, use of action

languages, etc.), execution strategy (translation, inter-

pretation, execution tools and technologies, etc.), in-

tended benefits, and readiness level among other char-

acteristics. The findings show a growing scientific inter-

est in UML model execution starting from 2008, which

is consistent with our findings for model execution trac-

ing, which show an increase in publications on the topic

from 2007. Furthermore, the study revealed that trans-

lational semantics has been predominantly used for the

execution of UML models rather than operational se-

mantics. Also this finding is consistent with the results

of our study. As intended benefits of UML model execu-

tion, the study identified reducing the effort for produc-

ing executable artifacts and improving the functional

correctness of models as the main benefits targeted, the

latter being highly related to model execution tracing

as it provides the basis for many dynamic V&V tech-

niques used for ensuring functional correctness. How-

ever, the study does not investigate in detail the types

of V&V techniques provided or applied by the iden-

tified research studies and tools. It only investigates

whether model-level interactive debugging, model simu-

lation (i.e., execution of models for analysis rather than

execution on the target platform), and formal specifica-

tion languages (e.g., for the purpose of model checking)

are supported with the result that model-level interac-

tive debugging and formal specification languages are

only supported by few approaches while model simula-

tion is supported by half of the approaches letting the

authors suggest that model execution is considered ben-

eficial for early design assessment. In contrast, we inves-

tigate in more detail which kinds of dynamic V&V tech-

niques are realized based on model execution tracing.

Interestingly, the authors identify the need to further

enhance the observability of execution models, which

includes the ability to record, play back, and analyze

execution traces of system operation on the target plat-

form or in a simulation. The last finding that we want to

highlight is that most of the analyzed UML model ex-

ecution solutions have a low technology readiness level

and that only a few of the investigated research studies

provide evidence through experimentation in industrial

settings and based on empirical evaluations. This is also

true for the model execution tracing approaches studied

in our work.

Szvetits and Zdun [101] applied a systematic lit-

erature review for the purpose of classifying and ana-

lyzing existing approaches for using models at runtime

for self-adapting systems. The existing approaches have

been classified concerning objectives, techniques, archi-

tectures, and kinds of models used. The authors re-

vealed the usage of different kinds of models at runtime

to achieve various objectives, such as adaptation, policy

checking, and error handling. Related to our study, the

authors identified monitoring as one objective of mod-

els at runtime defining monitoring as the activity of

monitoring “the system by using models which help to

trace application behavior”. However, other than model

execution tracing targeted in this study, models at run-

time trace the execution of an application rather than

the execution of models. As discussed by the authors,

this distinction becomes blurry when executable models

are in fact the executable application, i.e. when there

is no other implementation-level artifact manually or

automatically generated from executable models. The

authors point out that in such scenarios, it is not clear

how model execution fits into the models at runtime



18 Fazilat Hojaji et al.

paradigm. However, model execution in general defi-

nitely has a role in the models at runtime paradigm,

as it facilitates the analysis of model-based representa-

tions of application behavior to, for example, simulate

the consequences of runtime adaptations or to predict

system properties influencing runtime adaptation. Nev-

ertheless, we do not see a direct relationship between

model execution tracing and models at runtime.

Dias Neto et al. [33] conducted a systematic re-

view of Model-Based Testing (MBT) approaches. The

reviewed approaches have been categorized concerning

testing level, tool support, application scope, kind of

models used for test case generation, used test coverage

criteria, used test case generation criteria, and level of

automation. Among other findings, the study revealed

that there is a need for providing MBT solutions for

testing non-functional requirements, such as usability,

security, and reliability, and that most MBT approaches

have not been evaluated empirically or transferred to

industry. Recently, Gurbuz and Tekinerdogan [48] con-

ducted a systematic mapping study to identify and an-

alyze the state of the art in MBT for software safety.

The study revealed that 42% of the investigated pri-

mary studies were validated using industrial evidence

but that they nevertheless provide no strong evidence

of positive effects of MBT for software safety. Related to

these findings, we have identified two model execution

tracing solutions applied for MBT: In [74], MBT is used

for testing functional requirements, while in [103], secu-

rity testing is considered. Furthermore, we have found

most existing model execution tracing approaches to

also lack an empirical evaluation in industrial settings.

Nguyen et al. [89] conducted a systematic litera-

ture review on Model-Driven Security (MDS), which

is the application of MDE techniques and technolo-

gies to the development of secure systems. The au-

thors categorized the identified MDS approaches con-

cerning considered security concerns, applied model-

ing approach, used model-to-model and model-to-text

transformations, application domains, and evaluation

methods. The results revealed the need for address-

ing several security concerns that have been mostly ne-

glected by existing approaches, as well as multiple secu-

rity concerns simultaneously and in a systematic man-

ner. Furthermore, they discovered a lack of tool support

and empirical evaluations. Related to our work, the au-

thors identified that DSMLs play a key role in MDS but

that most of the currently existing security DSMLs lack

semantic foundation required for automated analysis.

They also point out that behavioral models are rarely

used but most approaches employ structural models

only, which hampers the ability to deal with multiple

security concerns simultaneously.

Nascimento et al. [34] conducted a systematic map-

ping study on Domain Specific Languages (DSLs) to

identify existing DSLs, their application domains, tools

for their development and usage, as well as techniques,

methods, and processes for creating, applying, evolv-

ing and extending DSLs. The study surveys DSLs on

a high level of abstractions and provides only a high-

level overview of existing DSLs and DSL engineering

approaches. While DSMLs are identified as one spe-

cific kind of DSLs, no investigations targeting specifi-

cally executable modeling languages, model execution,

or model execution tracing have been performed.

Giraldo et al. [45] conducted a systematic review to

identify definitions of quality in MDE. The authors dis-

covered that only 16 out of 134 reviewed studies provide

explicit definitions of quality and that these definitions

mostly concern the quality of models or the quality of

modeling languages. The remaining studies do not pro-

vide such an explicit definition. Among them, 40% of

the studies propose solutions for quality assurance, such

as behavioral verification of models, performance mod-

els, and model metrics. This study is related to our work

in the sense that model execution tracing approaches

in general aim at enabling the performance of dynamic

V&V for ensuring the quality of models or modeled

systems in terms of functional or non-functional qual-

ity properties. To investigate this aspect, we review in

this study the objectives of existing model execution

tracing solutions.

Santiago et al. [96] conducted a systematic litera-

ture review to analyze the current state of the art in the

management of traceability in MDE approaches. How-

ever, other than in our work, the considered notation of

traceability refers to the establishment of relationships

between products of the development process and is

hence unrelated with the tracing of model executions.

8 Conclusion

In this paper, we presented a systematic mapping study

on existing approaches for the tracing of model execu-

tions. With this study we aim at identifying and clas-

sifying the existing approaches, thereby assessing the

state of the art in this area, as well as pointing to

promising directions for further research in this area.

From 645 research studies found through automatic

searches in popular academic online libraries, we finally

selected and analyzed 64 primary studies that present

33 unique model execution tracing approaches. These

33 identified approaches were classified concerning sup-

ported types of models, supported execution semantics

definition technique, traced data, purpose, data extrac-

tion technique, trace representation format, trace rep-



Model Execution Tracing: A Systematic Mapping Study 19

resentation method, language specificity, data carrier

format, and maturity.

Our findings show that (i) the majority of approaches

target specific executable modeling languages with UML

being the most popular one; (ii) almost all model execu-

tion tracing approaches either support exclusively exe-

cutable modeling languages with operational semantics

or executable modeling languages with translational se-

mantics; (iii) besides execution events traced by almost

all approaches, a significant amount of approaches also

record detailed information about execution states; (iv)

the majority of model execution tracing approaches has

been applied on one kind of model analysis technique

only with testing and dynamic analysis being the most

frequently used ones; (v) approaches supporting opera-

tional semantics rely mainly on executable modeling

language interpreters for extracting tracing informa-

tion, while approaches supporting translational seman-

tics rely mostly on target instrumentation; (vi) meta-

models are most frequently used for defining the trace

representation format; (vii) thereby, trace representa-

tion formats are mostly specific to the respective ap-

proach with only a minority of approaches that reuse

existing formats; (viii) trace representation formats are

mostly dependent on the supported executable model-

ing language or specific to a certain kind of executable

modeling languages; (ix) traces are serialized either in

XML format or as plain text; and (x) only a small mi-

nority of approaches have been empirically validated.

The results suggest that more research is needed

particularly on suitable trace representations and broad

applicability of approaches with scalability and inter-

operability being two concerns that have been mostly

neglected so far. Furthermore, empirical validations of

the usefulness of approaches in real application scenar-

ios are needed to foster the adoption of model execution

tracing approaches in practice.

Acknowledgement

This work is partially supported by Iranian Ministry

of Science, Research and Technology and Isfahan Uni-

versity under the IMPULS Iran-Austria contract no.

4/11937.

References

1. Richard J Adams, Palie Smart, and Anne Sigis-

mund Huff. Shades of grey: guidelines for work-

ing with the grey literature in systematic re-

views for management and organizational stud-

ies. International Journal of Management Re-

views, 19(4):432–454, 2017.

2. Luay Alawneh and Abdelwahab Hamou-Lhadj.

Execution traces: A new Domain that requires the

Creation of a Standard Metamodel, volume 59 of

Lecture Notes in Communications in Computer

and Information Science book series, pages 253–

263. Springer, 2009.

3. Luay Alawneh and Abdelwahab Hamou-Lhadj.

An exchange format for representing dynamic in-

formation generated from High Performance Com-

puting applications. Future Generation Computer

Systems, 27(4):381–394, 2011.

4. Hamoud Aljamaan and Timothy C Lethbridge.

Towards Tracing at the Model Level. In Pro-

ceedings of the 19th Working Conference on

Reverse Engineering (WCRE), pages 495–498.

IEEE, 2012.

5. Hamoud Aljamaan, Timothy C Lethbridge, Omar

Badreddin, Geoffrey Guest, and Andrew Forward.

Specifying trace directives for UML attributes

and state machines. In Proceedings of the 2nd

International Conference on Model-Driven En-

gineering and Software Development (MODEL-

SWARD), pages 79–86. IEEE, 2014.

6. Hamoud Aljamaan, Timothy C. Lethbridge, and

Miguel A. Garzón. MOTL: A Textual Language

for Trace Specification of State Machines and As-

sociations. In Proceedings of the 25th Annual In-

ternational Conference on Computer Science and

Software Engineering, CASCON ’15, pages 101–

110, Riverton, NJ, USA, 2015. IBM Corp.

7. Hamoud I Aljamaan, Timothy Lethbridge, Miguel

Garzón, and Andrew Forward. UmpleRun: a dy-

namic analysis tool for textually modeled state

machines using Umple. In Proceedings of the First

International Workshop on Executable Modeling

co-located with MODELS 2015, pages 16–20, 2015.

8. Earl T. Barr and Mark Marron. Tardis: Affordable

Time-travel Debugging in Managed Runtimes. In

Proceedings of the 2014 ACM International Con-

ference on Object Oriented Programming Systems

Languages & Applications (OOPSLA’14), pages

67–82. ACM, 2014.

9. Erwan Bousse, Benoit Combemale, and Benoit

Baudry. Towards Scalable Multidimensional Exe-

cution Traces for xDSMLs. In Proceedings of the

11th Workshop on Model Design, Verification and

Validation Integrating Verification and Validation

in MDE (MoDeVVa 2014), volume 1235, pages

13–18, 2014.

10. Erwan Bousse, Jonathan Corley, Benoit Combe-

male, Jeff Gray, and Benoit Baudry. Supporting



20 Fazilat Hojaji et al.

efficient and advanced omniscient debugging for

xDSMLs. In Proceedings of the ACM SIGPLAN

International Conference on Software Language

Engineering, pages 137–148. ACM, 2015.

11. Erwan Bousse, Thomas Degueule, Didier Voj-

tisek, Tanja Mayerhofer, Julien DeAntoni, and

Benôıt Combemale. Execution framework of the

GEMOC studio (tool demo). In Proceedings of

the 2016 ACM SIGPLAN International Confer-

ence on Software Language Engineering (SLE’16),

pages 84–89. ACM, 2016.

12. Erwan Bousse, Dorian Leroy, Benoit Combemale,

Manuel Wimmer, and Benoit Baudry. Omniscient

debugging for Executable DSLs. Journal of Sys-

tems and Software, 137:261–288, 2018.

13. Erwan Bousse, Tanja Mayerhofer, Benoit Combe-

male, and Benoit Baudry. A Generative Approach

to Define Rich Domain-Specific Trace Metamod-

els. In European Conference on Modelling Foun-

dations and Applications, volume 9153 of Lec-

ture Notes in Computer Science, pages 45–61.

Springer, 2015.

14. Erwan Bousse, Tanja Mayerhofer, Benoit Combe-

male, and Benoit Baudry. Advanced and Effi-

cient Execution Trace Management for Executable

Domain-specific Modeling Languages. Software

and Systems Modeling, pages 1–37, 2017.

15. Marco Brambilla, Jordi Cabot, and Manuel Wim-

mer. Model-driven Software Engineering in prac-

tice. Synthesis Lectures on Software Engineering.

Morgan & Claypool Publishers, second edition,

2017.

16. Pearl Brereton, Barbara A Kitchenham, David

Budgen, Mark Turner, and Mohamed Khalil.

Lessons from Applying the Systematic Litera-

ture Review process within the Software Engi-

neering Domain. Journal of systems and software,

80(4):571–583, 2007.

17. Barrett R. Bryant, Jeff Gray, Marjan Mernik, Pe-

ter J. Clarke, Robert B. France, and G. Karsai.

Challenges and directions in formalizing the se-

mantics of modeling languages. Computer Science

and Information Systems, 2(8):225–253, 2011.

18. Jean Paul Calvez. Embedded Real-time Systems. A

specification and Design Methodology. John Wiley,

1993.

19. Federico Ciccozzi, Ivano Malavolta, and Bran

Selic. Execution of UML models: a systematic re-

view of research and practice. Software & Systems

Modeling, 2018.

20. Benoit Combemale, Xavier Crégut, Pierre-Löıc

Garoche, and Xavier Thirioux. Essay on Seman-

tics Definition in MDE. An Instrumented Ap-

proach for Model Verification. Journal of Software

(JSW), 4(9):943–958, 2009.

21. Benôıt Combemale, Xavier Crégut, and Marc

Pantel. A Design Pattern to build Executable

DSMLs and associated V&V tools. In Proceedings

of the 19th Asia-Pacific on Software Engineering

Conference (APSEC), volume 1, pages 282–287.

IEEE, 2012.

22. Benoit Combemale, Xavier Crgut, Jean-Pierre Gi-

acometti, Pierre Michel, and Marc Pantel. In-

troducing simulation and model animation in the

MDE Topcased toolkit. In Proceedings of the 4th

European Congress Embedded Real Time Software

(ERTS), 2008.

23. Benoit Combemale, Laure Gonnord, and Rusu

Rusu. A Generic Tool for Tracing Executions back

to a DSMLs Operational Semantics. In European

Conference on Modelling Foundations and Appli-

cations, volume 6698, pages 35–51. 2011.

24. Bas Cornelissen, Andy Zaidman, Arie

Van Deursen, Leon Moonen, and Rainer Koschke.

A Systematic Survey of Program Comprehension

through Dynamic Analysis. IEEE Transaction on

Software Engineering, 35(5):684–702, 2009.

25. Bas Cornelissen, Andy Zaidman, Arie van

Deursen, Leon Moonen, and Rainer Koschke. A

Systematic Survey of Program Comprehension

through Dynamic Analysis. pages 684–702, 2009.

26. Michelle L. Crane and Juergen Dingel. Towards

a UML virtual machine: implementing an inter-

preter for UML 2 actions and activities. In Con-

ference of the center for advanced studies on col-

laborative research, pages 96–110. ACM, 2008.

27. Álvaro Julio Cuadros López, Carolina Galindres,

and Paola Ruiz. Project maturity evaluation

model for SMEs from the software development

sub-sector. AD-minister, (29):147–162, 2016.

28. Werner Damm and David Harel. LSCs: Breath-

ing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1):45–80, 2001.

29. Julien DeAntoni and Frédéric Mallet. Timesquare:

Treat your models with logical time. In Proceed-

ings of the International Conference on Objects,

Models, Components, Patterns (TOOLS), volume

7304, pages 34–41. Springer, 2012.

30. Julien DeAntoni, Frédéric Mallet, Frédéric

Thomas, Gonzague Reydet, Jean-Philippe

Babau, Chokri Mraidha, Ludovic Gauthier,

Laurent Rioux, and Nicolas Sordon. RT-simex:

retro-analysis of execution traces. In Proceedings

of the 18th ACM SIGSOFT international sym-

posium on Foundations of software engineering,

pages 377–378. ACM, 2010.



Model Execution Tracing: A Systematic Mapping Study 21

31. Anna Derezinska and Marian Szczykulski. Trac-

ing of state machine execution in the model-driven

development framework. In Proceedings of the 2nd

International Conference on Information Technol-

ogy, ICIT 2010, pages 517–524. IEEE, 2010.

32. Romuald Deshayes, Bart Meyers, Tom Mens, and

Hans Vangheluwe. ProMoBox in Practice: A Case

Study on the GISMO Domain-Specific Modelling

Language. In Proceedings of the 8th Workshop on

Multi-Paradigm Modelling (MPM), pages 21–30,

2014.

33. Arilo C Dias Neto, Rajesh Subramanyan, Mar-

lon Vieira, and Guilherme H Travassos. A Survey

on Model-based Testing Approaches: a Systematic

Review. In Proceedings of the 1st ACM interna-

tional workshop on Empirical assessment of soft-

ware engineering languages and technologies: held

in conjunction with the 22nd IEEE/ACM Inter-

national Conference on Automated Software En-

gineering (ASE) 2007, pages 31–36. ACM, 2007.

34. Leandro Marques do Nascimento, Daniel Leite

Viana, Paulo AM Silveira Neto, Dhiego AO Mar-

tins, Vinicius Cardoso Garcia, and Silvio RL

Meira. A Systematic Mapping Study on Domain

Specific Languages. In Proceedings of the 7th In-

ternational Conference on Software Engineering

Advances (ICSEA12), pages 179–187, 2012.

35. Eladio Domı́nguez, Beatriz Pérez, and Maŕıa A

Zapata. A UML profile for dynamic execution per-

sistence with monitoring purposes. In Proceedings

of the 5th International Workshop on Modeling in

Software Engineering, pages 55–61. IEEE, 2013.

36. João Pascoal Faria and Ana CR Paiva. A Toolset

for Conformance Testing against UML sequence

diagrams based on event-driven colored Petri nets.

International Journal on Software Tools for Tech-

nology Transfer, 18(3):285–304, 2016.

37. CA Fernández-Fernández and AJH Simons. An

Implementation of the Task Algebra, a Formal

Specification for the Task Model in the Discovery

Method. Journal of applied research and technol-

ogy, 12(5):908–918, 2014.

38. Carlos Alberto Fernández-Fernández and An-

thony JH Simons. An Algebra to Represent Task

Flow Models. International Journal of Computa-

tional Intelligence: Theory and Practice, 6(2):63–

74, 2011.

39. Thorsten Fischer, Jörg Niere, Lars Torunski, and

Albert Zündorf. Story Diagrams: A New Graph

Rewrite Language Based on the Unified Model-

ing Language and Java. In Proceedings of the 6th

International Workshop on the Theory and Appli-

cation of Graph Transformations (TAGT’98), vol-

ume 1764 of Lecture Notes in Computer Science,

pages 296–309. Springer, 1998.

40. Lidia Fuentes, Jorge Manrique, and Pablo

Sánchez. Execution and simulation of (profiled)

UML models using Populo. In Proceedings of the

international workshop on Models in software en-

gineering, pages 75–81. ACM, 2008.

41. Lidia Fuentes and Pablo Sánchez. Designing and

Weaving Aspect-Oriented Executable UML Mod-

els. Journal of Object Technology, 6(7):109–136,

2007.

42. Lidia Fuentes and Pablo Sánchez. Towards

Executable Aspect-Oriented UML Models. In

Proceedings of the 10th international workshop

on Aspect-oriented modeling, pages 28–34. ACM,

2007.

43. Lidia Fuentes and Pablo Sánchez. Dynamic Weav-

ing of Aspect-Oriented Executable UML Models.

Transactions on Aspect-Oriented Software Devel-

opment, 5560:1–38, 2009.

44. Kelly Garcés, Julien Deantoni, and Frédéric Mal-

let. A model-based approach for reconciliation of

polychromous execution traces. In Proceedings of

the 37th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA),

pages 259–266. IEEE, 2011.

45. Fber D Giraldo, Sergio Espana, and Oscar Pastor.

Analyzing the concept of Quality in Model-Driven

Engineering Literature: A systematic review. In

Proceedings of the 8th International Conference

on Research Challenges in Information Science

(RCIS), pages 1–12. IEEE, 2014.

46. Ankit Goel, Bikram Sengupta, and Abhik Roy-

choudhury. Footprinter: Round-trip engineering

via scenario and state based models. In Proceed-

ings of the 31st International Conference on Soft-

ware Engineering - Companion Volume, ICSE-

Companion, pages 419–420. IEEE, 2009.

47. Martin Gogolla, Lars Hamann, Frank Hilken,

Mirco Kuhlmann, and Robert B France. From

Application Models to Filmstrip Models: An Ap-

proach to Automatic Validation of Model Dynam-

ics. In Modellierung, volume 225, pages 273–288,

2014.

48. Havva Gulay Gurbuz and Bedir Tekinerdogan.

Model-based Testing for Software Safety: a Sys-

tematic Mapping Study. Software Quality Jour-

nal, pages 1–46, 2017.

49. Wolfgang Haberl, Jan Birke, and Uwe Baum-

garten. A Middleware for Model-Based Embed-

ded Systems. In Proceedings of the International

Conference on Embedded Systems and Applica-

tions (ESA), pages 253–259, 2008.



22 Fazilat Hojaji et al.

50. Wolfgang Haberl, Markus Herrmannsdoerfer, Jan

Birke, and Uwe Baumgarten. Model-level debug-

ging of Embedded Real-time Systems. In Proceed-

ings of the 10th international conference on Com-

puter and information technology (CIT), pages

1887–1894. IEEE, 2010.

51. Abdelwahab Hamou-Lhadj. Techniques to sim-

plify the analysis of execution traces for program

comprehension. Doctoral Dissertation, University

of Ottawa Ottawa, Ontario, Canada, 2006.

52. Abdelwahab Hamou-Lhadj and Timothy Leth-

bridge. A metamodel for dynamic information

generated from object-oriented systems. Elec-

tronic Notes in Theoretical Computer Science,

94:59–69, 2004.

53. Abdelwahab Hamou-Lhadj and Timothy Leth-

bridge. A survey of trace exploration tools and

techniques. In Proceedings of the 2004 Conference

of the Centre for Advanced Studies on Collabo-

rative Research, CASCON ’04, pages 42–55. IBM

Press, 2004.

54. Abdelwahab Hamou-Lhadj and Timothy Leth-

bridge. Summarizing the Content of Large Traces

to Facilitate the Understanding of the Behaviour

of a Software System. In Proceedings of the 14th

International Conference on Program Comprehen-

sion, ICPC, pages 181–190. IEEE, 2006.

55. Abdelwahab Hamou-Lhadj and Timothy Leth-

bridge. A metamodel for the compact but loss-

less exchange of execution traces. Software and

Systems Modeling, 11(1):7798, 2012.

56. Abel Hegedus, Gábor Bergmann, István Ráth,

and Dániel Varró. Back-annotation of simula-

tion traces with change-driven model transforma-

tions. In Proceedings of the 8th IEEE Interna-

tional Conference on Software Engineering and

Formal Methods (SEFM), pages 145–155. IEEE,

2010.

57. Abel Hegedus, Gábor Bergmann, István Ráth,

and Dániel Varró. Replaying execution trace mod-

els for dynamic modeling languages. Periodica

Polytechnica Electrical Engineering and Computer

Science, 56(3):71–82, 2013.

58. Martijn Hendriks and Frits W Vaandrager. Recon-

structing Critical Paths from Execution Traces.

In Proceedings of the 15th International Confer-

ence on Computational Science and Engineering

(CSE), pages 524–531. IEEE, 2012.

59. Martijn Hendriks, Jacques Verriet, Twan Basten,

Bart Theelen, Marco Brassé, and Lou Somers.

Analyzing Execution Traces: Critical-path Anal-

ysis and Distance Analysis. International Jour-

nal on Software Tools for Technology Transfer,

19(4):487–512, 2016.

60. Frank Hilken and Martin Gogolla. Verifying

Linear Temporal Logic Properties in UML/OCL

Class Diagrams Using Filmstripping. In Proceed-

ings of the Euromicro Conference on Digital Sys-

tem Design (DSD), pages 708–713. IEEE, 2016.

61. Frank Hilken, Lars Hamann, and Martin Gogolla.

Transformation of UML and OCL models into

Filmstrip Models. In International Conference on

Theory and Practice of Model Transformations,

volume 8568 of Lecture Notes in Computer Sci-

ence, pages 170–185. Springer, 2014.

62. Fazilat Hojaji, Bahman Zamani, and Abdelwahab

Hamou-Lhadj. Towards a tracing framework for

Model-Driven software systems. In Proceedings

of the 6th International Conference on Computer

and Knowledge Engineering (ICCKE), pages 298–

303. IEEE, 2016.

63. Zhaoxia Hu and Sol M Shatz. Mapping UML Dia-

grams to a Petri Net Notation for System Simula-

tion. In Proceedings of the International Confer-

ence on Software Engineering & Knowledge Engi-

neering (SEKE), pages 213–219. Citeseer, 2004.

64. Adisak Intana, Michael R Poppleton, and Geoff V

Merrett. A model-based trace testing approach

for validation of formal co-simulation models. In

Proceedings of the Symposium on Theory of Mod-

eling & Simulation: DEVS Integrative M&S Sym-

posium, pages 181–188. Society for Computer Sim-

ulation International, 2015.

65. Ranjit Jhala and Rupak Majumdar. Software

Model Checking. ACM Computing Surveys,

41(4):21:1–21:54, 2009.

66. Steven Kelly and Juha-Pekka Tolvanen. Domain-

specific modeling: enabling full code generation.

John Wiley & Sons, 2008.

67. Peter Kemper and Carsten Tepper. Automated

analysis of simulation traces-separating progress

from repetitive behavior. In Proceedings of the

Fourth International Conference on the Quanti-

tative Evaluation of Systems.QEST 2007, pages

101–110. IEEE, 2007.

68. Peter Kemper and Carsten Tepper. Automated

trace analysis of discrete-event system mod-

els. IEEE Transactions on Software Engineering,

35(2):195–208, 2009.

69. Barbara Kitchenham and Stuart Charters. Guide-

lines for Performing Systematic Literature Re-

views in Software Engineering. Report, Software

Engineering Group, School of Computer Science

and Mathematics, Keele University, 2000.

70. Johan Kraft, Anders Wall, and Holger M Kienle.

Trace Recording for Embedded Systems: Lessons



Model Execution Tracing: A Systematic Mapping Study 23

Learned from Five Industrial Projects. In Pro-

ceedings of the International Conference on Run-

time Verification, volume 6418 of Lecture Notes in

Computer Science, pages 315–329. Springer, 2010.

71. Alexander Krasnogolowy, Stephan Hildebrandt,

and Sebastian Wätzoldt. Flexible debugging of be-

havior models. In IEEE International Conference

on Industrial Technology (ICIT), pages 331–336.

IEEE, 2012.

72. Stefan Kugele, Michael Tautschnig, Andreas

Bauer, Christian Schallhart, Stefano Merenda,

Wolfgang Haberl, Christian Kühnel, Florian

Müller, Zhonglei Wang, Doris Wild, et al. COLA–

The component language. Technical report, 2007.

73. Philip Langer, Tanja Mayerhofer, and Gerti Kap-

pel. Semantic model differencing utilizing behav-

ioral semantics specifications. In Proceedings of

the International Conference on Model Driven En-

gineering Languages and Systems, volume 8767 of

Lecture Notes in Computer Science, pages 116–

132. Springer, 2014.

74. Liping Li, Xingsen Li, and Shan Tang. Research

on web application consistency testing based on

model simulation. In Proceedings of the 9th

International Conference on Computer Science

and Education (ICCSE), pages 1121–1127. IEEE,

2014.

75. Jiexin Lian, Zhaoxia Hu, and Sol M Shatz.

Simulation-based analysis of UML statechart dia-

grams: methods and case studies. Software Quality

Journal, 16(1):45–78, 2008.

76. Bruno Lima and João Pascoal Faria. An ap-

proach for automated scenario-based testing of

distributed and heterogeneous systems. In Pro-

ceedings of the 10th International Joint Confer-

ence on Software Technologies (ICSOFT), vol-

ume 1, pages 1–10. IEEE, 2015.

77. Shahar Maoz. Model-based traces. In Proceedings

of the International Conference on Model Driven

Engineering Languages and Systems, volume 5421

of Lecture Notes in Computer Science, pages 109–

119. springer, 2009.

78. Shahar Maoz. Using model-based traces as run-

time models. IEEE Computer Society, 42:28–36,

2009.

79. Shahar Maoz and David Harel. On tracing re-

active systems. Software and Systems Modeling,

10(4):447–468, 2011.

80. Shahar Maoz, Jan Oliver Ringert, and Bernhard

Rumpe. ADDiff: semantic differencing for activ-

ity diagrams. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European con-

ference on Foundations of software engineering,

pages 179–189. ACM, 2011.

81. Shahar Maoz, Jan Oliver Ringert, and Bernhard

Rumpe. Summarizing semantic model differences.

arXiv preprint arXiv:1409.2307, 2014.

82. Tanja Mayerhofer. Testing and debugging UML

models based on fUML. In Proceedings of the 34th

International Conference on Software Engineering

(ICSE), pages 1579–1582. IEEE, 2012.

83. Tanja Mayerhofer, Philip Langer, and Gerti Kap-

pel. A runtime model for fUML. In Proceedings

of the 7th Workshop on Models@ run. time, pages

53–58. ACM, 2012.

84. Tanja Mayerhofer, Philip Langer, Manuel Wim-

mer, and Gerti Kappel. xMOF: Executable

DSMLs based on fUML. In Proceedings of the In-

ternational Conference on Software Language En-

gineering, volume 8225 of Lecture Notes in Com-

puter Science, pages 56–75. Springer, 2013.

85. Katharina Mehner. JaVis: A UML-Based Visu-

alization and Debugging Environment for Con-

current Java Programs. Software Visualization,

2269:163–175, 2002.

86. Bart Meyers, Romuald Deshayes, Levi Lucio, Eu-

gene Syriani, Hans Vangheluwe, and Manuel Wim-

mer. ProMoBox: A Framework for Generating

Domain-specific Property Languages. In Pro-

ceedings of the International Conference on Soft-

ware Language Engineering (SLE), volume 8706

of Lecture Notes in Computer Science, pages 1–

20. Springer, 2014.

87. Stefan Mijatov, Philip Langer, Tanja Mayerhofer,

and Gerti Kappel. A framework for testing

UML activities based on fUML. In Proceed-

ings of the 10th International Workshop on Model

Driven Engineering, Verification and Validation

co-located with 16th International Conference on

Model Driven Engineering Languages and Sys-

tems (MODELS 2013), volume 1069, pages 1–10.

Springer, 2013.

88. Stefan Mijatov, Tanja Mayerhofer, Philip Langer,

and Gerti Kappel. Testing functional require-

ments in UML activity diagrams. In International

Conference on Tests and Proofs, volume 9154 of

Lecture Notes in Computer Science, pages 173–

190. Springer, 2015.

89. Phu H Nguyen, Max Kramer, Jacques Klein, and

Yves Le Traon. An Extensive Systematic Re-

view on the Model-Driven Development of Secure

Systems. Information and Software Technology,

68:62–81, 2015.

90. Object Management Group. Business Process

Model and Notation (BPMN), Version 2.0, Jan-

uary 2011.



24 Fazilat Hojaji et al.

91. Object Management Group. Semantics of a

Foundational Subset for Executable UML Models

(fUML), Version 1.3, July 2017.

92. Olivier Pasquier and Jean Paul Calvez. An object-

based executable model for simulation of real-time

Hw/Sw systems. In Proceedings of the Design,

Automation and Test in Europe Conference and

Exhibition, pages 782–783. IEEE, 1999.

93. Kai Petersen, Sairam Vakkalanka, and Ludwik

Kuzniarz. Guidelines for conducting systematic

mapping studies in software engineering: An up-

date. Information and Software Technology, 64:1–

18, 2015.

94. Carl Adam Petri. Fundamentals of a Theory of

Asynchronous Information Flow. In Proceedings

of IFIP Congress, pages 386–390. North Holland,

1962.

95. James Rumbaugh, Michael Blaha, William Pre-

merlani, Frederick Eddy, William E. Lorensen,

et al. Object-oriented modeling and design, volume

199. Prentice-hall Englewood Cliffs, NJ, 1991.

96. Ivn Santiago, lvaro Jimnez, Juan Manuel Vara,

Valeria De Castro, Vernica A. Bollati, and Esper-

anza Marcos. Model-Driven Engineering as a new

landscape for traceability management: A system-

atic literature review. Information and Software

Technology, 54(12):1340–1356, 2012.

97. Stefano Schivo, Buğra M Yildiz, Enno Ruijters,

Christopher Gerking, Rajesh Kumar, Stefan Dzi-

wok, Arend Rensink, and Mariëlle” Stoelinga.

How to Efficiently Build a Front-End Tool for

UPPAAL: A Model-Driven Approach. In Inter-

national Symposium on Dependable Software En-

gineering: Theories, Tools, and Applications, vol-

ume 10606 of Lecture Notes in Computer Science,

pages 319–336. Springer, 2017.

98. Douglas C. Schmidt. Guest Editor’s Introduc-

tion: Model-Driven Engineering. IEEE Computer,

39(2):25–31, 2006.

99. Scopus. A Generic Framework for Realizing

Semantic Model Differencing Operators, volume

1258, 2014.

100. Dana Scott. Outline of a mathematical theory of

computation. Oxford University Computing Lab-

oratory, Programming Research Group, 1970.

101. Michael Szvetits and Uwe Zdun. Systematic liter-

ature review of the objectives, techniques, kinds,

and architectures of models at runtime. Software

and Systems Modeling, 15(1):31–69, 2013.

102. Jérémie Tatibouet, Arnaud Cuccuru, Sébastien

Gérard, and François Terrier. Formalizing Execu-

tion Semantics of UML Profiles with fUML Mod-

els. In Proceedings of the 17th International Con-

ference on Model-Driven Engineering Languages

and Systems (MODELS’14), volume 8767 of Lec-

ture Notes in Computer Science, pages 133–148.

Springer, 2014.

103. Linzhang Wang, Eric Wong, and Dianxiang Xu. A

Threat Model Driven Approach for Security Test-

ing. In Proceedings of the 3th International Work-

shop on Software Engineering for Secure Systems,

ICSE Workshops, pages 10–17. IEEE, 2007.

104. Marco A Wehrmeister, Joao G Packer, and Luis M

Ceron. Framework to simulate the behavior of em-

bedded real-time systems specified in UML mod-

els. In Brazilian Symposium on Computing System

Engineering (SBESC), pages 1–7. IEEE, 2011.

105. Marco A Wehrmeister, Joao G Packer, Luis M

Ceron, and Carlos E Pereira. Towards Early Ver-

ification of UML Models for Embedded and Real-

Time Systems. Embedded Systems, Computational

Intelligence and Telematics in Control, 45(4):25–

30, 2012.

106. Levent Yilmaz. Automated object-flow testing of

dynamic process interaction models. In Proceed-

ings of the Simulation Conference, Proceedings of

the Winter, volume 1, pages 586–594. IEEE, 2001.



Model Execution Tracing: A Systematic Mapping Study 25

Table 2 Classification of model execution tracing approaches for Q1-Q3

Approach

Types of Models
(Q1)

Semantics Definition
Technique

(Q2)

Trace Data
(Q3)

A
n
y

U
M

L
m

o
d

el
s

W
o
rk

fl
o
w

m
o
d

el
s

O
th

er

T
ra

n
sl

a
ti

o
n

a
l

O
p

er
a
ti

o
n

a
l

D
en

o
ta

ti
o
n

a
l

U
n

k
n

o
w

n

E
v
en

t

S
ta

te

P
a
ra

m
et

er

A01 [92] ∗ ∗ ∗
A02 [106] ∗ ∗ ∗
A03 [63, 75] ∗ ∗ ∗ ∗
A04 [103] ∗ ∗ ∗
A05 [40, 41, 42, 43] ∗ ∗ ∗ ∗
A06 [26] ∗ ∗ ∗ ∗
A07 [20, 21, 22] ∗ ∗ ∗ ∗
A08 [23] ∗ ∗ ∗
A09 [77, 78, 79] ∗ ∗ ∗ ∗ ∗
A10 [67, 68] ∗ ∗ ∗ ∗
A11 [46] ∗ ∗ ∗
A12 [49, 50] ∗ ∗ ∗ ∗ ∗
A13 [56] ∗ ∗ ∗
A14 [57] ∗ ∗ ∗
A15 [31] ∗ ∗ ∗
A16 [29, 30, 44] ∗ ∗ ∗
A17 [104, 105] ∗ ∗ ∗
A18 [71] ∗ ∗ ∗ ∗
A19 [35] ∗ ∗ ∗ ∗
A20 [82, 83, 84, 87, 88] ∗ ∗ ∗ ∗ ∗
A21 [80, 81] ∗ ∗ ∗ ∗ ∗
A22 [4, 5, 6, 7] ∗ ∗ ∗ ∗
A23 [9, 10, 12, 13, 14] ∗ ∗ ∗ ∗
A24 [60, 61] ∗ ∗ ∗ ∗
A25 [47] ∗ ∗ ∗ ∗
A26 [37, 38] ∗ ∗ ∗
A27 [32, 86] ∗ ∗ ∗ ∗
A28 [74] ∗ ∗ ∗ ∗
A29 [73, 99] ∗ ∗ ∗ ∗
A30 [64] ∗ ∗ ∗
A31 [58, 59] ∗ ∗ ∗
A32 [36, 76] ∗ ∗ ∗
A33 [97] ∗ ∗ ∗ ∗



26 Fazilat Hojaji et al.

Table 3 Classification of model execution tracing approaches for Q4-Q5

Approach

Purpose
(Q4)

Data Extraction Technique
(Q5)

D
eb

u
g
g
in

g

T
es

ti
n

g

M
a
n
u

a
l

a
n

a
ly

si
s

D
y
n

a
m

ic
a
n

a
ly

si
s

M
o
d

el
ch

ec
k
in

g

S
em

a
n
ti

c
d

iff
er

en
ci

n
g

S
o
u

rc
e

in
st

ru
m

en
ta

ti
o
n

T
a
rg

et
in

st
ru

m
en

ta
ti

o
n

In
te

rp
re

te
r

E
x
te

rn
a
l

to
o
l

O
th

er

A01 [92] ∗ ∗
A02 [106] ∗ ∗
A03 [63, 75] ∗ ∗ ∗
A04 [103] ∗ ∗
A05 [40, 41, 42, 43] ∗ ∗
A06 [26] ∗ ∗ ∗
A07 [20, 21, 22] ∗ ∗ ∗ ∗
A08 [23] ∗ ∗
A09 [77, 78, 79] ∗ ∗ ∗
A10 [67, 68] ∗ ∗ ∗
A11 [46] ∗ ∗ ∗
A12 [49, 50] ∗ ∗
A13 [56] ∗ ∗
A14 [57] ∗ ∗
A15 [31] ∗ ∗
A16 [29, 30, 44] ∗ ∗
A17 [104, 105] ∗ ∗
A18 [71] ∗ ∗
A19 [35] ∗ ∗
A20 [82, 83, 84, 87, 88] ∗ ∗ ∗ ∗
A21 [80, 81] ∗ ∗
A22 [4, 5, 6, 7] ∗ ∗
A23 [9, 10, 12, 13, 14] ∗ ∗ ∗
A24 [60, 61] ∗ ∗ ∗
A25 [47] ∗ ∗
A26 [37, 38] ∗ ∗
A27 [32, 86] ∗ ∗
A28 [74] ∗ ∗
A29 [73, 99] ∗ ∗
A30 [64] ∗ ∗
A31 [58, 59] ∗ ∗ ∗
A32 [36, 76] ∗ ∗
A33 [97] ∗ ∗



Model Execution Tracing: A Systematic Mapping Study 27

Table 4 Classification of model execution tracing approaches for Q6-Q10

Approach

Trace Repre-
sentation
Format

(Q6)

Trace
Representation

Method
(Q7)

Language
Speci-
ficity
(Q8)

Data Carrier
Format

(Q9)

M
et

a
m

o
d

el

T
ex

t
fo

rm
a
t

O
th

er

U
n

k
n

o
w

n

F
R

A
G

M
D

A
E

U
n

k
n

o
w

n

L
a
n

g
u

a
g
e-

in
d

ep
en

d
en

t

L
a
n

g
u

a
g
e-

sp
ec

ifi
c

S
p

ec
ifi

c
k
in

d
o
f

la
n

g
u

a
g
e

T
ex

t

X
M

L

D
a
ta

b
a
se

U
n

k
n

o
w

n

M
a
tu

ri
ty

(Q
1
0
)

A01 [92] ∗ ∗ ∗ ∗ 3

A02 [106] ∗ ∗ ∗ ∗ 2

A03 [63, 75] ∗ ∗ ∗ ∗ 3

A04 [103] ∗ ∗ ∗ ∗ 1

A05 [40, 41, 42, 43] ∗ ∗ ∗ ∗ 4

A06 [26] ∗ ∗ ∗ ∗ 3

A07 [20, 21, 22] ∗ ∗ ∗ ∗ 3

A08 [23] ∗ ∗ ∗ ∗ 3

A09 [77, 78, 79] ∗ ∗ ∗ ∗ 3

A10 [67, 68] ∗ ∗ ∗ ∗ 3

A11 [46] ∗ ∗ ∗ ∗ 2

A12 [49, 50] ∗ ∗ ∗ ∗ 3

A13 [56] ∗ ∗ ∗ ∗ 3

A14 [57] ∗ ∗ ∗ ∗ 3

A15 [31] ∗ ∗ ∗ ∗ 3

A16 [29, 30, 44] ∗ ∗ ∗ ∗ 3

A17 [104, 105] ∗ ∗ ∗ ∗ 3

A18 [71] ∗ ∗ ∗ ∗ 1

A19 [35] ∗ ∗ ∗ ∗ 2

A20 [82, 83, 84, 87, 88] ∗ ∗ ∗ ∗ 3

A21 [80, 81] ∗ ∗ ∗ ∗ 3

A22 [4, 5, 6, 7] ∗ ∗ ∗ ∗ 3

A23 [9, 10, 12, 13, 14] ∗ ∗ ∗ ∗ 3

A24 [60, 61] ∗ ∗ ∗ ∗ 3

A25 [47] ∗ ∗ ∗ ∗ 2

A26 [37, 38] ∗ ∗ ∗ ∗ 3

A27 [32, 86] ∗ ∗ ∗ ∗ 3

A28 [74] ∗ ∗ ∗ ∗ 3

A29 [73, 99] ∗ ∗ ∗ ∗ 3

A30 [64] ∗ ∗ ∗ ∗ 3

A31 [58, 59] ∗ ∗ ∗ ∗ 4

A32 [36, 76] ∗ ∗ ∗ ∗ 3

A33 [97] ∗ ∗ ∗ ∗ 4


	Introduction
	Background
	Research Method
	Results
	Future Research Directions
	Limitations and Threats to Validity 
	Related Work
	Conclusion

