
HAL Id: hal-02174930
https://hal.science/hal-02174930

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lossless compaction of model execution traces
Fazilat Hojaji, Bahman Zamani, Abdelwahab Hamou-Lhadj, Tanja

Mayerhofer, Erwan Bousse

To cite this version:
Fazilat Hojaji, Bahman Zamani, Abdelwahab Hamou-Lhadj, Tanja Mayerhofer, Erwan Bousse. Loss-
less compaction of model execution traces. Software and Systems Modeling, 2019, �10.1007/s10270-
019-00737-w�. �hal-02174930�

https://hal.science/hal-02174930
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Lossless Compaction of Model Execution Traces

Fazilat Hojaji · Bahman Zamani · Abdelwahab Hamou-Lhadj ·
Tanja Mayerhofer · Erwan Bousse

Received: date / Accepted: date

Abstract Dynamic Verification and Validation (V&V)
techniques are used to verify and validate the behavior
of software systems early in the development process. In
the context of model-driven engineering, such behaviors
are usually defined using Executable Domain-Specific
Modeling Languages (xDSML). Many V&V techniques
rely on execution traces to represent and analyze the
behavior of executable models. Traces, however, tend
to be overwhelmingly large, hindering effective and effi-
cient analysis of their content. While there exist several
trace metamodels to represent execution traces, most of
them suffer from scalability problems. In this paper, we
present a generic compact trace representation format
called generic Compact Trace Metamodel (CTM) that
enables the construction and manipulation of compact
execution traces of executable models. CTM is generic
in the sense that it supports a wide range of xDSMLs.
We evaluate CTM on traces obtained from real-world
fUML models. Compared to existing trace metamod-
els, the results show a significant reduction in memory
and disk consumption. Moreover, CTM offers a com-
mon structure with the aim to facilitate interoperability
between existing trace analysis tools.

Fazilat Hojaji
E-mail: f.hojaji@eng.ui.ac.ir

Bahman Zamani
E-mail: zamani@eng.ui.ac.ir

Abdelwahab Hamou-Lhadj
E-mail: wahab.hamou-lhadj@concordia.ca

Tanja Mayerhofer
E-mail: mayerhofer@big.tuwien.ac.at
https://big.tuwien.ac.at/people/tmayerhofer/

Erwan Bousse
E-mail: bousse@big.tuwien.ac.at
https://big.tuwien.ac.at/people/ebousse/

Keywords Execution Trace · Compaction · Model
Execution · Trace Metamodel

1 Introduction

Model Driven Engineering (MDE) is a software devel-
opment paradigm that aims to decrease the complexity
of software development by raising the level of abstrac-
tion through the use of models and well-defined model-
ing languages [1]. For this purpose, two main types of
modeling languages are used: General Purpose Model-
ing Languages (GPMLs), such as UML, for modeling
systems regardless of the domain, and Domain Spe-
cific Modeling Languages (DSMLs) that are designed
for specific tasks in a given domain [2]. Also, it can
be distinguished between structural models (e.g., UML
class diagrams) to model a system’s structure, and be-
havioral models (e.g., UML activity diagrams) to model
the behavior of a system.

To ensure that behavioral models are correct con-
cerning their intended behavior, early dynamic Verifi-
cation and Validation (V&V) techniques are required.
These techniques are based on the ability to execute
models. To this end, efforts have been made to support
the execution of models, such as methods to ease the
development of executable DSMLs (xDSMLs) [3, 4, 5,
6, 7], or to support the execution of UML models [8].
In addition, many V&V techniques require the capa-
bility to capture and manipulate information about an
execution in the form of a trace. For instance, model
checking techniques [4, 9, 10, 11] check whether execu-
tion traces satisfy predefined temporal properties, and
rely on execution traces also for representing counter
examples. Omniscient debugging [12, 13, 14] utilizes ex-
ecution traces to go back in the execution and revisit

2 Fazilat Hojaji et al.

previous states. Semantic differencing [15, 16] identifies
the semantic variations between two models by com-
paring their execution traces.

To support dynamic V&V for xDSMLs, a data struc-
ture is required to capture, store, and analyze traces.
However, the problem is that even with using an ap-
propriate trace structure that adequately represents the
execution behavior of a model, executing a model might
lead to a very large execution trace, making it difficult
to analyze the recorded behavior [17, 18, 19].

Furthermore, existing model execution tracing ap-
proaches rely on their own custom trace formats, hin-
dering interoperability and sharing of data among vari-
ous trace analysis tools. Consequently, there is a need to
work towards a common format for exchanging model
execution traces. A common format must be generic,
to be able to support a wide range of xDSMLs, inde-
pendent of the meta-programming approaches used to
implement their semantics. It also must be scalable and
expressive enough to capture the required runtime in-
formation.

The first requirement, genericity, can be partly ad-
dressed using existing generic trace metamodels such as
the ones defined and presented by Hartmann et al. [20]
and Langer et al. [15]. While these formats allow in-
teroperability between existing trace analysis tools and
simplify analyzing traces, they do not scale up to large
traces efficiently. For example, the approach proposed
by Langer et al. [15] relies on a generic clone-based ex-
ecution trace metamodel, which defines a trace as a
sequence of step and state elements. Such trace con-
tains all the reached execution states as a sequence
of complete model clones, which yields poor scalabil-
ity in memory. Only a few trace structures, such as the
ones proposed by Bousse et al. [21], consider scalability
by providing some sort of trace compaction. However,
these techniques still require substantial memory usage
due to data redundancy. Also, they do not give a com-
plete representation of a trace such as execution states
as well as inputs and outputs values, hindering expres-
siveness.

In this paper, we provide a generic, scalable trace
metamodel that can be used for any xDSML and sup-
ports the representation of traces in a compact form.
This is achieved through the following contributions:

1. A generic trace metamodel that captures a set of
key concepts needed to express traces for models
created with any xDSML. Examples of such generic
concepts include the execution steps occurring dur-
ing model execution, execution states, object states,
and parameters.

2. A generic compact trace metamodel, called the Com-
pact Trace Metamodel (CTM), which relies on a set

of compaction techniques to provide a representa-
tion of traces in a compact form. CTM is built with
scalability in mind, supporting trace compaction tech-
niques at the metamodel level.

3. A process for compressing a regular trace into a
compact trace. The process is lossless, meaning that
the regular trace can be fully reconstructed from its
compact version.

4. A process to uncompress a trace compacted with
CTM into its original format.

We provided an EMF-based implementation of CTM
that can be installed in the Eclipse GEMOC Studio1, a
language and modeling workbench based on Eclipse. To
evaluate the genericity of CTM, we successfully applied
it to capture execution traces for models of five differ-
ent xDSMLs. We also evaluated the scalability of CTM
with regard to memory consumption and disk space
by comparing CTM traces to those modeled using the
metamodel proposed by Bousse et al. [21, 22]. The ex-
periments show that our approach has a small overhead
for constructing traces during model execution, while
reducing memory consumption and disk space of traces.
Using CTM, we can reach an average compaction rate
of 59% in memory usage and 95% in disk space. Besides,
we provide a mechanism to transform compacted traces
into their original format, demonstrating the fact that
CTM preserves the information contained in traces.

Our research methodology relies on the Design Sci-
ence Research Methodology (DSRM) presented by Pef-
fers et al. [23] aligned with the guidelines for design sci-
ence defined by Hevner et al. [24]. The DSRM approach
consists of the following steps: 1) Problem identification
and motivation, 2) Definition of objectives for design-
ing a trace structure, 3) Design and development of the
trace structure, 4) Demonstration, 5) Evaluation and 6)
Communication of the trace structure. At least one iter-
ation was performed in each step of the process, which
we present in each section of this paper in detail. From a
top-level methodological perspective, we resorted to dif-
ferent research techniques in each step and performed
activities to appropriately support our overall objec-
tives. The practical relevance and importance of the
research problem has been well demonstrated as being
critical for design science research [24]. To ensure that
our design objectives are consistent with prior research,
we conducted a systematic mapping study in the field
of model tracing, which has already been published in
[25]. We aim to further disseminate the contributions
of this effort in peer review scholarly publications.

The remainder of the paper is structured as fol-
lows. In Section 2, we provide a background around

1 http://gemoc.org/studio

Lossless Compaction of Model Execution Traces 3

model tracing, and make an overview of trace com-
paction techniques and data serialization formats as
well. In Section 3, we motivate the problem domain and
describe our ideas for overcoming existing limitations.
Section 4 gives an overview of our approach. In Sec-
tion 5, we discuss the design of CTM with respect to the
defined requirements for the development of a compact
trace metamodel. Section 6 presents a detailed imple-
mentation of CTM-enabling tools within the language
and modeling workbench GEMOC. Section 7 shows the
evaluation of CTM. Section 8 discusses related work.
Section 9 summarizes the contributions of this paper,
and Section 10 provides an outlook on future work.

2 Background

In this section, we first define all concepts important
in this work, such as executable model and xDSML, ex-
ecution state, execution step, and execution trace. We
then give an overview of the most common techniques
used for trace compaction. Finally, we discuss popular
formats used for data serialization.

2.1 Model Execution

In the following, we first define the terms executable
model and xDSML, then give an example of an xDSML.
Some of these definitions are based on the one’s pro-
posed by Bousse et al. [21].

Definition 1 An executable model is a model conform-
ing to an executable modeling language and defines an
aspect of the behavior of a system in sufficient detail
such that the model can be executed.

Definition 2 An xDSML is defined by:

– An abstract syntax, i.e., a metamodel.
– An execution metamodel, which is an extension of

the abstract syntax with additional classes and prop-
erties defining the dynamic state of a model.

– An operational semantics, which includes an execu-
tion transformation that modifies a model that con-
forms to the execution metamodel by changing the
values of dynamic fields, and by creating/destroying
instances of classes of the execution metamodel.

– An initialization function, which is an in-place model
transformation that transforms a model conforming
to the abstract syntax into a model conforming to
the execution metamodel.

In the MDE community, a wide range of different
xDSMLs have been developed, and are used to express

the behavior of systems. Examples of rather well-known
xDSML include Petri nets [26], fUML [27], BPMN [28],
live sequence charts [29], or story diagrams [30].

Fig. 1 shows an example of a Petri nets xDSML. The
abstract syntax contains three classes:Net, Place, and
Transition. The top right of the figure shows the exe-
cution metamodel, which extends the class Place with
a new property using package merge. The new property
tokens defines the number of tokens of a Place ob-
ject during execution. The initialization function (not
shown) creates executable objects (i.e., a Place object
with a tokens field) as defined in the execution meta-
model, and initializes each tokens field with the value
of initialTokens. Two rules run and fire are de-
fined in the operational semantics to change the execu-
tion state of a model conforming to the execution meta-
model of a Petri net. The rule run repeatedly checks for
an enabled Transition. In the fire rule, one token from
each input Place of an enabled transition is removed
and one token is added to each of its output Places.

2.2 Model Execution Traces

In this subsection, we first define the terms execution
state, execution step, and execution trace, then provide
an example of an execution trace obtained by executing
a Petri net model. Once again, note that part of these
definitions is based on the ones previously proposed by
Bousse et al. [21].

Definition 3 An execution state refers to the set of
values of all dynamic properties of an executed model
at a given point of an execution.

Definition 4 An execution step is the set of changes
applied to the execution state of a model that is ob-
tained by the application of a model transformation
rule. An execution step may be composed of several
execution steps, organized in a hierarchical structure.

As an example, for the Petri nets xDSML shown
in Fig. 1, each application of the execution rules run
and fire on a Petri net results in an execution step.
Since the rule run repeatedly calls the rule fire for each
enabled transition, the execution step created for the
application of the run rule will be composed of the exe-
cution steps created for the applications of the fire rule.
The execution state of the model changes each time fire
is executed. In particular, the tokens field of several
places will change when the fire rule is applied, hence
changing the executions of the model.

There exist many definitions of the concept of an
execution trace in the literature. The content of traces
mainly depends on the degree of abstraction required

4 Fazilat Hojaji et al.

Abstract Syntax

Execution Metamodel

Net

Transition
+name: String
+initialTokens: int

Place
+name: String

input
1..*
output
1..*

places
*

transitions
*

Place
+tokens: int

run(Net): while there is an enabled transition, fire it.
fire(Transition): removes one token from each input Place, and adds one token to each output Place

merges

imports

Fig. 1: Petri nets xDSML [21]

by the desired dynamic V&V technique as well as the
runtime concepts provided by the languages themselves.
Alawneh and Hamou-Lhadj [31] have categorized traces
of code-centric systems into statement-level traces, rou-
tine call traces, inter-process traces, and system call
level traces. In the case of executable models, execu-
tion traces may contain different type of information de-
pending on the executable modeling language. In addi-
tion, instead of tracing threads and function call stacks,
which are common programming language constructs,
in model execution, concepts like transitions, states,
and actions are often traced.

Definition 5 A model execution trace captures infor-
mation about the execution of an executable model.
This information may include a sequence of execution
states, execution steps, the state of objects during ex-
ecution, the processed input parameters, and the pro-
duced output parameters.

Fig. 2 illustrates an execution trace of a sample Petri
net model that is executed using the operational se-
mantics of the xDSML shown in Fig. 1. We use the
concrete syntax of Petri nets to show the execution. In
this example, Transition t1 is fired three times, produc-
ing three steps. Thus, these steps are recorded for the
application of fire on the Transition t1. Furthermore,
for actually starting the execution of the Petri net, the
rule run is applied once on the Net object representing
the complete Petri net. The execution step created for
this application of run thus is composed of the three
execution steps created for the applications of fire. For
each Place, we recorded its execution state, i.e., the
value of the tokens field after each execution step.
Moreover, the whole Petri net model is considered as
the input parameter of the run step, and Transition t1
as the input parameter for the fire steps.

2.3 Trace Compaction Techniques

Compaction techniques are required to reduce the size
of execution traces. Many compaction approaches have
been proposed for tackling the large volume of traces
(e.g., [32, 33, 34, 35, 36]). However, most of these
techniques have only been applied to code-centric ap-
proaches. Their effectiveness, when applied to executable
models, has yet to be shown. We categorize the com-
monly used trace compaction techniques into different
groups and summarize them in the following.

Table 1 provides an overview of the techniques that
are used for trace compaction. The first column of the
table presents the name of the technique and the second
column refers to the application domain. The third col-
umn shows the technique that we used in our approach.

Trace filtering [19, 32] refers to a set of techniques
that consider a partial trace instead of the whole trace
by sampling its content, removing specific components,
grouping similar parts of trace (pattern matching), etc.

Graph reduction treats traces as graphs and ap-
plies graph theory to transform them into more com-
pact forms. For example, Hamou-Lhadj et al. [19] pro-
posed a graph transformation technique in which a trace
of routine calls, represented as a tree structure, is con-
verted into an ordered directed acyclic graph (DAG)
by representing similar sub-trees only once. The idea is
removing repetitions by collapsing them into one node,
resulting in a significant size reduction.

Dynamic slicing [33, 37] refers to a set of tech-
niques in which a trace is divided into different parts
using slicing algorithms by identifying several types of
dependencies in traces. All unnecessary parts are re-
moved from the trace, which can further reduce its size.

Recording the modifications of the dynamic
model [38] is an approach in which, instead of stor-

Lossless Compaction of Model Execution Traces 5

Fig. 2: Example of a Petri net execution trace shown using concrete syntax

Table 1: Common techniques used for trace compaction

Name Technical space Applied in
our approach

Trace filtering [19, 32] code-centric
Graph reduction [19] code-centric *
Dynamic slicing [33, 37] code-centric
Recording the modifications of the dynamic model [38] MDD *
Sharing immutable objects [21] MDD *
C-store [39] data management
RainStor [40] data management *

ing all the dynamic information of the new state of the
model, only the modification (delta) between two sub-
sequent states is represented.

Sharing immutable objects [21] is a mechanism
to avoid duplicating immutable runtime objects, i.e.,
objects that cannot be changed during execution. These
objects can be shared between the original model and
the trace representation.

C-Store [39] is a column-oriented database man-
agement system that stores data column wise-instead
of row-wise. Each column in C-Store is compressed, and
for each column, a different compression method may
be used.

RainStor [40] is a column storage technique for
storing data. Every unique value in the dataset is stored
only once, and every record is represented as a binary
tree that allows reconstructing the original record us-
ing a breadth-first traversal of the tree. RainStor pro-
vides a compression algorithm by creating a network, or
graph of values, and storing every value in a database
only once. The algorithm yields a data reduction rate
of 40:1, i.e., it requires 40 times less storage.

2.4 Data Serialization Formats

Data serialization is the process of converting struc-
tured data to a format for data sharing or storage. In
this section, we present an overview of the common se-
rialization formats that are used as a data carrier in the
literature.

XML Metadata Interchange (XMI) [41] is an
Object Management Group (OMG) standard that al-
lows to interchange streams or files of data in an XML
format. Although XML is the most widely data inter-
change format, it is not efficient in terms of data size
and processing speed. However, XML files can be com-
pressed using Gzip 2.

Flat text format [42] stores data (e.g., traces) in a
simple flat file. In particular, the textual logs produced
by a program or a formal grammar fall into this cate-
gory. Flat text format provides a human-readable repre-
sentation of data that is easy to understand. Therefore,
no extra tools are needed to read, debug and administer
the serialized data. However, such format has certain
limitations and can make data files very big. further-
more, this is not a good solution for serialization of the
objects that are part of an inheritance hierarchy or con-
tain pointers to other objects.

2 http://www.gzip.org/

6 Fazilat Hojaji et al.

Efficient XML Interchange (EXI) [43] is an ef-
ficient compact XML representation, which reduces the
size of XML and improves processing speed. It is a
specification for encoding XML messages into a binary
representation. EXI can compress between 1.4 and 100
times the document’s original size and over ten times
the document compressed with Gzip.

JavaScript Object Notation (JSON) [44] is a
lightweight data-interchange format that stores infor-
mation in an organized, easy-to-access manner. The
JSON is a popular alternative to XML because it is
more human-readable than XML.

Google’s Protocol Buffers (ProtoBuf) [45] is
a flexible, efficient, extensible mechanism for serializ-
ing structured data. While XML and JSON are text-
based data formats, ProtoBuf uses a binary encoding
that makes serialized data more compact. Similar to
EXI, the ProtoBuf messages are not human-readable
after encoding.
3 Motivation

In this section, we first give requirements for our ap-
proach to define a new trace metamodel, and then we
explain the limitations of existing approaches.

3.1 Requirements for an execution trace metamodel

The results of our systematic survey [25] on model exe-
cution tracing approaches show that there has been an
increasing interest in this domain in recent years. How-
ever, there exist several challenges that need to be ad-
dressed when constructing and manipulating execution
traces. The first challenge is that existing model trac-
ing approaches use different formats for representing
traces, which hinders interoperability. Having a com-
mon exchange format for model execution traces would
allow better synergy among V&V tools that rely on
execution traces, and hence makes V&V tools avail-
able to a broader user base. Such an exchange format,
however, has to support the representation of xDSML-
specific concepts at different levels of detail. In other
words, a common trace format should be expressive
enough to capture the required runtime information for
any xDSMl. In addition, our survey shows that existing
model tracing techniques use large amount of informa-
tion about the execution of the models. In fact, nearly
half of the surveyed techniques keep detailed execution
state information. Also, the generated traces depend on
the execution scenarios used to exercise the systems.
Complex execution scenarios are expected to result in
very large traces. A large amount of data generated
from the execution of a model complicates the process
of applying dynamic V&V techniques. A common trace

format must represent traces in a compact form to en-
able scalability of the analysis tools. Therefore, scal-
ability is of primary importance and calls techniques
for a compact representation of traces when defining a
common trace format. The preservation of the original
information in a trace is also important when applying
compaction techniques.

In summary, we considered the following require-
ments in the design of CTM.

Genericity : CTM should support a wide range of
xDSMLs, independent of the meta-programming ap-
proaches used to implement their semantics.

Scalability in space: CTM should handle large exe-
cution traces.

Information preservation: CTM should provide a
lossless representation of traces.

Performance overhead : The performance overhead
caused by using CTM to construct an execution trace
should be an acceptable overhead during the execution
of a model.

3.2 Limitation of existing trace structures

Techniques exist for defining data structures to repre-
sent execution traces of models conforming to a given
xDSML. For instance, a trace structure may be de-
scribed using an XML schema as proposed by Kemper
and Tepper [46], a text format as proposed by Maoz et al. [47,
48], or metamodels such as the one’s proposed by Hege-
dus et al. [38]. However, the results of our survey on
trace representation formats [25] indicate that meta-
models are most frequently used to define the data
structure for representing model execution traces. In
this work, we focus on traces for executable models. As
executable models commonly instantiate metamodels,
we discuss the limitations of current trace metamodels.

Existing generic trace metamodels. A very few studies
(e.g., [20], [15]) propose generic trace metamodels, in-
dependent from an xDSML. Although they allow inter-
operability between existing trace analysis tools, they
do not scale up to large traces efficiently. Also, these
trace metamodels only capture events that occur dur-
ing an execution, and lack a complete representation of
a trace such as execution states as well as inputs and
outputs values.

Existing domain-specific trace metamodels. There exist
studies that define trace metamodels including concepts

Lossless Compaction of Model Execution Traces 7

specific to a given xDSML. They rely on their own cus-
tom trace formats being either defined manually or gen-
erated automatically. This lack of genericity hinders in-
teroperability and the sharing of data among tools that
support multiple xDSMLs. Moreover, according to our
survey [25], a large number of these techniques record
information about occurred execution events and keep
detailed execution states information, resulting in scal-
ability problems. For example, in the ProMoBox ap-
proach proposed by Meyers et al. [10], a domain-specific
trace metamodel is automatically generated for a given
xDSML, but such metamodel defines a trace as a se-
quence of snapshots of the complete executed model to
capture execution states.

We identified three approaches that aim at address-
ing the scalability issue. In particular, Hegedus et al.
propose in their approach [38] to reduce traced state
information by only capturing state modifications and
events related to state modifications. Similarly, Bousse
et al. [21] propose a technique to reduce the impact of
this problem by sharing data among captured states so
that only changes in the data are recorded. Kemper and
Tepper [46] use heuristics such as cycle reduction to re-
move repetitive fragments from traces. While these ap-
proaches consider some sort of trace compaction, they
still suffer from scalability problems due to the repeti-
tions in the data, questioning whether the achievable
compaction is sufficient. In addition, none of these ap-
proaches provide a generic exchange format. We see the
need for more scalable generic model execution tracing
solutions. The contribution presented in this paper aims
at addressing this need, defining a generic trace meta-
model that not only provides a detailed representation
of trace but also scales up to large traces by applying
compaction techniques.

4 Approach Overview

To overcome the limitations observed in existing trace
formats, and to better comply with the requirements
mentioned in section 3.1, we propose a new trace for-
mat that can be use to represent traces in a generic
and scalable fashion. Our idea relies on the fact that
there might be a lot of repetitions in traces. Thereby,
we apply a set of compaction techniques to store the
repetitive information contained in a trace only once,
leading to reduce the size of traces effectively.

Fig. 3 presents a complete overview of our approach
with our contributions highlighted in gray.

For the execution of models, the first step is the
definition of an xDSML a including the abstract syn-
tax, execution metamodel, and execution transforma-

tion. Then, an executable model b conforming to the
execution metamodel of the xDSML can be executed in
an execution engine c . The execution transformation
is applied to modify the execution state of the model.

There exist two trace constructors in our approach,
each generating execution traces of a model. The first
one is the regular trace constructor d that allows con-
structing traces without compaction. The result is a
regular execution trace g conforming to our proposed

generic trace metamodel h .
Using a set of compaction techniques j , the com-

pact trace constructor e creates traces in a compact
representation form. Note that the compact trace con-
structor contains several units, each dealing with the
compaction of a part of traces concerning to evolution of
the execution state of a model, parameter values as well
as loop detection within traces, which will be described
in Sec. 5.2. Finally, the result of using the compact trace
constructor is a compact execution trace f conforming
to the generic compact trace metamodel p .

The second part of our approach consists of a trace
de-compactor k that takes a compact execution trace,
and generates a regular trace by decompressing the
trace. The trace de-compactor contains several mod-
ules, each reconstructing the corresponding part of a
trace and generating a regular trace from the compact
one without losing data. The result is a regular exe-
cution trace g conforming to our generic trace meta-

model h .
It is worth noting that both trace metamodels marked

by h and p support genericity, while CTM takes
into account scalability criterion as well. Besides the
construction of regular traces, the generic trace meta-
model is used for evaluating information preservation
of CTM, so that the traces reconstructed after the de-
compaction process with the traces generated from the
generic trace metamodel is compared to indicate whether
these two traces do match, i.e., CTM provides a lossless
representation of traces.

In the next section, we present the gray elements in
more detail.

5 Generic Compact Trace Metamodel (CTM)

This section explains a two-step process for designing
CTM with the aim of supporting the genericity and
scalability criteria described in Sect. 3. In the first step,
to address the genericity criterion, we identified runtime
concepts required for expressing model execution traces
that are common to existing executable modeling lan-
guages. The result is a generic trace metamodel, which

8 Fazilat Hojaji et al.

Compact Trace
Constructor

Regular Trace
Constructor

Compact
Execution Trace

Compaction
Techniques

Regular
Execution Trace

Executable Model
 Execution
 Engine

Abstract
syntax

Execution
metamodel

Execution
transformation

Trace
decompactor

Compact
Execution Trace

Regular
Execution Trace

 Reads/Produces

 Conforms to

Uses/
depends on

Artifact

CTM
Module

modifies

Generic Compact
Trace Metamodel

(CTM)

Generic Trace
Metamodel

xDSML

Trace Construction

Trace decompaction

Generic Trace
Metamodel

Component

 Model

Fig. 3: Approach overview, with our contributions highlighted in gray

is explained in Sect. 5.1. In the second step, we enhance
this generic metamodel with compaction techniques in
order to fulfill the scalability prerequisite. The result is
CTM, which is described in Sect. 5.2.

5.1 Generic trace metamodel

In order to define a generic trace metamodel, we identify
all runtime concepts that are required for expressing
the trace of executing models that are common in all
executable modeling languages. After that, we define
their relationships and create a metamodel.

Fig. 4 shows our proposed generic trace metamodel.
The root class of the metamodel is Trace, which con-
tains a sequence of states of the model under execu-
tion (State) as well as a sequence of events related to
the states (Step). Step is a class used for represent-
ing execution steps. Using a tree structure, a Step can
include other steps represented by the reference chil-
dren. The reference state between State and Step is
used to specify the starting and ending state of a step.

A State contains the states of all dynamic objects
(ObjectState) at a given point in time of the execu-
tion. Thereby, the state of a dynamic object is given by
the current values of all its dynamic fields. An Object-
State represents the state of a specific object, whereas
a State represents the state of all objects of a model.

At any given point in the execution, the state of an ob-
ject of the executed model is defined by the values of all
its dynamic fields (e.g., tokens values in a Petri net).

An ObjectState object is related to a Transien-
tObject, which corresponds to an object of the exe-
cuted model. We distinguish between StaticTransien-
tObject and DynamicTransientObject. The Stat-
icTransientObject class refers to objects that are de-
fined in the executed model, while the DynamicTran-
sientObject class refers to objects that are only cre-
ated during execution.

When creating an execution trace, one StaticTran-
sientObject is created for each object existing in the
model. The relationship between the StaticTransien-
tObject and the original model object is stored with
the reference originalobject to Ecore’s metaclassEOb-
ject. Note that all objects contained in a model, which
have been defined by an Ecore metamodel, inherit from
EObject. Similarly, one DynamicTransientObject is
created for each dynamic object created during the exe-
cution. The type of the object is stored using the refer-
ence type to Ecore’s metaclassEClass to represent the
objects created only during execution. There is the ref-
erence estructuralfeatures from TransientOb-
ject to Ecore’s metaclass EStructuralFeature to rep-
resent the name of the fields corresponding to each ob-
ject. Also, EClass owns a set of EStructuralFeature,
each being either EReference or EAttribute.

Lossless Compaction of Model Execution Traces 9

GenericTraceMetamodel

StepType

+stepName: EString Trace TransientObject

DynamicTransientObjectStaticTransientObject

ObjectState

 Value

 RefValue LiteralValue

 State Step

ParameterKindEnum

 IN
 OUT
 INOUT
 RET

ParameterValue

+Directionkind
 :ParameterKindEnum

parent
0..1

{ordered=true}
children
*

parametervalue
*

state
*

steptype
1..1

state
*

step
*

objectstate
*

value
*

value
*

objectstate
1..1

transientobject
*

steptype
*

Ecore

EObject

EClass

originalobject
*

type
0..1

originalobject
0..1

LiteralString

+svalue: String(0..*)

LiteralInteger

+ivalue: Int(0..*)

LiteralBoolean

+bvalue: Boolean(0..*)

LiteralFloat

+fvalue: Float(0..*)

EStructuralFeature
estructuralfeatures
*

Fig. 4: The proposed generic trace metamodel

For example, in a Petri net model, each Static-
TransientObject object is linked to the Place object
whose states is captured. Besides, no object is created
during the execution of a Petri net model. Therefore,
the trace does not contain any DynamicTransientO-
bject objects.

The values of dynamic fields are stored as elements
typed by the abstract class Value, which can either
be a LiteralValue or a RefValue. The class Liter-
alValue is an abstract class for defining literal values;
each containing an attribute referring to a sequence of
values of a particular primitive type. For example, the
class LiteralBoolean is for the specification of either
a Boolean value or a sequence (array) of Boolean val-
ues. Similarly, the classRefValue represents references
among objects.

The inputs and outputs of an execution step are
recorded using the ParameterValue class containing
the Enum field directionkind representing the pa-
rameter type (input, output, input-output, return) and
the value reference pointing to the Value class. The
StepType class is used to represent the type of each
step, which is recorded only once in a trace, instead of
storing it for each step instance.

To show how this metamodel can be used to cap-
ture trace elements of an executable model, we consider
the previous Petri net example model shown in Fig. 2.
Fig. 5 illustrates an excerpt of the trace obtained from
the execution of the Petri net model. Using an object

diagram, we show the content of the executed model
at the left of the figure and the generated trace of the
model at the right of the figure. The Trace root con-
tains one root Step for the application of the execution
rule run, which itself contains three nested Step ele-
ments representing the firing of transition t1. Thus, the
trace contains four Step elements. One Step is linked
to StepType Run representing the complete Petri net
run, and three steps are linked to the StepType fire
representing the firing of the transition t1. The excerpt
of the trace also shows three of the recorded Static-
TransientObject objects, one per Place object p1,
p2, and p3.

The trace contains four State objects with three
ObjectState objects; each representing the current value
of the tokens field of the respective Place object. The
tokens value is represented by using LiteralInteger
objects.

To represent the ParameterValues of steps, four
ParameterValue objects are created, one pointing to
the Net object provided to the run rule and three
pointing to transition t1 provided to the fire rule. The
Net and Transition are referenced using RefValue
objects.

Overall, using our metamodel, we needed 46 ob-
jects and 70 references to represent the trace gener-
ated during the execution of the Petri net example
model. As shown in Fig. 5, there exist many repetitions
in the trace, particularly in the ObjectState, State,

10 Fazilat Hojaji et al.

net:Net

output

input

:Trace

 :Step

 :Step

S0:State
S1:State

S2:State

p1:StaticTransientObject

p3:StaticTransientObject

p2:StaticTransientObject

p1-0:ObjectState

v1:RefValue

v0:LiteralInteger

 val=3

:StepType

 stepName="Run"
:StepType

 stepName="fire"

 :Step

v1:LiteralInteger

 val=2

p1:ParameterValue

p0:ParameterValue

v0:RefValue

originalobject

originalobject

originalobject
p1-1:ObjectState p1-2:ObjectState

p2-0:ObjectState p2-1:ObjectState p2-2:ObjectState

p3-0:ObjectState p3-1:ObjectState p3-2:ObjectState

output

v1:LiteralInteger

 val=1

 :Step

Containment ref.
Normal ref.
Executed model

v1:LiteralInteger

 val=1

v1:LiteralInteger

 val=1

v1:LiteralInteger

 val=1

S3:State

.....

originalobject

originalobject

p2:ParameterValue

v2:RefValueoriginalobject

.....

.....

 t1:Transition

 name="t1"

p3: Place

 name="p3"
 initalTokens=0

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

Fig. 5: Excerpt of execution trace of the Petri net example that conforms to the proposed generic trace metamodel

ParameterValue and Value. Additionally, there are
repetitions of Steps due to the existence of a loop in
the model, causing the Transition t1 to be fired three
times. In the next subsection, we explain the techniques
applied to the generic trace metamodel, with the aim
of eliminating the repetitions. Although, applying the
compaction techniques results in adding new concepts
to CTM, making execution traces a bit more complex,
our evaluation results in Sec. 7 show that CTM meets
the scalability requirement.

5.2 CTM compaction

To reduce the size of CTM traces, we propose a multi-
part compaction strategy by applying customized com-
paction techniques to different parts of the generic trace
metamodel defined in the previous section. The key idea
is to compact repetitive parts of a trace.

5.2.1 Dealing with repetitions in State

The first part of our compaction strategy focuses on
execution states. As explained previously, each State
contains the states of all objects in the executed model
after each execution step. Since it is likely to have un-
changed dynamic properties of objects in a given step,
there might be a lot of repetitions in State objects.

As an example, to represent the states of the trace
from the example model (Fig. 5), we needed 31 objects
(4 State, 12 ObjectState, 12 Value, 3 StaticTransien-
tObject) and 64 references (4 state, 24 objectstate, 24
value, 12 transientobject). After firing t1 for the first
time, the state of p1 and p3 changes but the state of
p2 remains unchanged. Similarly, the state of p2 re-
mains unchanged after firing t1 for the second time.
Instead of storing all ObjectState objects that repre-
sent a new state of the executed model, we can design
a technique that captures only the modification (delta)
between two states. For the example model shown in
Fig. 5, this means storing only the ObjectState for p1
and p3 at each execution step.

Fig. 6 shows the excerpt of the adapted trace meta-
model dealing with the compaction of State informa-
tion. The new concepts and relationships in compari-
son to the generic trace metamodel (shown in Fig. 4)
are highlighted in blue. First, the redundancies of Ob-
jectState objects are reduced by adding a containment
reference objectstate to the class Trace which al-
lows to create ObjectState objects that are equiva-
lent only once. Moreover, an ObjectState might be
the same for different objects, meaning that the values
of their corresponding fields are the same. To support
this, we add the class TransientObjectState between
the class State and the class ObjectState and a ref-
erence transientobject to the class TransientOb-

Lossless Compaction of Model Execution Traces 11

TransientObject
ObjectState

 State

Trace

TransientObjectState

StaticTransientObject DynamicTransientObject

newobject
*

deletedobject
*

transientobject
*

state
*

changedobjectstates
*

objectstate
*

objectstate
1..1

transientobject
1..1

basestate
0..1

 Value

value
*

Ecore

EObject

EClass

 RefValue LiteralValue

value
*

originalobject
0..1

type
0..1

EStructuralFeature

estructuralfeatures
*

Fig. 6: Excerpt of CTM modeling concepts related to State with the changes highlighted in blue

ject. More precisely, instead of having a reference from
the class ObjectState to the class TransientObject,
the class TransientObjectState defines the relation-
ship between these two classes. Such a structure allows
using an ObjectState object for different Transien-
tObject objects. The TransientObjectState objects
are only created for the TransientObject objects that
have changed in the current state. The changes of ob-
jects can be obtained by comparing their respective
ObjectState objects in the current State with the
ObjectState objects belonging to the previous State.
However, instead of the previous State, we can inspect
the most similar State within the execution trace to
obtain delta State objects. To do this, we add a ref-
erence basestate to the class State, specifying the
State object that is the closest to the current State
object (which can be achieved by comparing their Ob-
jectState objects).

Following a structure similar to Fig. 4, StaticTran-
sientObject and DynamicTransientObject are de-
rived from TransientObject, and linked to EObject
and EClass, respectively. Likewise, the reference es-
tructuralfeatures from TransientObjectState
to Ecore’s metaclass EStructuralFeature are used to
represent the name of the fields corresponding to each
object.

Finally, a State object stores the objects newly
created in the state, as well as the objects deleted in
the state, using the new references newobjects and
deletedobjects pointing to the class TransientO-
bject. Therefore, instead of creating ObjectState ob-
jects referenced by respective State object, new objects
can be simply specified using the reference newob-
jects.

The direct benefit of this structure is that we avoid
redundancies by creating a singleObjectState per value
change. Another benefit is that the ObjectState ob-
jects can be shared between different TransientOb-
jects. It also supports exploring previous states of an
executed model.

For the compaction of States, we used a notification
framework implemented in GEMOC Studio to track
the changes that are made to the dynamic objects of
a model during an execution. This helped us to repre-
sent only the modifications between states. Note that
we implemented an additional procedure that gives the
same functionality as the notification framework. The
procedure is independent of the execution environment,
and can be used for the State compaction (instead of
the notification framework) in the case of not using
GEMOC Studio. The value of basestate reference
is determined by using an algorithm that compares the
current State with other existing States in the trace,
and finds the closest one to the current State object.
The algorithm scans State objects within the trace,
compares the ObjectStates and Values contained in
the chosen State with those of the current State, and
find the closet State object. In addition to consider-
ing state modifications after executing steps, our trace
constructor also supports recording of state modifica-
tions that occurs before starting a step. This is relevant
when a step makes a change before calling another (sub-
)step. In such a case, the trace constructor creates an
instance of Step object and its StepType is assigned
to “Implicit step”.

Fig. 7 shows an excerpt of the trace of the Petri net
example model, conforming to the part of CTM shown
in Fig. 6. The trace illustrated in Fig. 7 is a compact

12 Fazilat Hojaji et al.

net:Net
P0:Step

S0:State

p1:StaticTransientObject

p3:StaticTransientObject

p2:StaticTransientObject v0:LiteralInteger

 val=2

v1:LiteralInteger

 val=1

originalobject

originalobject

originalobject

P1:Step P2:Step

S1:State
S2:State

.....

T2-1:TransientObjectState

T2-2:TransientObjectState

newobjects

newobjects

newobjects T1-2:TransientObjectState

O1:ObjectState

O2:ObjectState

T1-1:TransientObjectState

P4:Step

S3:State

basestate basestate

v2:LiteralInteger

 val=3

O3:ObjectState

v3:LiteralInteger

 val=0

O4:ObjectState

T3-1:TransientObjectState T3-2:TransientObjectState

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

p3: Place

 name="p3"
 initalTokens=0

:Trace

Fig. 7: Excerpt of execution trace of the Petri net example (State with compaction)

version of the trace that was presented in Fig. 5. The
blue elements denote the elements used for representing
states in a compact form. Four references are used to
represent the new objects referencing to the first State
object at the beginning of the execution. As compared
to Fig. 5, the first state is represented by using four
newobjects references, and no ObjectState objects
are created. To represent the second State object, two
TransientObjectState objects, one referring to the
ObjectState of p1 and the other one referring to the
ObjectState of p3 are linked to the state S1. Simi-
larly, two TransientObjectState objects are used to
represent the ObjectState for p1 and p3 after exe-
cuting the next two execution steps. As shown in the
figure, ObjectState objects are shared between differ-
ent State objects. For instance, the ObjectState O2
is shared between two State objects by using the ob-
ject T1-2 referring to p3 for the first State (S1) and
the object T2-1 referring to p1 for the second State
(S2).

In total, the new compact structure reduces the
number of objects from 46 objects to 21 and the number
of references from 70 references to 30.

5.2.2 Dealing with repetitions in Step

The next part of our compaction strategy focuses on
repetitions appearing due to the existence of loops and
patterns of identical sequences of events, and recurring
patterns. For our Petri net example, as we can see in
Fig. 5, there are three repetitions, caused when the
transition t1 is fired.

To achieve this, we adopted the Flyweight design
pattern [49] and the Composite design pattern [49] to
implement a hierarchical structure for Step objects in
terms of a directed-acyclic graph with shared leaf nodes.
The idea is to remove the repetitions by collapsing re-
peated nodes into one node and storing the repeated
parts only once. To better present our technique, we
use the following definitions:

StepPattern: Step patterns (i.e., sequences of execu-
tion steps repeated consecutively in a trace) are repre-
sented using the StepPattern class. Two sequences are
considered as instances of the same pattern if they con-
tain the same steps in the same order.

RepeatingStep: A StepPattern includes a sequence
of Step objects, named RepeatingSteps. We differen-
tiate RepeatingStep from the Step class. A Step (as
shown in Fig. 4) represents its StepType, State and
ParameterValue as well. In contrast, for a Repeat-
ingStep, only its StepType is represented. In fact, be-
cause a RepeatingStep might be included in several
StepPattern objects, it can occur in different parts of
an execution; each containing different State objects
and ParameterValue objects. Therefore, to represent
a Step, which belongs to a StepPattern, we use Re-
peatingStep (instead of Step).

PatternOccurrence: This class represents the instances
of a step pattern. A StepPattern can occur more than
once in a trace. PatternOccurrence objects are instances
of StepPattern objects, which are the occurrences of the
patterns invoked in the trace.

Lossless Compaction of Model Execution Traces 13

PatternOccurrence

+rept: EInt

{ordered=true}
children
*

parent
0..1

repeatingstep
*

pattern
1..1

repeatingstep
*steppattern

*

steptype
*

StepType

+stepName: EString

 Step

 NormalStep

RepeatingStep State

ParameterValue

+Directionkind

 Trace
 StepPattern

step
*

parametervalue
*

parent
0..1

{ordered=true}
children
*

steptype
1..1

state
0..1

state
*

parametervalue
*

StepSpec

ParameterList

parameterlist
0..1

PatternOccurrenceStepData
step
0..1

{ordered=true}
parameterlists
* {ordered=true}

states
*

stepdata
0..*

parameterlist
*

Fig. 8: Excerpt of CTM with modeling concepts related to Step, with the changes highlighted in blue

We introduced these concepts to act as a basis for
supporting patterns in a trace. Indeed, a trace might
include several PatternOccurrence objects; each re-
ferring to a StepPattern object. The instance of Pat-
ternOccurrence shows part of a trace that the pattern
occurs as well as the starting point of the pattern. In
each StepPattern object, there might exist several
RepeatingStep objects. In the following, we briefly
discuss how to apply the new concepts in the generic
trace metamodel:

As shown in Fig. 8, we define a new class StepPat-
tern pointing to repeating patterns as a sequence of
RepeatingStep objects repeated consecutively in the
trace. We also add a new class RepeatingStep, refer-
ring to the Step objects included in a StepPattern.
Similar to Step, RepeatingStep is a tree-like struc-
ture, which implies having a composite reference to rep-
resent parent and children references. In addition,
we rely on the containment reference steppattern of
the Trace class to remove redundancy in StepPattern
objects. ARepeatingStep can be shared between sev-
eral StepPattern objects by adding the containment
reference repeatingstep to the Trace class.

The reference repeatingstep between the Step-
Pattern and the RepeatingStep classes represents
which RepeatingStep objects are included in each
StepPattern object.

To support repetitive patterns within an execution
trace, we need to distinguish between a normal step
from a step that refers to an occurrence of a step pat-
tern. We do this by extending the Step class with two
subclasses,NormalStep andPatternOccurrence. The
PatternOccurrence class represents the occurrence
of the patterns and contains an attribute rept that is
used to specify the number of repetitions of a pattern.

Each PatternOccurrence object is related to a
StepPattern object using the reference pattern. Be-
sides, there is a reference state between the Step and
State classes, pointing to the state of the model at any
point in time for the respective NormalStep.

Despite the similarity of Step objects in a loop, they
could lead to different states (State objects) and pro-
cess/produce different parameters (ParameterValue
objects). Because each Step might include more than
one ParameterValue, we need a new class Param-
eterList, which refers to a list of corresponding Pa-
rameterValue objects. This class is used to merge

14 Fazilat Hojaji et al.

net:Net

 :Step

:StepType

 stepName="Run"

:StepType

 stepName="fire"

:StepPattern

:RepeatingStep

PatternOccurrence

 repet:3

:PatternOccurrenceStepData
states

p1:StaticTransientObject

p2:StaticTransientObject

 t1:Transition

 name="t1"

p3: Place

 name="p3"
 initalTokens=0

p2: Place

 name="p2"
 initalTokens=1

p1: Place

 name="p1"
 initalTokens=3

p3:StaticTransientObject

input
output

output

originalobject

originalobject

originalobject

S0:State S1:State
S2:State

p1-0:ObjectState

v0:LiteralInteger

 val=3

v1:LiteralInteger

 val=1
originalobject

p1-1:ObjectState p1-2:ObjectState

p2-0:ObjectState p2-1:ObjectState p2-2:ObjectState

p3-0:ObjectState p3-1:ObjectState p3-2:ObjectState

p1-3:ObjectState

p2-3:ObjectState

p3-3:ObjectState

S2:State

v2:LiteralInteger

 val=2
v3:LiteralInteger

 val=0

P0:ParameterList

p1:ParameterList

p2:ParameterList

p3:ParameterList

Pv1:ParameterValue

.....
v1:RefValue

.....

Pv0:ParameterValue

v0:RefValue

originalobject originalobject

.....

...

.....
.....

:Trace

Fig. 9: Excerpt of an execution trace of the Petri net example model including a loop (Step with compaction)

ParameterList objects of Step objects included in
a loop. Similar to the technique used by Taniguchi et
al. [50] for abstracting repetition patterns, in order to
replace the whole repetition, we make a representative
by unifying Step objects (by adding a reference to the
RepeatingStep class) and storing the corresponding
States and ParameterValues in chronological order
sequences. More precisely, a PatternOccurrence ob-
ject points to a specific StepPattern object, which
contains a set of RepeatingStep objects. In subse-
quent iterations of the pattern, a sequence of State
objects and a sequence of ParameterList objects are
obtained for each RepeatingStep object. This data is
represented by using the class PatternOccurrenceS-
tepData, having a reference to the RepeatingStep
class, an ordered unbounded reference state to the
State class, and an ordered unbounded reference pa-
rameterlist to the ParameterList class as well.
All associated States and ParameterLists are stored
chronologically for a singleRepeatingStep. Using this
structure, we replace multiple redundant instances of
steps by the references to a single step. By storing re-
peated steps only once, we can eliminate all repetitions
of steps within the trace.

Since bothNormalStep andRepeatingStep have
a reference to the StepType class, we add the Step-
Spec superclass, which inherits either NormalStep or
RepeatingStep. We also add the reference steptype
from the StepSpec class to the StepType class.

From a technical point of view, we used an extension
of Valiente’s algorithm [51] proposed by Hamou-Lhadj
and Lethbridge [19] to detect redundant patterns within
execution steps. The idea behind this algorithm is con-
verting a tree structure into a more compact ordered
directed acyclic graph. In our case, the execution trace
would be a tree, containing the nodes corresponding to
the Steps. The aim is to detect patterns involving con-
secutive repetitions of Steps existing due to loops or
recursion. The algorithm simply takes a complete exe-
cution trace and produces a certificate and signature for
each node by traversing the tree of Steps in a bottom-
up fashion (from the leaves to the root). The certificates
(positive integers between 1 and the size of the tree)
are assigned to nodes so that the roots of two isomor-
phic sub-trees take the same certificate. For computing
each certificate, the algorithm uses signature, which is
obtained by concatenating the StepType of the re-
spective Step and the certificates of its direct children.
To carry out this work, we extended the Step class by
adding two new properties (signature, certificate) in the
trace metamodel. Given a signature, we can recognize
repetitions that might be included in the correspond-
ing Step, and thus construct the trace, which conforms
to the trace metamodel shown in Fig. 8. Note that the
technique of step compaction is done offline (i.e., after
the execution of the model), due to the complexity of
applying graph reduction technique during execution.
We defer doing the step compaction on the fly to fu-
ture work.

Lossless Compaction of Model Execution Traces 15

Fig. 9 presents part of the compact version of the
trace of the Petri net example model that makes use of
the introduced compaction of Step information. In this
example, we make use of one RepeatingStep referring
to the firing of t1, which is repeated three times. There
is an instance of the StepPattern class that contains
only one RepeatingStep object. We replace all Step
objects representing the firing of t1 with one instance
of PatternOccurrence that refers to the StepPat-
tern object, and stores the value three in the rept at-
tribute. After each iteration, a State object and a Pa-
rameterList object are created (i.e., S1 and P1 after
the first iteration, S2 and P2 after the second iteration,
etc.). The PatternOccurrenceStepData object rep-
resents an order sequence of the State objects (i.e., S0,
S1, S2, S3), an order sequence of the ParameterList
objects (i.e., P0, P1, P2, P3) as well as the correspond-
ing RepeatingStep.

Compared to the original version of the trace (Fig. 5),
the resulting compact trace requires only five objects
and six references to represent the step part of the trace
as opposed to four objects and 12 references when com-
paction is not used.

5.2.3 Dealing with repetitive values in ObjectState

Our third compaction strategy targets attributes of Ob-
jectState objects. There may be redundancies among
ObjectState objects regarding the values taken by dif-
ferent attributes of each object.

As an example, we use a trace of a colored Petri
net, shown in Fig. 10. A colored Petri net is an exten-
sion of a Petri net in which each token carries a data
value called the token color. For simplification reasons,
in the figure, we considered both color and value in one
object. The Place objects are specified with colour set
stating the type of tokens. In this example, there are
three tokens colors: Red (R), Green (G) and Blue (B).
We use a simple representation of the concrete syntax
of a colored Petri net to show its execution. The names
of Place objects are represented inside the circles, and
the current number of tokens in a Place object are
shown below the circle by specifying the color of the
held tokens. As an example, Place p1 holds in the first
state one Blue, one Green, and one Red token. The
Transitions among Places state which kind of tokens
are required at the input Places to enable the Transi-
tions. In our example model, t1 is fired if p1 contains
a token with Red color. In this case, when t1 fires, it
consumes one token with Red color and adds one Red
token to its output places.

Table 2 shows the partial data from the execution
of the example model related to the Place object that

Table 2: Excerpt of ObjectState data for the Place
objects captured during the execution of the colored
Petri net model shown in Fig. 10

Id BlueToken GreenToken RedToken

p1-0 1 1 1
p2-0 0 1 0
p3-0 1 1 0
p4-0 0 0 2
p1-1 1 1 0
p1-1 1 1 0
p2-1 0 1 0
p3-1 1 1 1
p4-1 0 0 2
p1-2 1 1 0
p2-2 0 0 0
p3-2 0 1 1
p4-2 1 1 2

includes three attributes. The first column (Id) shows
the step of the execution and the respective Place. For
instance, P1-0 refers to the ObjectState p1 at the be-
ginning of the model execution. The second to fourth
columns present the value of different tokens. The rows
represent ObjectState objects of the corresponding
Place objects with slight differences. Regardless of the
similar rows (e.g., P2-0 and P2-1), there exists rows in
the table that are partially similar. For instance, two
values of P1-0, P3-0, and P4-2 (BlueToken and Green-
Token) are identical. They are different in RedToken
value. It is very likely that only a subset of the at-
tributes of an object changes from one execution step
to another. Also, there might exist ObjectState ob-
jects that are identical in two or more values during
an execution. Therefore, we can identify frequent val-
ues in ObjectState objects that can be shared and
represented only once.

At the bottom of Fig. 10, we show the content of
the executed model and the generated trace, which con-
forms to our generic trace metamodel. The model is exe-
cuted in three Steps, each providing a State object that
contains four ObjectStates reached by p1 to p4. Since
each Place object contains three attributes, 36 objects
are required to represent Value objects. For simplic-
ity reasons, some parts of the trace are not shown in
Fig. 10, e.g., the IntegerValue objects with “zero”
value and the links between State and StaticTran-
sientObject. Moreover, the figure does not showTran-
sientObjectState objects and their links to LeafOb-
jectState,CompositeObjectState and StaticTran-
sientObject either. In total, 52 objects (12 Object-
State, 36 Value, 4 StaticTransientObject) and 64 refer-
ences (24 objectstate, 36 value, 4 transientobject) are
used for representing this part of the trace.

16 Fazilat Hojaji et al.

t1
t2

net:Net

:Step
S0:State

S1:State

originalobject

originalobject

originalobject

p1:Place

name="p1"
RedTokens:1
GreenTokens:1
BlueTokens:1

p2:Place

name="p2"
RedTokens:3
GreenTokens:1
BlueTokens:0

P3:Place

name="p3"
RedTokens:0
GreenTokens:1
BlueTokens:0

P4:Place

name="p4"
RedTokens:2
GreenTokens:0
BlueTokens:0

:LiteralInteger

 val=1(Blue)
:LiteralInteger

 val=1(Red)

:LiteralInteger

 val=1(Green)

.....

originalobject

Run()

fire(t1) fire(t2)

p1-0:ObjectState

p3-0:ObjectState

p2-0:ObjectState

p1-1:ObjectState

p4-0:ObjectState

:LiteralInteger

 val=2(Red)

S2:State

Containment ref.
Normal ref.
Executed model

R
P1 P3

P2

P4

(B,G,R) (B,G)

(G)

(R,R)
t1

t2

RP1 P3

P2

P4

(B,G)

(G)

(R,R) t1
t2

RP1 P3

P2

P4

(B,G,R) (B,G)

()

(B,G,R,R)

B

G (G,R)
G

B B

G

R: RedToken
G: GreenToken

B: BlueToken

p1:StaticTransientObject

p2:StaticTransientObject

p3:StaticTransientObject

p4:StaticTransientObject

:LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Green)

:LiteralInteger

 val=1(Green)

p2-1:ObjectState

p3-1:ObjectState

.....

.....

.....

P4-1:ObjectState

.....

:LiteralInteger

 val=2(Red)

:Trace

Fig. 10: Excerpt of execution trace of the colored Petri net example model (ObjectState without compaction)

ObjectState Value

CompositeObjectState

+objectstateorder : EInt(0..*)
 LeafObjectState

value
*

objectstate
*

Trace

value
*objectstate

*

Fig. 11: Excerpt of CTM with modeling concepts re-
lated to ObjectState, with the changes highlighted in
blue

Fig. 11 shows our solution for improving CTM generic
metamodel by compacting repetitive values of Object-
State objects. Our solution was inspired by the Rain-

store approach [40], introduced in Sect. 2.3. As explained
in Sect. 2.3, every unique value in the Rainstor ap-
proach is stored only once, and each row of data is
shown as a binary tree that allows rebuilding the origi-
nal data using a breadth-first traversal of the tree. Fol-
lowing the Rainstor method, we decompose the class
ObjectState into the class CompositeObjectState
and the class LeafObjectState, each having reference
to the class Value. More precisely, an ObjectState
object might consist of a subset of existing Object-
State objects or a set of Value objects. We model this
using the Composite design pattern [49]. Each Object-
State can be constructed with little effort, by travers-
ing the corresponding ObjectState and retrieving its
containedObjectStates recursively. Finally, instead of
using the containment reference from CompositeOb-
jectState to ObjectState, the containment reference
objectstate of the class Trace provides the ability
to reuse the existing ObjectState objects.

Lossless Compaction of Model Execution Traces 17

t1
t2

net:Net

:Step
S0:State

S1:State

p1:StaticTransientObject

p3:StaticTransientObject

p4:StaticTransientObject

p2:StaticTransientObject

originalobject

originalobject

originalobject

p1:Place

name="p1"
RedTokens:1
GreenTokens:1
BlueTokens:1 :LiteralInteger

 val=1(Blue)

:LiteralInteger

 val=1(Red)

:LiteralInteger

 val=1(Green)

.....

originalobject

Run()

fire(t1) fire(t2)

L1:LeafObjectState

L2:LeafObjectState

:LiteralInteger

 val=0(Red)

:LiteralInteger

 val=0(Green)

:LiteralInteger

 val=0(Blue)

C2:CompositeObjectState
C1:CompositeObjectState

L4:LeafObjectState

L3:LeafObjectState

L5:LeafObjectState

:LiteralInteger

 val=2(Red)

S2:State

Containment ref.
Normal ref.
Executed model

R
P1 P3

P2

P4

(B,G,R) (B,G)

(G)

(R,R)
t1

t2

RP1 P3

P2

P4

(B,G)

(G)

(R,R) t1
t2

RP1 P3

P2

P4

(B,G,R) (B,G)

()

(B,G,R,R)

B

G (G,R)
G

B

B

G

R: RedToken
G: GreenToken

B: BlueToken

p2:Place

name="p2"
RedTokens:3
GreenTokens:1
BlueTokens:0

P3:Place

name="p3"
RedTokens:0
GreenTokens:1
BlueTokens:0

P4:Place

name="p4"
RedTokens:2
GreenTokens:0
BlueTokens:0

:Trace

Fig. 12: Excerpt of an execution trace of the colored Petri net example model (ObjectState with compaction)

Note that while two ObjectStates may have the
same set of values, the order of the values may differ.
As an example, consider an ObjectState A with val-
ues (c1, c2, c3), and an ObjectState B with values
(c3, c1, c4) in a trace. (c1, c3) are common between
A and B, but because of the different orders in which
they appear, A and B cannot be considered as a shared
ObjectState. This can be handled by adding a new
attribute to the class CompositeObjectState named
objectstateorder defining the actual position of
each value, which is obtained after exploring the corre-
sponding CompositeObjectState. In our example, A
can be represented by a CompositeObjectState that
consists of a LeafObjectState containing (c1, c3) and
Value c2. In this case, the resulting sequence of val-
ues for A is (c1, c3, c2). and the corresponding values
taken by the objectstateorder attribute are (0, 2,
1) meaning that c1 in the position 0, c3 in the posi-
tion 2, and c2 in the position 1 leading to the value
order (c1,c2,c3). Similarly, B is represented by a Com-
positeObjectState, having a reference to the same

LeafObjectState containing (c1, c3) and a reference
to Value c4. The resulting sequence of values for B
is (c1, c3, c4) and the corresponding values of the ob-
jectstateorder attribute are (1, 0, 2) meaning that
c1 in the position 1, c3 in the position 0, and c4 in the
position 2 leading to the value order (c3, c1, c4). To
provide better compaction, we do not store any value
for the objectstateorder attribute in the case that
the order of values in the value sequence is the same as
the order of values in the corresponding ObjectState.
This means that in a CompositeObjectState object
with empty objectstateorder, the order of values
is the same as the order in which they are retrieved
from the contained ObjectStates.

For the implementation of the ObjectState com-
paction, the main challenge was how to efficiently iden-
tify redundant values of ObjectStates that can be
shared among different ObjectStates. In this work,
we used LCM (Linear time Closed item set Miner) [52],
a powerful algorithm for enumerating frequent closed
item sets, which creates a set of ObjectStates includ-

18 Fazilat Hojaji et al.

ParameterList
ParameterValue

CompositeParameterList

+parametervalueorder : EInt(0..*)
 LeafParameterList

parametervalue
*

parameterlist
*

Trace

parametervalue
*

parameterlist
*

 Value
value
*

LiteralValue RefValue

value
*

Fig. 13: Excerpt of CTM with modeling concepts related to ParameterList, with the changes highlighted in blue

ing the values that occur more frequently than a certain
threshold. We chose this algorithm due to efficiency in
memory saving and computation time. We defined the
threshold value by executing several fUML models mul-
tiple times and selected the value that leads to the least
memory consumption during the execution. The com-
paction can be done both on the fly and offline.

Fig. 12 shows the compact version of the trace of the
colored Petri net example model from Fig. 10. We can
see that in the last execution state, p4 holds one Blue
token, one Green token, and two Red tokens. Therefore,
the pattern of one Blue token and one Green token
can be observed multiple times in the Petri nets exe-
cution (see Table 2). For instance, p1 holds one Blue
and one Green token in all execution states, and p3
holds the same kinds of tokens in the first and in the
second execution state. To share these token specifica-
tions, we define one LeafObjectState with one Green
token and one Blue token. This LeafObjectState is
then used to represent all ObjectStates of Place ob-
jects where the Place objects hold one Green and one
Blue token. To illustrate this, Fig. 12 shows this for
the last state of p4 (B,G,R,R) and the second state
of p3 (B,G,R). For the last state of p4 (B,G,R,R), we
create a CompositeObjectState (C2) that points to
the LeafObjectState (L2) that represents the combi-
nation of one Green and one Blue token. In addition,
we create a second LeafObjectState (L5) that defines
two read tokens. Similarly, to record the second state of
p3 (B,G,R), we also create a CompositeObjectState
(C1) that points to the LeafObjectState (L2) for the
Green and Blue tokens. Also, it refers to a LiteralIn-
teger that defines one Red token.

In comparison to the original trace, shown in Fig. 10,
applying the compaction mechanism to this part of the
trace leads to a decrease in the number of objects from
48 to 14 and the number of references from 60 to 35,

around 71% reduction in the number of objects and
42% in the number of references.

5.2.4 Dealing with repetitive values in ParameterList

The last part of our compaction strategy deals with
redundancies among input and output parameters of
Step objects concerning their values. It is very likely
that the values of parameters be repeated among dif-
ferent Step objects during execution. Hence, our ap-
proach determines the parameters that can be shared
and represents them only once. The problem of the rep-
etitions in parameter values and its respective solution
for avoiding redundancy is similar to those that were
given in Sect. 5.2.3 for ObjectState. Due to space re-
strictions, we only present the relevant part of CTM in
this section.

As shown in Fig. 13, the class ParameterList is
decomposed into two subclasses: CompositeParam-
eterList and LeafParameterList, each might have
a reference to the class ParameterValue. We add the
containment references parameterlist, parameter-
value and value to the class Trace to enforce stor-
ing similar objects only once. Using such structure, we
can obtain the sequence of ParameterValue objects
relevant to a ParameterList object by traversing its
corresponding ParamererLists in a recursive way. Fi-
nally, similar to ObjectState, the order of Param-
eterValue can be stored in the parametervalue-
order attribute of the classCompositeParameterList,
in the case that the order of ParameterValue changes
after retrieving the ParameterValue sequence.

From an implementation point of view, we used the
same algorithm as ObjectState compaction for finding
frequent ParameterValue objects within Parame-
terList objects, and consequently creating Compos-
iteParameterList and LeafParameterList. Note that,

Lossless Compaction of Model Execution Traces 19

the compaction can be done both on the fly and offline.

6 Implementation

This section presents the implementation of our work
within the language and modeling workbench Eclipse
GEMOC Studio. We first give an overview of Eclipse
GEMOC Studio and its execution framework. Then,
we present the implementation of CTM in GEMOC.

6.1 Eclipse GEMOC Studio

Eclipse GEMOC Studio is a framework for designing,
integrating EMF-based modeling languages. The frame-
work offers two workbenches: a language workbench
and a modeling workbench. The language workbench is
used by language designers and language integrators to
build and compose new xDSMLs. The designer defines
the abstract syntax, the concrete syntax, and the opera-
tional semantics of the xDSML. The operational seman-
tics is defined by using different meta-programming ap-
proaches, such as Java-based languages (Kermeta [53],
Xtend, pure Java) and xMOF [5]. The modeling work-
bench is used by domain designers to create, execute,
and coordinate models conforming to xDSMLs devel-
oped with the language workbench.

Eclipse GEMOC Studio offers an execution frame-
work [7] that provides a generic interface allowing to
integrate different execution engines. Using this inter-
face, execution engines for different meta-programming
languages have been added to Eclipse GEMOC Studio.
One functionality offered by the interface is to have
so-called engine add-ons, that are add-ons registered
at execution engines, which will get notified about the
progress of carrying out model executions (e.g., the be-
ginning of the execution and the completion of execu-
tion steps).

6.2 Implementing the CTM add-on for Eclipse
GEMOC Studio

We provided an EMF-based implementation of our work
consisting of a set of Eclipse plugins. We chose EMF
since GEMOC Studio is based on EMF, and also we
had to extend EMF libraries−including implementa-
tions of EObject and EClass−to get the runtime objects
in the model. Despite this limitation, the data struc-
ture and the proposed compaction techniques can be
implemented with other technologies. Concepts of data
classes, attributes and references exist anywhere.

The plug-ins contain both generic and compact trace
metamodels and the trace constructor that creates traces
conforming to CTM during model execution, as well
as the trace de-compactor that translates compacted
traces into their original uncompacted traces. We ex-
plain and discuss the different parts of the implemen-
tation in the following sections.

1) Implementation of the trace metamodels. We imple-
mented CTM using the Eclipse Modeling Framework.
In particular, we employed the metamodeling language
Ecore for defining the abstract syntax of the meta-
models (the generic trace metamodel and the generic
compact trace metamodel), and Kermeta [53] for im-
plementing their operational semantics.

The output are plugins that are generated within
the language workbench, and are automatically deployed
into the modeling workbench.

2) Implementation of the trace constructor. The main
element of our implementation is the trace construc-
tor (shown by d and e elements of Fig. 3), which is
used for constructing traces during a model execution.
It contains two components: 1) the regular trace con-
structor, which constructs traces in a regular form con-
forming to the generic trace metamodel introduced in
Sec. 5.1, 2) the compact trace constructor which con-
structs traces in a compact form conforming to CTM.
A user can choose the trace compaction techniques (i.e.,
State, Step, ObjectState, ParameterList) he or she wishes
to apply by selecting the corresponding flag in the com-
pact trace constructor tool. Thus, the trace can be par-
tially or entirely compacted. In the case that all flags
are false, the trace is constructed in a regular form using
the regular trace constructor.

As shown in Fig. 3, the input of both trace con-
structors is an xDSML, which is defined using Ecore
for the abstract syntax, and using either Kermeta [53]
or xMOF [5] for the operational semantics, and an input
model for the execution as well. The output of the trace
constructors is an execution trace either in an original
or compact form.

In the case of generating the compact trace, we
have applied several compaction techniques, each corre-
sponding to one of the compactions presented in Sec. 5.

Note that the generated trace in both cases, regular
or compact form, is serialized in two different serializa-
tion formats (XMI and EXI), and is stored to disk.
We chose EXI because it greatly outperforms other
schemes [54], and allows the sharing of data in a con-
venient and flexible way.

20 Fazilat Hojaji et al.

3)Implementation of the trace de-compactor. Another
plugin is the trace de-compactor, which takes a seri-
alized compact trace as input, and produces its un-
compacted version. We used the trace de-compactor
to show that the compact trace constructor compacts
traces without the loss of information. For this, we com-
pared the traces produced with the regular trace con-
structor with original traces that were reproduced by
the trace de-compactor. Note that similar to the trace
construction process, the trace de-compactor relies on
four boolean flags, each specifying the de-compaction
state of each part of the trace (State, Step, ObjectState,
ParameterList). Therefore, trace de-compaction can be
done partially if there is no need for full de-compaction
of the trace.

CTMwas implemented as an engine add-on deployed
in Eclipse GEMOC Studio. This simplifies the integra-
tion of the trace constructor with the execution en-
gine, as the engine is responsible for running the ex-
ecution transformation, and no modifications of the ex-
ecution transformation are required to enable construc-
tion of traces. It is worth noting that the CTM com-
ponents (i.e., generic trace metamodel, compact trace
metamodel, trace constructor and trace de-comactor)
were implemented independently from any xDSML, and
can be applied to any execution framework that sup-
ports execution of models. In this case, the considered
xDSML containing its abstract syntax and its opera-
tional semantics should be supported by the execution
framework.

Both the trace constructor and the trace de-compactor
have been implemented using the Xtend3 and Java pro-
gramming language. The trace constructor and the trace
de-compactor share some part of the code and comprise
4107 and 744 lines of Java and Xtend code, respectively.
The source code (EPL 1.0 licensed) is available at our
project web page4.

7 Evaluation

In this section, we present the evaluation of our ap-
proach. We first provide background information on
fUML, then we evaluate the genericity of CTM with re-
spect to different xDSMLs and different meta-programming
approaches. Thereafter, we present the conducted ex-
periments and a set of metrics regarding to the scal-
ability of traces created with our approach. We have
also evaluated the overhead caused by CTM regarding
execution time and memory consumption. Continuing,

3 https://www.eclipse.org/xtend/
4 https://github.com/MDSEGroup/TraceCompaction

we present the evaluation of CTM with regard to infor-
mation preservation. Finally, we discuss the evaluation
results.

7.1 fUML

Foundational UML (fUML) [27] is an OMG standard,
which defines the execution semantics of a subset of
UML through an operational approach. It provides a
virtual machine for executing fUML-compliant models.
The fUML subset contains parts of the abstract syntax
of UML including structural concepts for defining UML
classes and behavioral concepts for explaining the be-
havior of these classes using UML activities. The fUML
execution model is a model that describes the execution
semantics of the fUML subset and specifies how fUML
models are executed. fUML basically enables the exe-
cution of UML activities. For the execution, the fUML
virtual machine takes an fUML activity and the ac-
tivity’s input parameter values as input, and produces
values for the activity’s output parameters. The execu-
tion semantics of fUML activities is similar to the one
of the Petri net xDSML. Both are based on offering and
consuming tokens, except that tokens in an fUML ac-
tivity, can specify either control or data. Control tokens
define the beginning and the end of an activity, as well
as conditionals or concurrency among nodes. Object to-
kens represent the passing of data between actions. In
some cases (i.e., join node) both control and object to-
kens may flow among actions.

7.2 Experiments

We evaluated CTM concerning several research ques-
tions, which have been defined based on all targeted
criteria.

7.2.1 Genericity

To evaluate the genericity of CTM, we considered the
following research questions.

RQ #1: Can CTM be used with different xDSMLs?
RQ #2: Can CTM be used with xDSMLs imple-
mented using different meta-programming approaches?

To answer these questions, we tested CTM with
a selection of different xDSMLs that had previously
been developed using Eclipse GEMOC Studio. Table 3
presents all the xDSMLs considered in this study, with
links to their source material. The trace constructor
and the trace de-compactor were successfully tested for
these languages. For each xDSML, we executed several

Lossless Compaction of Model Execution Traces 21

Table 3: xDSMLs applied to test our prototype

xDSML Link Description Semantics
Petri nets linka Simple Petri nets (see Fig. 1) xMOF
PetrinetComplex linkb Petri nets with token objects Kermeta
IML linkc AutomationML Intermediate Kermeta
TFSM linkd Time finite state machine Kermeta
fUML linke Complete fUML xMOF

a https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/Petrinet
b https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/PetrinetComplex
c https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/IML
d https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/TFSM
e https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/fUML

example models with different parameters and gener-
ated execution traces using the trace constructor. As
we explained in Sec. 6, for each xDSML, we imple-
mented a set of plugins containing the abstract syntax
(implemented with the Ecore), and the execution se-
mantics (implemented using either Kermeta or xMOF).
Then, we executed several example models with given
parameters, and created traces (in both regular and
compact forms) with the trace constructor. The regular
traces were compared with traces that were produced
from the domain-specific trace metamodels proposed by
Bousse et al. [21], for the number of Step, State and
Value objects, and observed the same results. We also
reconstructed the uncompacted version of the compact
traces using the trace de-compactor, compared them
with the uncompacted ones produced by the regular
trace constructor and observed similar results.

7.2.2 Scalability

To evaluate the scalability of CTM, we compared the
memory and disk space used by the trace generated by
CTM with the trace obtained from the domain-specific
trace metamodels proposed by Bousse et al. [21].

To proceed, first, we chose the set of fUML models,
which have been selected by Maoz et al. [16] from differ-
ent industrial sources (e.g., IBM, Nokia), and have been
already used for similar case studies (e.g., [14], [21]). We
chose these fUML models because they have also been
used by Bousse et al. [21] for the generation of traces.
Note that the experiments contain a total of 38 model
executions of the considered fUML models, with the
number of execution states ranging between 180 and
340, and different parameter settings. We examined
the following research question to evaluate the scalabil-
ity of CTM.

RQ #3: Does CTM reduce the size of traces in
memory and disk space, as compared to existing
trace metamodels?

For answering RQ #3, we have first defined a set
of practical metrics that aim to measure how scalable
the trace is compared to the other existing tracing ap-
proach. We then show the results of applying these met-
rics to several traces generated for fUML models. The
first metric is used for the disk space measurement, and
the two other ones measure the memory used by the
trace at the conceptual level.

File size [S] is the size of a trace serialized in the
XMI and EXI standard format. It specifies how much
storage space we need to store a trace.

Number of Objects [Nobj] is the number of objects
used to represent the trace. It is important to notice
that in practice the number of objects is equal to the
number of nodes within the trace, specified as either a
graph or a digraph object.

Number of References [Nref] is the number of ref-
erences in the trace. This number is equal to the number
of edges in the graph made from the trace.

We define the memory size, A, of the CTM trace as
the total number of objects and references in the trace:

A = NrefCTM +NobjCTM (1)

Similarly, we define the memory size, B, of the ob-
tained trace from the domain-specific trace metamod-
els as the total number of objects and references in the
trace. Note that we are using the subscript DS to mean
’Domain-Specific trace’.

B = NrefDS +NobjDS (2)

We measure the memory compaction rate as follows:

CRmemory = (1−A/B) ∗ 100% (3)

Besides, we measure the disk usage compaction rate
as follows:

CRdisk = (1−A/B) ∗ 100% (4)

https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/Petrinet
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/PetrinetComplex
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/IML
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/TFSM
https://github.com/MDSEGroup/TraceCompaction/tree/master/Traceconstruction/fUML

22 Fazilat Hojaji et al.

where A and B refer to the disk usage of the CTM trace
and the domain-specific trace, respectively.

Using the aforementioned metrics, we have mea-
sured the scalability of the execution traces constructed
with our CTM add-on, in terms of memory and disk
space.

Likewise, the compaction rate corresponding to each
part of the trace (i.e., State, Step, ObjectState, and
ParameterList) can be determined using the same for-
mula. For instance, we measure the compaction rate
for State using the memory compaction rate formula,
except that A and B now refer to the total number of
objects and references in the trace with the State-based
compaction technique and without it, respectively.

We used yEd Graph Editor 5 (Version 3.17.1) (for
the very large trace, we used Gephi 6 (Version 0.9.1))
and Advanced XML Converter 7 (Version 3.02.0.12) to
generate graphs of the serialized traces, and prepared
several SQL scripts running in SQL Server 2016 to de-
termine the generated graph’s nodes and edges.

7.2.3 Information Preservation

We define the following research question to demon-
strate information preservation of CTM.

RQ #4: Can CTM provide a lossless representation
of traces?

For answering RQ #4, we used the trace de-compactor
introduced in Sec. 6, to reconstruct an uncompacted
version of a compact trace. This uncompacted version
was then compared with the trace produced by the
regular trace constructor (i.e., an uncompacted trace).
Both traces were serialized as XMI files and compared
using EMF Compare.

7.2.4 Performance overhead

We evaluate the performance of CTM by considering
the following research question.

RQ #5: How much performance overhead is caused
by CTM?

To answer RQ #5, we measured the runtime over-
head induced by the trace construction using CTM, and
compared it with the execution time needed to con-
struct traces of domain-specific trace metamodels. The

5 https://www.yworks.com/products/yed
6 https://gephi.org/
7 www.xml-converter.com

runtime overhead is obtained by comparing each execu-
tion time with the time needed for the model execution
where no trace was constructed.

The experiments for answering the research ques-
tions were performed on the following hardware and
software environment.

• Hardware: Intel Core i7-2620M CPU 2.5 GHz, 12
GB RAM

• Operating system: Windows 10 Professional 64-
Bit

• Eclipse GEMOC Studio: Eclipse Oxygen 3, Build
2018-07-17

• Java: Version 8, Build 1.8.0_60
• Eclipse Memory Analyzer: Released Version 1.8.1

All artifacts about this work including the set of
fUML models, the spreadsheet containing of the evalu-
ation results, and the CTM traces have been collected
and made publicly available.8

7.3 Results

In the following, we present the results obtained from
the experiments and give the answers to the research
questions.

RQ #1 and RQ #2: Genericity of CTM. The results
obtained regarding the genericity of CTM shows that
the compact trace can be generated for any given xDSML
regardless of the meta-programming approach used for
the implementation of execution semantics. Therefore,
to answer RQ #1 and RQ #2, we observe that CTM is
generic enough to support different xDSMLs, and differ-
ent meta-programming approaches. However, this ex-
periment was performed only on EMF-based languages.
As CTM relies on EMF cross-references, e.g., the orig-
inalobject reference toEObject (as shown in Fig. 4),
it requires any target language resolves cross-reference
model elements, which may cause some limitations. To
solve this tooling issue, we plan to implement indi-
rect references from trace models to EMF models us-
ing query-driven soft traceability links as proposed by
Hegedüs et al. [55]. We defer this work as the future
work.

RQ #3: Scalability. Fig. 14 shows the number of ob-
jects used to represent the CTM traces with the traces
generated from the domain-specific trace metamodels [21].
The X-axis shows the used example model, while the Y-
axis shows the number of objects contained in the trace
recorded for the model’s execution. Likewise, Fig. 15

8 https://github.com/MDSEGroup/TraceCompaction

https://github.com/MDSEGroup/TraceCompaction

Lossless Compaction of Model Execution Traces 23

shows the number of references used to represent the
trace obtained by CTM and the domain-specific trace
metamodels. These two measures are related to mem-
ory consumption. As we can see, domain-specific traces
require 1.7 to 2.2 times more objects than CTM traces
with an average of 1.9. Besides, we observe that fewer
references are created using CTM compared to domain-
specific traces. As shown in Fig. 15, domain-specific
traces require 2.1 to 3.3 times more references than
CTM traces with an average of 2.5.

Furthermore, regarding the disk usage, Fig. 16 shows
the disk space usage of the execution traces with CTM
and the domain-specific traces serialized in both XML
and EXI format. The Y-axis shows the amount of disk
used by the trace in kilobytes (kB). Compared to XML-
based domain-specific traces, we observe a significant
reduction of the disk usage ranging from 92% to 96%
for the CTM traces serialized in EXI, and 65% to 73%
for the CTM traces serialized in XML. This means that
domain-specific traces require 13.4 to 28.5 times more
disk usage than EXI-based CTM traces with an aver-
age of 18.2 and needed 2.8 to 3.7 times more disk usage
than XML-based CTM traces with an average of 3.3.

Therefore, to answer RQ #3, we observe that CTM
traces are more efficient in both memory and disk us-
age than traces obtained by domain-specific trace meta-
models as defined in [21]. In Summary, CTM achieves
an average compaction rate of 59% in memory usage
and 95% in disk space for EXI-based CTM traces.

Regarding the memory compaction rate, correspond-
ing to each part of the trace, we also did an empirical
study on a selection of fUML models 9. Indeed, these
experiments were carried on 10 of 38 model executions
of the fUML models considered for our experiments. We
chose models with different number of execution states,
and different parameter settings.

First, we measured the memory compaction in terms
of the number of objects and references, which are rele-
vant to each of trace element instances (i.e., State, Step,
ObjectState, ParameterLists). Then, we measured the
average of the compaction rates of the selected mod-
els for every trace element separately. Figure 17 shows
a pie chart depicting the distribution of the memory
compaction measurements corresponding to each trace
element. The figure shows that the State element ob-
tained the highest ratio of memory gain (%35) over the
total compaction rate, while the ParameterList element
has the least (%7). These results are due to the fact that
the State of a trace contains the states of all objects
in the executed model after each execution step that
occurs. Hence, storing only state modifications using

9 https://github.com/MDSEGroup/TraceCompaction/tree/
master/runtime-modelingworkbench/examples.fuml.models

State compaction technique can provide a remarkable
result. The State compaction rate heavily depends on
the number of static or dynamic objects and the num-
ber of execution steps as well. Although the compaction
technique used for ParameterList is similar to the tech-
nique used for ObjectState, in most cases such as what
we had in the selected fUML models, the redundancies
among input and output parameters are less than the
value repetitions in ObjectState objects. Therefore, in
our experiments, ObjectState obtained more memory
gain than ParameterList.

RQ #4: Information Preservation. For answering this
research question, we conducted the experiments on the
same 10 fUML models. The compact traces of these
models were uncompacted using the trace de-compactor,
and then compared with the regular ones produced by
the regular trace constructor. The results show that
compact traces created with our compaction techniques
contain the same information as their not-compacted
counterparts. Indeed, using the developed trace de-compactor
on traces recorded with the compact trace constructor,
the same uncompacted traces could be obtained as the
ones recorded with the regular trace constructor. Thus,
it can be concluded that CTM offers a lossless represen-
tation of traces. In particular, no information is lost in
the compaction of traces, and the regular trace can be
perfectly reconstructed from the compact one without
losing data.

RQ #5:Performance Overhead. Figure 18 shows the
runtime overhead induced by constructing execution
traces, i.e., the percentage of additional execution time
spent on building a trace, using CTM and domain-
specific trace metamodels. The X-axis shows the used
example model, while the Y-axis shows the percent-
age of runtime overhead induced by the construction
of execution traces. Although the runtime overhead for
constructing traces heavily depends on the considered
execution, the results show that on average, the runtime
overhead comprises 8.9% for constructing a CTM trace
and 7.25% for building a domain-specific trace. We ob-
serve that the construction of a domain-specific trace
is faster than the CTM construction. This is expected
since the CTM construction process involves different
compaction techniques, i.e., the notification framework
and the LCM algorithm on the fly and Valiente’s tree
pattern matching algorithm offline, which causes more
overhead on the execution. However, the median over-
head remains quite low and under 10%.

Furthermore, for each compaction technique, we mea-
sured the execution time needed by the respective op-

https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models
https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models

24 Fazilat Hojaji et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

N
u

m
b

er
 o

f
o

b
je

ct
s

u
se

d
 b

y
th

e
tr

ac
e

Model ID

domain specific trace CTM trace

domain specific trace CTM trace

Fig. 14: Number of objects used by both CTM traces and domain-specific traces

260 280 300 320 340 360

Number of states

domain specific trace CTM trace

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

N
u

m
b

er
 o

f
re

fe
re

n
ce

s
u

se
d

 b
y

th
e

tr
ac

e

Model ID

domain specific trace CTM trace

Fig. 15: Number of references used by both CTM traces and domain-specific traces

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38D
is

k
sp

ac
e

 u
se

d
 b

y
th

e
 t

ra
ce

 (
K

B
)

domain specific trace in XML CTM trace in XML domain specific trace in EXI CTM trace in EXI

Fig. 16: Disk space used by both CTM traces and domain-specific traces

Lossless Compaction of Model Execution Traces 25

72%

61%

58%

15%

%State CR

%Step CR

%ObjectState CR

%ParameterList CR

0% 10% 20% 30% 40% 50% 60% 70% 80%

Fig. 17: Compaction rate of CTM trace elements

eration for executing it, as well as the respective mem-
ory consumption. These experiments were carried out
on the same 10 fUML models10. The execution time
was measured by taking timestamps right before the
operation for each compaction technique starts, and
right after the operation finishes. We repeated the mea-
surements three times and used the arithmetic mean
for answering this research question. First, we mea-
sured the runtime overhead induced by only construct-
ing execution traces associated to each of the trace
compaction techniques (i.e., State, Step, ObjectState,
ParameterList). Then, we measured the percentage of
the time overhead of the selected models for each com-
paction technique separately. Figure 19 and Table 4
show the execution times measured for applying each of
the models distinguished between different compaction
techniques. Due to space limitations, we only present
the total time of the trace construction consumed by
each execution. The last column of Table 4 shows the
percentage of the time required for executing some ad-
ditional operations not related to the trace compaction.
The figure shows that the Step compaction technique
obtained the highest ratio of the time overhead (%38)
over the total trace construction time. This result is due
to the complexity of the Valentine’s algorithm, which
consists of the time to traverse the tree, the time to
compare two subtrees, and the time to compute the
signatures.

We used the Eclipse Memory Analyzer (MAT)11 to
measure the memory usage associated to each com-
paction operation. First, we created a heap dump at
the end of each operation run. Then, we measured the
number and size of objects allocated on the heap, rele-
vant to trace elements instances, and consequently cal-
culated the additional memory consumption caused by
various types of compaction, i.e., change notification
framework, the LCM algorithm, and the Valiente’s tree
pattern matching algorithm. Note that for the Step

10 https://github.com/MDSEGroup/TraceCompaction/tree/
master/runtime-modelingworkbench/examples.fuml.models
11 http://www.eclipse.org/mat/

compaction, we created a heap dump before and after it
is run, and computed the difference. Figure 20 and Ta-
ble 5 show the results of the memory consumption mea-
surements for each of the models distinguished between
Step, State, ObjectState, and ParameterList. The re-
sults show only the size (in KB) of the objects allocated
on the heap for executing each of the compaction tech-
niques. It amounts to 21KB, 90KB, 81KB, and 19KB
compared to 1,012 KB allocated for the trace size. Thus,
the measured memory consumption overhead lies be-
tween 2% and 9%. Such overhead is due mostly to the
use of collections such as ArrayList, Hashtable, and
HashMap. For example, the LCM algorithm uses Ar-
rayLists of ObjectState and Value instances to deal
with frequent ObjectStates.

Overall, from these results, we conclude that CTM
compaction techniques cause only a marginal memory
overhead. Nevertheless, the memory overhead and the
size of captured traces grow linear with the number of
executed model elements.

8 Related work

In this section, we first give an overview of existing ap-
proaches for defining model execution trace structures,
then we look at existing business process mining ap-
proaches and finally, we briefly describe efforts on ex-
isting scalable model persistence approaches.

8.1 Model execution tracing approaches

There exist many studies that tackle the problem of
large traces with a focus on code-centric development.
Existing approaches fall into different categories includ-
ing trace filtering, graph reduction, trace visualization,
partitioning, and trace abstraction [34, 35, 56, 57]. A
considerably less emphasis was placed on managing traces
generated from executable models. We surveyed the ap-
proaches conducted in tracing executable models [25]
and found that, although each approach has its own
advantages, only a few have been proposed to deal with
the scalability of traces in memory usage. In the follow-
ing, we present existing model execution tracing ap-
proaches that are related to our work.

In the TopCased project, Combemale et al. [3, 58,
59] proposed an approach to define an execution trace
metamodel for discrete-event system modeling. They
manually provided a metamodel specific to an xDSML.
This approach considers a trace only as a sequence of
execution steps. Another limitation of this approach is
that the obtained metamodel does not take into account

https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models
https://github.com/MDSEGroup/TraceCompaction/tree/master/runtime-modelingworkbench/examples.fuml.models

26 Fazilat Hojaji et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0%

2%

4%

6%

8%

10%

12%

14%

16%

Model ID

Tr
ac

e
co

n
st

ru
ct

io
n

 o
ve

rh
ea

d

domain specific trace CTM trace

Fig. 18: Runtime overhead of the CTM and domain-specific trace construction, for each executed model

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Ti
m

e
o

ve
rh

ea
d

(%
 o

f
to

ta
l t

ra
ce

 c
o

n
st

ru
ct

io
n

 t
im

e)

Step ObjectState State ParameterList others

Fig. 19: Time measurements for CTM trace compaction techniques

Table 4: Time measurement, corresponding to each compaction technique

Model ID Total time State Step ObjectState ParameterList others
1 1.57E+09 %15 %37 %29 %12 %7
2 1.53E+09 %17 %40 %28 %10 %5
3 1.25E+09 %17 %38 %29 %11 %5
4 9.43E+08 %16 %36 %30 %12 %6
5 9.30E+08 %16 %33 %33 %13 %5
6 1.28E+09 %17 %35 %32 %11 %5
7 1.05E+09 %18 %38 %29 %10 %5
8 1.33E+09 %15 %40 %27 %11 %7
9 5.17E+09 %19 %44 %20 %9 %8
10 4.08E+09 %19 %43 %21 %8 %9

Average 1.91E+09 %17 %38 %28 %11 %6

any compaction scheme. Hence, it is not scalable to
support large traces.

Hegedüs et al. [38] proposed a generic execution
trace metamodel that can be specialized to any given
xDSML. This approach reduces traces size by only cap-
turing state modifications and events related to state
modifications. Although such a technique is slightly sim-
ilar to State compaction applied in CTM, their trace
metamodel only considers event occurrences in an exe-
cution, whereas CTM presents a complete representa-

tion of traces (including states, steps, and their corre-
sponding inputs and outputs) in a compact form.

Kemper and Tepper [46] proposed a scalable ap-
proach to remove repetitive fragments from traces us-
ing heuristic methods such as cycle reduction. Similar
to our approach, the authors focused on removing rep-
etitions contained in the trace. Contrary to CTM, their
approach represents traces as simple sequences of events
and states in the form of message sequence charts, and
no trace metamodel is presented.

Lossless Compaction of Model Execution Traces 27

1 2 3 4 5 6 7 8 9 1 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
EM

O
R

Y
U

SE
D

 (
K

B
)

CTM Trace Step State ObjectState ParameterList

Fig. 20: Memory consumption measurements for CTM trace elements

Table 5: Memory consumption measurement associated to compaction techniques (all measurements are in KBs)

Model ID Total trace State Step ObjectState ParameterList
1 1073 17(%2) 76(%7) 50(%5) 11(%1)
2 1007 23(%2) 67(%7) 56(%6) 29(%3)
3 988 22(%2) 109(%11) 98(%10) 34(%3)
4 871 19(%2) 98(%11) 78(%9) 12(%1)
5 811 21(%3) 87(%11) 82(%10) 13(%2)
6 813 20(%2) 91(%11) 91(%11) 16(%2)
7 774 18(%2) 76(%10) 84(%11) 17(%2)
8 776 17(%2) 81(%10) 86(%11) 13(%2)
9 1530 27(%2) 112(%7) 93(%6) 21(%1)
10 1474 27(%2) 107(%7) 91(%6) 25(%2)

Average 1012 21(%9) 90(%8) 81(%2) 19(%2)

Meyers et al. [10] applied a generative approach as
part of their ProMoBox framework, which generates
domain-specific trace metamodels for xDSMLs. The ob-
tained trace metamodel is clone-based, and defines ex-
ecution traces as sequences of events and states in which
each state is a complete snapshot of the executing model.
Although the resulted trace is more rich than the ap-
proaches as mentioned above, it does not consider any
technique to compact execution traces.

Similarly, Gogolla et al. [60] generated so-called film-
strip models that can be considered as domain-specific
trace metamodels. Such trace metamodels are also clone-
based and capture operation calls as well as state mod-
ifications during the execution. Thereby, the trace is
defined as a sequence of events and states. However,
the whole model is cloned to store each execution state,
meaning that a complete snapshot of an object is cre-
ated at each execution step, and all static fields (that
never change) and dynamic fields (that may not change
in each step) are stored. Consequently, there is a lot of
redundancies due to repetition in states, so that the re-
sulting traces, even for small models, might be huge,
hindering scalability.

Aljamaan and Lethbridge [61, 62, 63] applied a dif-
ferent approach to enable model execution tracing. They

proposed Umple12—an action language in a fully exe-
cutable platform—for textual modeling with UML. They
defined trace directives that allow modelers to specify
traces of UML attributes and state machines, represent-
ing attribute values as states and transitions as steps.
This approach represents a trace in a textual format
without applying any compaction techniques, hinder-
ing scalability.

Fuentes et al. [64, 65] provided a dynamic model
weaver for executing aspect-oriented models, leading to
the generation of execution traces. A trace represents
the execution of an activity as well as the current sta-
tus of objects and their attribute values. Likewise, this
approach suffers from the same limitations as the other
approaches. Their approach deals with a specific kind
of xDSML, as opposed to CTM, which is more generic.
There is no compaction for execution traces either.

Mayerhofer et al. [66] proposed an approach to cap-
ture execution traces of fUML models. The traces repre-
sent the execution of fUML activities and actions, snap-
shots of object values, as well as processed inputs and
produced outputs. Despite providing a complete repre-
sentation of a trace for UML models, their proposed
metamodel differs from CTM in that it is specific to
fUML, while CTM is generic and supports any xDSML.

12 https://github.com/umple/Umple

28 Fazilat Hojaji et al.

Furthermore, the authors’ approach does not consider
the compaction of traced data.

Hendriks et al. [67, 68] proposed a graph-based rep-
resentation of execution traces for performing automated
analysis techniques that can be applied by different
modeling and analysis tools. The authors suggested the
TRACE tool to interpret system behavior and analyze
execution traces by using two different analysis tech-
niques. They emphasize the fact that the large size of
traces complicates the interpretation and analysis be-
havior of systems over time. However, they do not apply
any compaction techniques for traces. Moreover, their
approach represents only trace execution events by pro-
ducing traces that are sequences of events that occur
during a model execution.

Schivo et al. [69] proposed UPPAAL as a back-end
analysis tool for real-time systems. The approach pro-
vides a systematic way to define metamodels for Up-
paal’s timed automata, queries, and traces, which are
needed to construct UPPAAL’ models, and to verify
relevant properties and interpret the results. Although
the authors proposed a generic trace metamodel that is
independent of any xDSML, the metamodel represents
a trace as a sequence of states and transitions, and no
compaction for execution traces is provided.

Recently, Bousse et al. [21, 22] presented a gen-
erative approach to automatically derive multidimen-
sional domain-specific trace metamodels for xDSMLs
that provide facilities for efficiently processing traces.
Such metamodels define an execution trace as a se-
quence of execution steps and execution states where
execution states capture the values of the dynamic prop-
erties of all model elements. By providing one naviga-
tion dimension per dynamic property, the trace meta-
models improve scalability in trace processing time. With
the derivation of domain-specific trace metamodels, us-
ability is improved. The approach also considers reduc-
ing redundancies in states by only capturing the val-
ues of dynamic properties when they change between
states. However, no other compaction technique is con-
sidered.

Finally, Luay and Hamou-Lhadj [70] proposed MTF
(MPI Trace Format) to model in a scalable way execu-
tion traces generated from multi-process systems based
on the MPI (Message Passing Interface) standard. The
authors discussed the scalability problems of MPI traces
and the lack of practical solutions. The design of MTF
is validated against well-known requirements for a stan-
dard exchange format, with the objective to work to-
wards standardizing the way MPI traces are represented
in order to allow better synergy among tools. Although
MTF was developed in the context of multi-process sys-
tems, the compaction techniques in MTF can be used

to extend CTM to support traces of executable mod-
els, designed with concurrency and parallel processing
in mind.

8.2 Business process mining approaches

Process mining techniques focus on extracting knowl-
edge from event logs (i.e., execution traces). In many
cases, the high volume of data is captured in specific
event logs, causing problem in process discovery. Ac-
cordingly, significant effort has been made to analyze
business process execution traces by developing efficient
and scalable techniques in process mining. Examples of
such techniques include event log filtering [71], event log
transformation [72], trace clustering [73] and discovery
techniques such as fuzzy mining [74] and pattern discov-
ery [72, 75, 76]. Most of these techniques are somehow
similar to the methods, which are used for code-centric
trace compaction approaches.

For example, trace clustering is an effective way of
dealing with large event logs by splitting into correlative
subsets of traces. Song et al.[73] used a trace clustering
technique to partition execution traces into different
groups. By dividing traces into different groups, pro-
cess discovery techniques can be applied on subsets of
behavior and thus improve the accuracy and compre-
hensibility.

Bose and Aalst [72] proposed a multi-phase approach
that provides abstractions of activities in traces based
on the patterns. The approach first determines and re-
places the repeated occurrence of the loop constructs in
traces with an abstract entity. Then, it identifies and re-
places sub-processes or common functionality with ab-
stract entities. This technique is similar to the Step
compaction technique of CTM, which identifies pat-
terns of identical sequences of Steps and replaces them
with an abstract entity (i.e., PatternOccurrence.)

Pattern mining techniques such as the one’s pro-
posed by Tax et al. [77] discover patterns of local be-
havior from event logs. Such patterns do not capture the
behavior of the complete traces. For instance, Tax et al. [77]
discovered more precise process models by abstracting
events at a higher level of human activity. Although
these techniques simplify the analysis of event logs,
their applicability depends on the availability of a list of
human behavior at the activity level. Contrary to CTM
compaction techniques, which allow us to keep track of
every detail in the trace, pattern mining techniques ig-
nore low-level data from a trace to understand its main
content.

Lossless Compaction of Model Execution Traces 29

8.3 Model persistence approaches

The interest in scalable persistence of large models has
grown significantly in recent years. In the following, we
present some existing approaches in different categories.

8.3.1 XMI-based approaches

There exist many MDE approaches that used XMI as a
common import/export model persistence format. Al-
though XMI allows interoperability between existing
tools and their models, it provides limited support for
lazy or partial loading of models in memory for persis-
tence. It also lacks scalability when working with large
models. Examples are the work of Mayerhofer et al. [5],
Combemale et al. [3], and Schivo et al. [69, 78] that per-
sist execution traces in the XMI format. Besides XMI,
CTM uses EXI format to address XMI limitations and
improves scalability both in terms of memory and time
required to store/load trace models.

8.3.2 Relational-based approaches

Another idea for persisting huge models is storing mod-
els in a relational database. An example is Connected
Data Objects (CDO)13 project in which an Ecore meta-
model derives a relational schema and allows develop-
ers interacting with models. This approach supports on-
demand and partial loading of models in memory. While
relational-based approaches are better than XMI serial-
ization, they are no longer effective for timely, scalable
data management. Because models tend to be intercon-
nected with numerous references between them, query-
ing of models require multiple expensive table joins to
be executed. Hence, such approaches do not scale well
for large models [79]. As an example of a relational-
based approach, Dominguez et al. [80] persist execution
traces in a database. In this approach, an UML profile
is generated for tracing system execution using a UML
statechart. A persistence component transmits the run-
time data obtained from the execution of a model to the
trace database.

8.3.3 Graph-based NoSQL databases

NoSQL databases provide better scalability and perfor-
mance compared to relational databases [79]. MORSA [81]
is the first approach for scalable model persistence based
on a NoSQL back-end and on-demand loading/caching

13 http://www.eclipse.org/cdo/

mechanisms. MORSA uses a document store database
to persist large models using the standard EMF mech-
anisms. As MORSA stores one model element per doc-
ument, each model is mapped to an array of refer-
ences to the documents that represent its root objects.
Indeed, the EReferences of the models are serialized
as document references, hindering insertion and query
speed [81]. Hence, while this approach leads to an ef-
fective memory footprint and system performance, due
to highly interconnected references between model ele-
ments, the storage of models can be extremely complex.

Hartmann et al. [82] proposed a compact represen-
tation of time-evolving graphs for analyzing complex
data. The authors incorporated time as a first-class
property into a temporal graph structure to make each
node an independent time series. A temporal graph is
an efficient data structure for storing the history of data
that frequently changes over time. In this approach,
GREYCAT, a framework for time-evolving graphs, was
implemented to support read and write mechanisms for
a temporal graph. This structure provides substantial
memory reduction rather than snapshots. It is efficient
for analyzing large-scale graphs especially with partial
changes along time. This approach is similar to CTM
as both of them focuses on state changes instead of pro-
viding a complete or partial snapshot of data.

Another example is KMF runtime versioning [20],
which stores the versions of each object of a model sep-
arately, allowing to enumerate the states of a specific
object of the executed model. It efficiently supports the
notion of model versioning by setting a specific version
to each object or making a reference to a particular ver-
sion of an object. This approach considers changes at
the object level rather than at the model level. Thus, for
loading and saving model versions, it first needs to de-
termine which version of a related model element must
be retrieved. The effectiveness of this approach is in-
fluenced by the navigation process and the resolution
mechanisms of modeling elements. Similar to this ap-
proach, we only store incremental changes rather than
snapshots of a complete model. While this approach of-
fers a considerable reduction (around 99.5%) in memory
usage for small modifications, it induces a serious over-
head for full model change storage. Such overhead is
related to several features, i.e., detecting changes in a
model, navigating in versions, comparing and merging
models, and inserting new elements. Hence, for 100% of
modifications of a model, this approach creates a sig-
nificant overhead even more than that of the classic full
model sampling strategy.

30 Fazilat Hojaji et al.

9 Conclusion

Dynamic V&V of models requires the ability to cap-
ture execution traces for the execution of models. We
identified three main requirements for designing a trace
metamodel: genericity, scalability in space, and infor-
mation preservation. Furthermore, using such a trace
metamodel for manipulating traces must induce an ac-
ceptable overhead. Our reviews of the literature show
that there is a lack of approaches that address these
requirements.

In this paper, we presented CTM, a metamodel for
representing traces generated from executable models
that is built with genericity and scalability in mind.
The metamodel captures sequences of model states,
execution steps, object values, and parameters, which
are concepts that exist in most xDSMLs, making CTM
generic enough to support traces generated from models
of various xDSMLs. We designed CTM by embedding
different compaction techniques that remove redundan-
cies in model states, object states, values, steps, and
parameters.

CTM was applied to five different xDSMLs: two
variants of Petri nets, IML, TFSM, and fUML. Further-
more, we compared the scalability of CTM traces with
traces created using the approach by Bousse et al. [21].
We also evaluated the overhead caused by CTM regard-
ing execution time and memory consumption. The re-
sults show that the compaction gain reached by a trace
represented in CTM is in average 59% in memory usage
and 95% disk space. Moreover, the performance over-
head required to the CTM trace construction is small
enough that makes it practically applicable. In addi-
tion, CTM is lossless, meaning that the original trace
can be fully reconstructed from the corresponding com-
pact version.

10 Perspectives

In the following, we discuss directions for future work,
building upon the research conducted in this paper.

Applying soft traceability links for interconnecting
models. As explained in Sec. 7, we provided an EMF-
based implementation for CTM. It relies on generic
EMF cross-references, meaning that any target language
needs storage-specific identifiers for uniquely identify-
ing instances of model elements. This may be a chal-
lenging and error prone task for non EMF-based tools
due to the identification strategies of model elements in
the EMF infrastructure. One solution is to rely on indi-
rect references from trace models to EMF-based mod-
els. A practical example is the approach proposed by
Hegedüs et al. [55], which uses a soft linking technique

for interconnecting EMF models by combining derived
references and incremental model queries. In such ap-
proach, derived references and model elements are dy-
namically identified based upon query results instead of
static unique identifiers. This proposal could be incor-
porated and implemented in a future version of CTM.

Extended pattern detection. There exist two types
of behavioral patterns in a trace. The first one involves
consecutive repetitions of sequences of events due to
loops. The second type consists of behavioral patterns
that occur in a non-consecutive way in the trace. Our
graph reduction technique, used for dealing with repe-
titions in execution steps, supports only the first one in
which patterns are considered as the sequence of steps
repeated consecutively in the trace. In other words, two
identical sub-trees that occur in a non-consecutive way
will be counted twice. We do not take into account
non-consecutive repetitions that occur in a trace. This
would require applying relevant techniques to the com-
pact trace constructor to support non-consecutive pat-
terns.

Besides, as mentioned in Sec. 5.2.2, the step com-
paction including the pattern detection is performed
offline (i.e., after the execution of the model). In the
future, we intend to design techniques that work on the
fly, i.e., during trace generation. This way, a trace will
be represented in CTM as it is generated.

Further evaluation. We intend to test CTM with
more and larger traces, generated from real world mod-
els to further evaluate its efficiency. By efficiency, we
mean the ability of constructing execution traces as
compact as possible with minimal runtime overhead.
This will require the availability of large xDSML mod-
els.

Combining compaction with compression techniques.
CTM uses several compaction techniques that reduce
redundancies in traces. This is different from compres-
sion techniques in information theory, where compressed
data has to be uncompressed before it is used. A com-
pact trace does not need to be “uncompacted”. A com-
pact trace can be further compressed to gain disk space
and communication channels if transmitted remotely.

Applying lens-like abstraction. In this research, the
compaction techniques have been used to traces with
the aim of removing repetitions of trace elements. An
efficient technique would be lens-like abstraction, which
can reduce the size of traces by ignoring details not rel-
evant to the property under study. In fact, an abstract
trace model is constructed and, during its analysis, only
the main concepts are considered and all details about
the system are ignored. Hence, it is possible to analyze
the behavior of a system and understand its main con-

Lossless Compaction of Model Execution Traces 31

tent through the analysis of a smaller more compact
trace.

Applying process mining abstraction techniques. As
mentioned in Sec. 8.2, many abstraction techniques have
been proposed in process mining approaches to reduce
the size and complexity of traces. In future investiga-
tions, it might be possible to use these techniques for
abstracting and exploring the content of large model-
based traces.

A Tool Suite. The techniques presented in this pa-
per need to be integrated with trace analysis tools. For
this, we need to investigate how existing V&V tech-
niques, especially dynamic analysis, can be used with
our tracing technique.

Acknowledgement

The authors would like to acknowledge the financial
sponsorship provided by co-founding of Kharazmi Uni-
versity and Ministry of Science, Research, and Tech-
nology (MSRT) of Islamic Republic of Iran under IM-
PULS Program. Lastly, the authors would like to thank
Austria (OeAd) for supporting this research facilities
through Contract No: 4/11937.

References

1. Douglas C. Schmidt. Guest Editor’s Introduction:
Model-Driven Engineering. IEEE Computer, 39(2):
25–31, 2006. doi: 10.1109/MC.2006.58.

2. Marco Brambilla, Jordi Cabot, and Manuel Wim-
mer. Model-driven Software Engineering in prac-
tice. Synthesis Lectures on Software Engineer-
ing. Morgan & Claypool Publishers, second edition,
2017.

3. Benoît Combemale, Xavier Crégut, and Marc Pan-
tel. A Design Pattern to build Executable DSMLs
and associated V&V tools. In Proceedings of the
19th Asia-Pacific on Software Engineering Confer-
ence (APSEC), volume 1, pages 282–287. IEEE,
2012. doi: 10.1109/APSEC.2012.79.

4. Ábel Hegedüs, István Ráth, and Dániel Varró. Re-
playing execution trace models for dynamic mod-
eling languages. Periodica Polytechnica Electrical
Engineering and Computer Science, 56(3):71–82,
2013. ISSN 2064-5279.

5. Tanja Mayerhofer, Philip Langer, Manuel Wim-
mer, and Gerti Kappel. xMOF: Executable DSMLs
based on fUML. In Proceedings of the International
Conference on Software Language Engineering, vol-
ume 8225 of Lecture Notes in Computer Science,
pages 56–75. Springer, 2013.

6. Jérémie Tatibouet, Arnaud Cuccuru, Sébastien
Gérard, and François Terrier. Formalizing Execu-
tion Semantics of UML Profiles with fUML Mod-
els. In Proceedings of the 17th International Con-
ference on Model-Driven Engineering Languages
and Systems (MODELS’14), volume 8767 of Lec-
ture Notes in Computer Science, pages 133–148.
Springer, 2014. doi: 10.1007/978-3-319-11653-2_9.

7. Erwan Bousse, Thomas Degueule, Didier Vojtisek,
Tanja Mayerhofer, Julien DeAntoni, and Benoît
Combemale. Execution framework of the GEMOC
studio (tool demo). In Proceedings of the 2016
ACM SIGPLAN International Conference on Soft-
ware Language Engineering (SLE), pages 84–89.
ACM, 2016. URL http://dl.acm.org/citation.
cfm?id=2997384.

8. Federico Ciccozzi, Ivano Malavolta, and Bran Selic.
Execution of UML models: a systematic review of
research and practice. Software & Systems Model-
ing, 2018. ISSN 1619-1374. doi: 10.1007/s10270-
018-0675-4.

9. Ranjit Jhala and Rupak Majumdar. Software
Model Checking. ACM Computing Surveys, 41(4):
21:1–21:54, 2009. ISSN 0360-0300. doi: 10.1145/
1592434.1592438.

10. Bart Meyers, Romuald Deshayes, Levi Lucio, Eu-
gene Syriani, Hans Vangheluwe, and Manuel Wim-
mer. ProMoBox: A Framework for Generating
Domain-specific Property Languages. In Pro-
ceedings of the International Conference on Soft-
ware Language Engineering (SLE), volume 8706 of
Lecture Notes in Computer Science, pages 1–20.
Springer, 2014.

11. Frank Hilken and Martin Gogolla. Verifying Lin-
ear Temporal Logic Properties in UML/OCL Class
Diagrams Using Filmstripping. In Proceedings of
the Euromicro Conference on Digital System De-
sign (DSD), pages 708–713. IEEE, 2016. doi:
10.1109/DSD.2016.42.

12. Earl T. Barr and Mark Marron. Tardis: Affordable
Time-travel Debugging in Managed Runtimes. In
Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems
Languages & Applications (OOPSLA’14), pages
67–82. ACM, 2014. ISBN 978-1-4503-2585-1. doi:
10.1145/2660193.2660209.

13. Erwan Bousse, Jonathan Corley, Benoit Combe-
male, Jeff Gray, and Benoit Baudry. Support-
ing efficient and advanced omniscient debugging
for xDSMLs. In Proceedings of the ACM SIG-
PLAN International Conference on Software Lan-
guage Engineering, pages 137–148. ACM, 2015. doi:
10.1145/2814251.2814262.

http://dl.acm.org/citation.cfm?id=2997384
http://dl.acm.org/citation.cfm?id=2997384

32 Fazilat Hojaji et al.

14. Erwan Bousse, Dorian Leroy, Benoit Combemale,
Manuel Wimmer, and Benoit Baudry. Omniscient
debugging for Executable DSLs. Journal of Sys-
tems and Software, 137:261–288, 2018.

15. Philip Langer, Tanja Mayerhofer, and Gerti Kap-
pel. Semantic model differencing utilizing behav-
ioral semantics specifications. In Proceedings of
the International Conference on Model Driven En-
gineering Languages and Systems, volume 8767 of
Lecture Notes in Computer Science, pages 116–132.
Springer, 2014.

16. Shahar Maoz, Jan Oliver Ringert, and Bernhard
Rumpe. ADDiff: semantic differencing for activ-
ity diagrams. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European con-
ference on Foundations of software engineering,
pages 179–189. ACM, 2011. doi: 10.1145/2025113.
2025140.

17. Amine Benelallam, Abel Gómez, Gerson Sunyé,
Massimo Tisi, and David Launay. Neo4EMF, a
scalable persistence layer for EMF models. In Pro-
ceeding of the European Conference on Modelling
Foundations and Applications, volume 8569 of Lec-
ture Notes in Computer Science, pages 230–241.
Springer, 2014.

18. Abdelwahab Hamou-Lhadj and Timothy C. Leth-
bridge. A Metamodel for Dynamic Information
Generated from Object-Oriented Systems. Elec-
tronic Notes Theoretical Computer Science, 94:59–
69, 2004. doi: 10.1016/j.entcs.2004.01.004.

19. Abdelwahab Hamou-Lhadj and Timothy C. Leth-
bridge. A Metamodel for the Compact but lossless
Exchange of Execution Traces. Software and Sys-
tems Modeling, 11(1):77–98, 2012. doi: 10.1007/
s10270-010-0180-x.

20. Thomas Hartmann, Francois Fouquet, Gregory
Nain, Brice Morin, Jacques Klein, Olivier Barais,
and Yves Le Traon. A native Versioning Concept
to Support Historized Models at Runtime. In Pro-
ceedings of the International Conference on Model
Driven Engineering Languages and Systems, vol-
ume 8767 of Lecture Notes in Computer Science,
pages 252–268. Springer, 2014.

21. Erwan Bousse, Tanja Mayerhofer, Benoit Combe-
male, and Benoit Baudry. Advanced and effi-
cient execution trace management for executable
domain-specific modeling languages. Software &
Systems Modeling, 18(1):385–421, 2019.

22. Erwan Bousse, Tanja Mayerhofer, Benoit Combe-
male, and Benoit Baudry. A Generative Approach
to Define Rich Domain-Specific Trace Metamodels.
In European Conference on Modelling Foundations
and Applications, volume 9153 of Lecture Notes in

Computer Science, pages 45–61. Springer, 2015.
23. Ken. Peffers, Tuure. Tuuanen, Marcus A. Rothen-

berger, and Samir. Chatterjee. A Design Science
Research Methodology for Information Systems Re-
search. Journal of Management Information Sys-
tems, pages 45–77., 2007. doi: 10.2753/MIS0742-
1222240302.

24. Alan R. Hevner, Salvatore T. March, Jinsoo. Park,
and Sudha. Ram. Design science in information sys-
tems research. MIS Quarterly, 28(1):75–105, 2004.

25. Fazilat Hojaji, Tanja Mayerhofer, Bahman Zamani,
Abdelwahab Hamou-Lhadj, and Erwan Bousse.
Model Execution Tracing: A Systematic Mapping
Study. Software and Systems Modeling, in press,
2019. doi: 10.1007/s10270-019-00724-1.

26. Carl Adam Petri. Fundamentals of a Theory of
Asynchronous Information Flow. In Proceedings
of IFIP Congress, pages 386–390. North Holland,
1962.

27. Object Management Group. Semantics of a
Foundational Subset for Executable UML Models
(fUML), Version 1.3, July 2017.

28. Object Management Group. Business Process
Model and Notation (BPMN), Version 2.0, January
2011.

29. Werner Damm and David Harel. LSCs: Breath-
ing Life into Message Sequence Charts. Formal
Methods in System Design, 19(1):45–80, 2001. doi:
10.1023/A:1011227529550.

30. Thorsten Fischer, Jörg Niere, Lars Torunski, and
Albert Zündorf. Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling
Language and Java. In Proceedings of the 6th In-
ternational Workshop on the Theory and Applica-
tion of Graph Transformations (TAGT’98), volume
1764 of Lecture Notes in Computer Science, pages
296–309. Springer, 1998. doi: 10.1007/978-3-540-
46464-8_21.

31. Luay Alawneh and Abdelwahab Hamou-Lhadj. Ex-
ecution traces: A new domain that requires the cre-
ation of a standard metamodel, volume 59 of Lec-
ture Notes in Communications in Computer and
Information Science book series, pages 253–263.
Springer, 2009.

32. Wim De Pauw, David H Lorenz, John M Vlis-
sides, and Mark N Wegman. Execution Patterns in
Object-Oriented Visualization. In USENIX Con-
ference on Object-Oriented Technologies and Sys-
tems (COOTS), volume 98, pages 1–17, 1998.

33. Dhananjay M Dhamdhere, K Gururaja, and Pra-
jakta G Ganu. A Compact Execution History for
Dynamic Slicing. Information Processing Letters,
85(3):145–152, 2003. ISSN 0020-0190.

Lossless Compaction of Model Execution Traces 33

34. Abdelwahab Hamou-Lhadj. Techniques to simplify
the analysis of execution traces for program com-
prehension. In PhD Dissertation, University of Ot-
tawa, 2005.

35. Abdelwahab Hamou-Lhadj and Timothy Leth-
bridge. Summarizing the content of large traces to
facilitate the understanding of the behaviour of a
software system. In Proceedings of the 14th Inter-
national Conference on Program Comprehension,
pages 181–190. IEEE, 2006.

36. Heidar Pirzadeh and Abdelwahab Hamou-Lhadj. A
novel approach based on gestalt psychology for ab-
stracting the content of large execution traces for
program comprehension. In Proceedings of the 16th
IEEE International Conference on Engineering of
Complex Computer Systems, pages 221–230. IEEE,
2011.

37. Raymond Smith and Bogdan Korel. Slicing Event
Traces of Large Software Systems. arXiv preprint
cs/0101005, 2001.

38. Abel Hegedus, Gábor Bergmann, István Ráth, and
Dániel Varró. Back-annotation of simulation traces
with change-driven model transformations. In Pro-
ceedings of the 8th IEEE International Confer-
ence on Software Engineering and Formal Meth-
ods (SEFM), pages 145–155. IEEE, 2010. doi:
10.1109/SEFM.2010.28.

39. Mike Stonebraker, Daniel J Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin, Sam Madden, Eliz-
abeth O’Neil, et al. C-store: a column-oriented
DBMS. In Proceedings of the 31st international
conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

40. Daniel Abadi. Teradata rainstor’s compres-
sion and performance technology. 2015.
URL http://blogs.teradata.com/data-
points/teradata-rainstors-compression-
performance-technology/.

41. Object Management Group (OMG). XML Meta-
data Interchange specification, version 2.5.1, 2011.

42. Isocpp.org. Serialization and unserialization. URL
https://isocpp.org/wiki/faq/serialization#
serialize-text-format.

43. W3C. Efficient Extensible Markup Language
(XML) Interchange (EXI), Format 1.0. Standard,
IJIS Institute Technical Advisory Committee, 2014.

44. Douglas Crockford. The application/JSON media
type for javascript object notation (JSON). RFC
4627, 2006.

45. Kenton Varda. Google Protocol Buffers: Google’s
Data Interchange Format. Technical report, 2008.
URL http://code.google.com/p/protobuf/.

46. Peter Kemper and Carsten Tepper. Automated
trace analysis of discrete-event system models.
IEEE Transactions on Software Engineering, 35(2):
195–208, 2009. doi: 10.1109/TSE.2008.75.

47. Shahar Maoz and David Harel. On tracing reactive
systems. Software and Systems Modeling, 10(4):
447–468, 2011.

48. Shahar Maoz. Using model-based traces as runtime
models. IEEE Computer Society, 42:28–36, 2009.
doi: 10.1109/MC.2009.336.

49. Gamma Erich, Helm Richard, Johnson Ralph,
and Vlissides John. Design patterns: elements of
reusable object-oriented software. Addison-Wesley
Professional„ 1994.

50. Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya,
Shinji Kusumoto, and Katsuro Inoue. Extract-
ing Sequence Diagram from Execution Trace of
Java program. In Proceeding of the 8th Interna-
tional Workshop on Principles of Software Evolu-
tion, pages 148–151. IEEE, 2005.

51. Gabriel Valiente. Simple and Efficient Tree Pattern
Matching. Report, Technical University of Catalo-
nia, 2000.

52. Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hi-
roki Arimura. LCM: An Efficient Algorithm for
Enumerating Frequent Closed Item Sets. In Pro-
ceedings of Workshop on Frequent itemset Mining
Implementations (FIMI’03), volume 90, 2003.

53. Jean-Marc Jézéquel, Benoit Combemale, Olivier
Barais, Martin Monperrus, and François Fouquet.
Mashup of metalanguages and its implementation
in the kermeta language workbench. Software and
Systems Modeling, 14(2):905–920, 2015.

54. Sebastian Bittl, Arturo A Gonzalez, M Spähn, and
W Heidrich. Performance Comparison of Data Se-
rialization Schemes for ETSIITS Car-to-X Com-
munication Systems. International Journal on Ad-
vances in Telecommunications, 8(1-2):48–58, 2015.

55. Ábel Hegedüs, Ákos Horváth, István Ráth, Ro-
drigo Rizzi Starr, and Dániel Varró. Query-driven
soft traceability links for models. Software & Sys-
tems Modeling, 15(3):733–756, 2016.

56. Fazilat Hojaji, Bahman Zamani, and Abdelwahab
Hamou-Lhadj. Towards a tracing framework for
model-driven software systems. In Proceedings of
the 6th International Conference on Computer and
Knowledge Engineering (ICCKE), pages 298–303.
IEEE, 2016.

57. Heidar Pirzadeh, Sara Shanian, Abdelwahab
Hamou-Lhadj, Luay Alawneh, and Arya Sharifee.
Stratified sampling of execution traces: Execution
phases serving as strata. Elsevier Journal of
Science of Computer Programming, Special Issue

http://blogs.teradata.com/data-points/teradata-rainstors-compression-performance-technology/
http://blogs.teradata.com/data-points/teradata-rainstors-compression-performance-technology/
http://blogs.teradata.com/data-points/teradata-rainstors-compression-performance-technology/
https://isocpp.org/wiki/faq/serialization#serialize-text-format
https://isocpp.org/wiki/faq/serialization#serialize-text-format
http://code.google.com/p/protobuf/

34 Fazilat Hojaji et al.

on Software Evolution, Adaptability and Mainte-
nancey, 78(8):1099–1118, 2013.

58. Benoit Combemale, Xavier Crégut, Jean-Pierre Gi-
acometti, Pierre Michel, and Marc Pantel. In-
troducing simulation and model animation in the
MDE Topcased toolkit. In Proceedings of the 4th
European Congress Embedded Real Time Software
(ERTS), 2008.

59. Xavier Crégut, Benoit Combemale, Marc Pantel,
Raphaël Faudoux, and Jonatas Pavei. Generative
Technologies for Model Animation in the TopCased
Platform. ECMFA, 6138:90–103, 2010.

60. Martin Gogolla, Lars Hamann, Frank Hilken, Mirco
Kuhlmann, and Robert B France. From Applica-
tion Models to Filmstrip Models: An Approach to
Automatic Validation of Model Dynamics. In Mod-
ellierung, volume 225, pages 273–288, 2014.

61. Hamoud Aljamaan and Timothy C Lethbridge. To-
wards Tracing at the Model Level. In Proceedings
of the 19th Working Conference on Reverse Engi-
neering (WCRE), pages 495–498. IEEE, 2012. doi:
10.1109/WCRE.2012.59.

62. Hamoud Aljamaan, Timothy C Lethbridge, Omar
Badreddin, Geoffrey Guest, and Andrew Forward.
Specifying trace directives for UML attributes and
state machines. In Proceedings of the 2nd In-
ternational Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD),
pages 79–86. IEEE, 2014.

63. Hamoud I Aljamaan, Timothy Lethbridge, Miguel
Garzón, and Andrew Forward. UmpleRun: a dy-
namic analysis tool for textually modeled state ma-
chines using Umple. In Proceedings of the First In-
ternational Workshop on Executable Modeling co-
located with MODELS 2015, pages 16–20, 2015.

64. Lidia Fuentes, Jorge Manrique, and Pablo Sánchez.
Execution and simulation of (profiled) UML models
using Populo. In Proceedings of the international
workshop on Models in software engineering, pages
75–81. ACM, 2008. doi: 10.1145/1370731.1370749.

65. Lidia Fuentes and Pablo Sánchez. Dynamic Weav-
ing of Aspect-Oriented Executable UML Models.
Transactions on Aspect-Oriented Software Develop-
ment, 5560:1–38, 2009.

66. Tanja Mayerhofer, Philip Langer, and Gerti Kap-
pel. A runtime model for fUML. In Proceedings
of the 7th Workshop on Models@ run. time, pages
53–58. ACM, 2012. doi: 10.1145/2422518.2422527.

67. M. Hendriks, J. Verriet, T. Basten, B. Theelen,
M. Brassé, and L. Somers. Analyzing execution
traces: critical-path analysis and distance analy-
sis. Proceedings of the International Journal on
Software Tools for Technology Transfer, pages 1–

24, 2016. doi: 10.1007/s10009-016-0436-z. Export
Date: 22 December 2016 Article in Press.

68. Martijn Hendriks, Jacques Verriet, Twan Basten,
Bart Theelen, Marco Brassé, and Lou Somers. Ana-
lyzing Execution Traces: Critical-path Analysis and
Distance Analysis. International Journal on Soft-
ware Tools for Technology Transfer, 19(4):487–512,
2016. doi: 10.1007/s10009-016-0436-z.

69. Stefano Schivo, Buğra M Yildiz, Enno Ruijters,
Christopher Gerking, Rajesh Kumar, Stefan Dzi-
wok, Arend Rensink, and Mariëlle" Stoelinga. How
to Efficiently Build a Front-End Tool for UPPAAL:
A Model-Driven Approach. In International Sym-
posium on Dependable Software Engineering: Theo-
ries, Tools, and Applications, volume 10606 of Lec-
ture Notes in Computer Science, pages 319–336.
Springer, 2017.

70. Luay Alawneh and Abdelwahab Hamou-Lhadj. An
exchange format for representing dynamic informa-
tion generated from high performance computing
applications. Elsevier Journal of Future Genera-
tion Computer Systems, 27(4):381–394, 2011.

71. Niek Tax, Natalia Sidorova, and Wil M. P. van der
Aalst. Discovering more precise process models
from event logs by filtering out chaotic activi-
ties. Journal of Intelligent Information Systems,
52(1):107–139, Feb 2019. ISSN 1573-7675. doi:
10.1007/s10844-018-0507-6. URL https://doi.
org/10.1007/s10844-018-0507-6.

72. R. P. Jagadeesh Chandra Bose and Wil M. P.
van der Aalst. Abstractions in Process Mining: A
Taxonomy of Patterns. In Umeshwar Dayal, Jo-
hann Eder, Jana Koehler, and Hajo A. Reijers, ed-
itors, Business Process Management, volume 5701
of Lecture Notes in Computer Science, pages 159–
175, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

73. Minseok Song, Christian W Günther, and Wil MP
Van der Aalst. Trace clustering in process min-
ing. In International Conference on Business Pro-
cess Management, volume 17 of Lecture Notes in
Business Information Processing, pages 109–120.
Springer, 2008.

74. Christian W Günther and Wil MP Van Der Aalst.
Fuzzy mining–adaptive process simplification based
on multi-perspective metrics. In International con-
ference on business process management, volume
4714 of Lecture Notes in Computer Science, pages
328–343. Springer, 2007.

75. Claudia Diamantini, Laura Genga, and Domenico
Potena. Behavioral process mining for unstructured
processes. Journal of Intelligent Information Sys-
tems, 47(1):5–32, Aug 2016. ISSN 1573-7675. doi:

https://doi.org/10.1007/s10844-018-0507-6
https://doi.org/10.1007/s10844-018-0507-6

Lossless Compaction of Model Execution Traces 35

10.1007/s10844-016-0394-7. URL https://doi.
org/10.1007/s10844-016-0394-7.

76. Veronica Liesaputra, Sira Yongchareon, and
Sivadon Chaisiri. Efficient Process Model Discov-
ery Using Maximal Pattern Mining. In Hamid Reza
Motahari-Nezhad, Jan Recker, and Matthias Wei-
dlich, editors, Business Process Management,
volume 9253 of Lecture Notes in Computer
Science, pages 441–456, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-23063-4.

77. Niek Tax, Natalia Sidorova, Reinder Haakma, and
Wil M. P. van der Aalst. Event abstraction
for process mining using supervised learning tech-
niques. Lecture Notes in Networks and Systems,
page 251–269, Aug 2017. ISSN 2367-3389. doi:
10.1007/978-3-319-56994-9_18. URL http://dx.
doi.org/10.1007/978-3-319-56994-9_18.

78. Stefano Schivo, Jetse Scholma, Brend Wanders, Ri-
cardo A Urquidi Camacho, Paul E van der Vet,
Marcel Karperien, Rom Langerak, Jaco van de Pol,
and Janine N Post. Modeling biological pathway
dynamics with timed automata. IEEE journal of
biomedical and health informatics, 18(3):832–839,
2014. doi: 10.1109/BIBE.2012.6399719.

79. Konstantinos Barmpis and Dimitrios S Kolovos.
Comparative analysis of data persistence technolo-
gies for large-scale models. In Proceedings of the
2012 Extreme Modeling Workshop, pages 33–38.
ACM, 2012.

80. Eladio Domínguez, Beatriz Pérez, and María A Za-
pata. A UML profile for dynamic execution per-
sistence with monitoring purposes. In Proceedings
of the 5th International Workshop on Modeling in
Software Engineering, pages 55–61. IEEE, 2013.
doi: 10.1109/MiSE.2013.6595297.

81. Javier Espinazo Pagán, Jesús Sánchez Cuadrado,
and Jesús García Molina. Morsa: A scalable ap-
proach for persisting and accessing large models.
In International Conference on Model Driven En-
gineering Languages and Systems, volume 6981 of
Lecture Notes in Computer Science, pages 77–92.
Springer, 2011.

82. Thomas Hartmann, Francois Fouquet, Matthieu
Jimenez, Romain Rouvoy, and Yves Le Traon. An-
alyzing complex data in motion at scale with tem-
poral graphs. In The 29th International Conference
on Software Engineering and Knowledge Engineer-
ing (SEKE’17), page 6. KSI Research, 2017.

https://doi.org/10.1007/s10844-016-0394-7
https://doi.org/10.1007/s10844-016-0394-7
http://dx.doi.org/10.1007/978-3-319-56994-9_18
http://dx.doi.org/10.1007/978-3-319-56994-9_18

	Introduction
	Background
	Motivation
	Approach Overview
	Generic Compact Trace Metamodel (CTM)
	Implementation
	Evaluation
	Related work
	Conclusion
	Perspectives

