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Context
Multiple myeloma (MM) is a bone marrow cancer that
accounts for 10% of all haematological malignancies. It was
reported that full-body FDG PET imaging provides
prognostic information for both baseline and therapeutic
follow-up of MM patients (MM).

Aims
3Predict Progression-Free Survival (PFS).
3Provide predictive features (Clinics and Radiomics).

Contribution
There is yet much to discover in the survival analysis of MM.
However, the Random Survival Forest (RSF)[2] has
demonstrated robustness but is not studied in the PET imag-
ing and MM context.We developed a two-stage computer-
assisted method based on PET imaging features towards as-
sisting current diagnosis and treatment decisions
for MM patients, with RSF and "Variable importance"
(VIMP) [2].

Definitions
Right censoring: When no event (death/relapse) has
taken place at the end of the evaluation period.

C-index: The concordance probability is the frequency
of concordant pairs among all pairs of subjects.
Error prediction = 1 - C-index

Survival curve: Survival rates of a specific population,
over a period of time.

A. Material and method
1) The data
3Prospective multi-centric french IMAJEM study [1], 66 patients

3 132 Clinical and imaging features (textural and conventional).

2) The textural features : Radiomics

Example of the GLCM (Gray-Level Co-Occurrence) Matrix [3]:

Translate the joint probability P(i,j|σ,θ) of the ROI. The position
(i,j) represents the number of times that the combination of the
pixels with i and j levels appears in the I matrix, separated by σ
pixels distance and a θ angle.

For a distance of 1 and an angle of 0◦ (plan horizontal):

Fig. 1: FDG-PET image of a

multiple myeloma patient

Fig. 2: Intensity matrix I Fig. 3: GLCM Matrix p

Energy =
Np∑
i=1

Np∑
j=1

(p(i, j))2 (1)
with Np ∗Np the size of the GLCM ma-

trix

3) The method
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Fig. 4: The RSF differs from the random forest

in the target value (the ensemble mortality) but

also in the way to separate branches (log-rank

test on the mortality)

Fig. 5: pipeline of the method

C. Conclusions and perspectives
3The proposed method is more efficient than conventional approaches.
3 It is possible to correctly separate two classes of patients (good/bad prognosis).
3 It is possible to determine the features that are the most predictive.
3 It shows the interest of using textural features.
3The relative resampling is more predictive than absolute resampling
3This approach can be generalised to other diseases.
3Thereafter, more patients will be included.
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B. Results
1) Evaluation of the method

Fig. 6: Prediction error for each method. Fig. 7: Optimal number of features kept per method.

Method Average p-value
Our method 0.05

Gradient-Boosting Cox 0.27
Lasso-Cox 0.4

Without selection 0.40
Minimal depth 0.24

Variable-Hunting 0.11
Tab. 1: Average p-value according to the

method.
Fig. 8: Kaplan Meier curves of the two groups obtained with the test set (pink :

bad prognosis, blue : good prognosis). Error : 0.39, p-value = 0.045

3) The interest of using textural features

Tab.2: Influence of the features class on the prediction error, with different selection
methods. There are the same patients in each sub-databases

3) The predictive features

Fig. 8 : Histogram of the features found as predictive with the VIMP method.
Yellow: clinical, purple: Imaging.

OMRR (One Matrix relative resampling), OMAR (absolute resampling), Heq
(histogram equalization), equalsize (equal size of voxels)
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