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Abstract

c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating

fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-

positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP

is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to

a growth arrest under standard laboratory growth conditions and a re-sensitization of methi-

cillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA

is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the pro-

posed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which

is required for the production of glucosamine-1-phosphate, an early intermediate of peptido-

glycan synthesis. These three proteins are thought to form a complex in vivo and, in this

manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important

regulatory complex, we conducted a comprehensive structural and functional analysis of the

S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM

enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution

as well as in the crystal structures. Further site-directed mutagenesis, structural and enzy-

matic studies showed that multiple DacA dimers need to interact for enzymatic activity. We

also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but

not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA

function without the requirement of any additional cellular factor. Based on Small Angle X-

ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA

by masking the active site of the cyclase and preventing higher oligomer formation.

Together these results provide an important mechanistic insight into how c-di-AMP produc-

tion can be regulated in the cell.
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Author summary

c-di-AMP has recently emerged as an essential molecule in Gram-positive bacteria, con-

trolling osmotic stress resistance and virulence. The molecule has also been linked to anti-

biotic resistance/sensitivity, as alterations in its levels have been shown to modulate the

effect of cell wall-targeting antibiotics. c-di-AMP is produced and degraded by dedicated

enzymes and the activities of these enzymes are tightly regulated in the cell for optimal

bacterial growth. In the human pathogen Staphylococcus aureus, c-di-AMP is produced

by the di-adenylate cyclase enzyme DacA, which is thought to form a complex and be reg-

ulated by YbbR and GlmM, two other conserved proteins. There are ongoing efforts to

devise strategies to inhibit di-adenylate cyclase enzymes, as inhibition of c-di-AMP pro-

duction will negatively impact bacterial growth and also re-sensitize methicillin-resistant

S. aureus (MRSA) strains to ß-lactam antibiotics. Here, we investigated the activity and

regulation of the S. aureus c-di-AMP cyclase DacA. We determined the atomic structures

of the S. aureusDacA and GlmM enzymes and show that GlmM readily binds to DacA in
vitro and blocks its activity by masking its active site. With this, our work provides impor-

tant insight into possible ways to ablate c-di-AMP production in bacterial cells.

Introduction

For pathogenic bacteria, the ability to rapidly adapt to the host cell environment or different

host cell niches is essential for their infectivity. Nucleotide second-messenger molecules are

critical components involved in such adaptive responses, allowing bacteria to simultaneously

regulate multiple cellular processes [1]. c-di-AMP has emerged as an important second-mes-

senger, in particular in Gram-positive bacteria [2, 3]. Several recent studies have shown that c-

di-AMP binds to and regulates cellular transport systems for potassium and osmolytes and in

this manner likely controls the cellular turgor [2, 4–9]. Therefore c-di-AMP has an important

role in preserving the integrity and viability of the cell when osmotic conditions change. Fur-

thermore, in a number of Gram-positive bacteria, including the human pathogens Staphylo-
coccus aureus and Listeria monocytogenes, c-di-AMP impacts the susceptibility to ß-lactam

antibiotics [10–14]. More specifically, high cellular c-di-AMP levels lead to increased ß-lactam

resistance and low cellular c-di-AMP levels to decreased resistance [12–15]. Although the

molecular mechanism behind this is still unclear, it has been suggested that c-di-AMP might at

least in part impact ß-lactam resistance through its regulatory function of potassium and

osmolyte transporters and changes in osmotic balance and pressure [9, 16]. These findings

indicate that blocking c-di-AMP production could potentially be used to re-sensitize patho-

gens such as methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. In order to

exploit such strategies, a better knowledge of the structure and function of c-di-AMP synthesis

enzymes and the modulation of their activity is required.

For optimal fitness, bacteria need to tightly regulate c-di-AMP production [8, 17–19] [6, 11,

20–22]. Its cellular levels are regulated by the balance between its synthesis by dedicated di-

adenylate cyclase enzymes (DacA in S. aureus) and its degradation to pApA or AMP by spe-

cific phosphodiesterase enzymes [12, 23–28]. These enzymes are part of three main classes,

represented by DisA, DacA (CdaA) and CdaS [23, 24, 29]. Structural and biochemical charac-

terization of members of the different c-di-AMP cyclase families have revealed important

information on their regulation. The first di-adenylate cyclase to be characterized was the

DNA integrity scanning protein DisA from Thermotoga maritima [23]. DisA is a modular
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cytoplasmic protein, in which the di-adenylate cyclase domain (from here on referred to as

DAC domain) is linked by a helical linker region to a DNA-binding domain. The protein was

present as an octamer (tetramer of dimers) in the crystal structure, with the DAC domains in a

head-to-head conformation [23, 30]. DisA dependent c-di-AMP production is regulated

through multiple mechanisms. Both, the interaction of DisA with the DNA repair protein

RadA and the binding of the DisA-associated DNA-binding domain to damaged DNA, nega-

tively impact its activity [23, 31, 32].

Besides DisA, the structure of the CdaS cyclase from Bacillus cereus is available (PDB 2FB5)

and the homologous proteins from Bacillus subtilis and Bacillus thuringiensis have been char-

acterized biochemically [33, 34]. The cyclase domain in CdaS proteins is preceded by an N-ter-

minal regulatory YojJ domain that is composed of two long alpha-helices. The structural and

biochemical analyses of CdaS proteins from different Bacillus species indicate that the protein

is a hexamer in the crystal structure as well as in solution [33, 34]. However, in contrast to the

oligomeric DisA protein, the B. subtilis CdaS enzyme seemed to be only weakly active in this

higher oligomeric form, as the DAC domains were not found in a head-to-head conformation

[33]. Deletion of the N-terminal regulatory helices of the B. subtilis CdaS protein disrupted

hexamer formation, yielding protein dimers with high enzymatic activity [33]. In contrast,

deletion of the N-terminal regulatory domain in the B. thuringiensis CdaS protein greatly

inhibited the enzymatic activity of this enzyme. Therefore, while it is clear that the c-di-AMP

activity of CdaS-type proteins is regulated by the N-terminal YojJ domain, the exact regulatory

mechanism is still unclear and might also differ between different Bacillus spp.

CdaA-type (DacA-type) enzymes are widely distributed among bacteria. As many impor-

tant Gram-positive pathogens produce this type of cyclase, inhibiting the function of members

of this class of enzyme will most likely have the biggest therapeutic potential. The soluble enzy-

matic domain of the membrane-bound CdaA enzyme from L.monocytogenes has been crystal-

lized [35]. While the CdaA enzyme from L.monocytogenes was present as a crystallographic

tetramer in the structure, none of the subunits were engaged in a catalytically competent head-

to-head conformation.

The cdaA genes (including dacA in S. aureus) encoded by Firmicutes are located in a highly

conserved three- or four-gene operon that includes the conserved genes ybbR and glmM [17,

18], revealing a potentially interesting connection to cell wall biosynthesis. GlmM codes for

the essential phosphoglucosamine mutase enzyme, required for the conversion of glucos-

amine-6-phosphate to the early peptidoglycan synthesis precursor glucosamine-1-phosphate

[36, 37]. Recent work has highlighted a direct interaction between CdaA, YbbR and GlmM

[17, 18]. Bacterial two-hybrid (B2H) assays performed with the B. subtilis or Lactococcus lactis
proteins indicated that YbbR interacts with the transmembrane region of CdaA, whilst GlmM

interacts with the cytoplasmic catalytic domain of CdaA [17, 38]. Further work in L. lactis indi-

cated that the interaction of GlmM with CdaA leads to a decrease in the cellular levels of c-di-

AMP, suggesting an inhibitory role of GlmM on the CdaA c-di-AMP cyclase enzyme [17].

However, biochemical and atomic level details of the GlmM/CdaA (DacA) interaction are cur-

rently lacking.

As part of this study, we investigated the regulatory mechanism of the S. aureus c-di-AMP

cyclase DacA, including the interaction of GlmM with DacA, structurally and biochemically.

We determined the structures of the two essential S. aureus enzymes, GlmM and the enzymatic

domain of DacA and also showed that these proteins form a stable complex in vitro without

the requirement of any additional factors. Upon binding, GlmM completely abolished the

activity of the DacA cyclase enzyme, while GlmM activity was not significantly affected upon

complex formation. SAXS envelope data of the purified DacA/GlmM complex allowed us to

propose a molecular model for how GlmM inhibits the activity of the c-di-AMP cyclase by
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blocking access to its catalytic site. Thus, our study provides important new insight into how

c-di-AMP production can be blocked, paving the way to devising new strategies to interfere

with c-di-AMP production in important human pathogens such as S. aureus.

Results

Apo-structure of the S. aureus c-di-AMP cyclase DacACD

The S. aureus c-di-AMP cyclase enzyme DacA has three N-terminal transmembrane helices,

which are followed by the cytoplasmically located enzymatic DisA_N domain. To gain further

insight into the function and catalytic mechanism of the S. aureus c-di-AMP cyclase DacA, the

soluble catalytic domain starting from amino acid F101 (hereafter referred to as DacACD) was

expressed and purified as N-terminal His-tag fusion protein. Following removal of the His-tag,

the protein was crystallized and the structure of the nucleotide-free DacACD domain was

obtained by molecular replacement using the L.monocytogenes CdaA protein (PDB 4RV7) as

a search model [35] (Fig 1 and S1 Table). The two proteins have an identify of 51.7% and the

structures overlapped with a root-mean-square deviation (RMSD) of 0.438 Å. The S. aureus
DacACD protein displayed the expected globular fold, with a central β-sheet made up of 7 anti-

parallel strands flanked by 5 helices (Fig 1A, left). While the L.monocytogenes CdaACD protein

was found to be a tetramer in the asymmetric unit (although dimeric in solution) [35], the S.

aureusDacACD was present as a symmetric dimer, with two protomers interacting via the

backbone of α3, β2 and the loop connecting α3 and β3 (Fig 1A and 1B). At the interface, resi-

due N166 from one protomer formed a hydrogen bond interaction with residue T172 from

the second protomer and a van der Waals interaction was formed between residue P173 and

residues N166 and I165 of the neighbouring protomer (Fig 1B). Further analysis using the

PdbePISA program [39] revealed a total buried surface area of 1450 Å2 at the dimer interface

with a ΔG (int) of -8.3 kcal/mol and a ΔG (diss) of 2.1 kcal/mol, indicative of a strong protein/

protein interaction.

Structure of S. aureus DacACD bound to ApCpp

In order to condense two ATP molecules to c-di-AMP, two protomers need to be arranged in

a head-to-head conformation [23, 35]. However, in the S. aureusDacACD dimer found in the

crystallographic asymmetric unit, the active sites of the protomers are outward facing and

hence are too far apart for c-di-AMP synthesis (Fig 1A). In addition, analysis of the crystal lat-

tice did not reveal any symmetry-related molecule arranged with the catalytic sites in a head-

to-head orientation. To determine whether nucleotide binding could trigger a conformational

change of the protein leading to inter-protomer rearrangement, the S. aureusDacACD protein

was crystallized in the presence of ApCpp, a non-hydrolyzable ATP substrate as well as 2 mM

MnCl2. Crystals were readily obtained and diffracted to 2.7Å (Fig 1 and S1 Table). The struc-

ture was solved by molecular replacement using the structure of the nucleotide-free S. aureus
DacACD domain as a search model. The DacACD protein co-crystallized with ApCpp had the

same dimeric arrangement as observed for the nucleotide-free protein, but extra densities for

the ApCpp nucleotide were observed in each protomer (Fig 1). As expected, the ApCpp mole-

cule was found in the catalytic pocket with residues D176 and G177 interacting with the ribose

moiety, residue T207 interacting with the phosphate backbone and residue Y192 engaged in a

π-stacking interaction with the adenine base (Fig 1B, left). The overall protein structures of the

nucleotide-free and the nucleotide-bound proteins were very similar and overlapped with an

RMSD of 0.34 Å (Fig 1A). Our data suggest that nucleotide binding does not trigger any major

conformational changes leading to a rearrangement of the DacACD dimer. However, we did

observe a near head-to-head configuration of DacACD by inspecting neighbouring molecules
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within the crystal lattice (S1A Fig). While the individual protomers in neighbouring units are

too far apart to be engaged in a catalytic reaction, the data do suggest that the protein can form

a catalytically active dimeric conformation by forming higher-order oligomers. Furthermore,

overlaying the DacACD -ApCpp structure with a dimer of the B. subtilisDisA structure

highlighted that there is sufficient space for two S. aureusDacACD dimers to interact in a

head-to-head orientation as required for catalysis (S1B Fig).

Enzymatic activity and characterization of the S. aureus DacACD dimer

interface

To determine whether the observed DacACD dimer could be physiologically relevant and enzy-

matically active, we next performed enzyme activity assays using different DacACD variants to

test the relevance of the observed dimer interface. Two key interacting residues in the dimer

interface are amino acids N166 and T172 (Fig 1B). To potentially disrupt this interaction, we

mutated these two residues to lysines, yielding variant DacACD-K. To “lock” the dimer confor-

mation, we also mutated these residues to cysteines (DacACD-C variant) to facilitate the forma-

tion of disulfide bonds between the two protomers. WT DacACD and the DacACD-K and

Fig 1. Crystal structure of the S. aureus DacACD protein in the nucleotide-free and nucleotide-bound states. (A) Protein structure of the S.
aureusDacACD protein with and without ApCpp, shown in ribbon representation. The apo S. aureusDacACD structure was solved by molecular

replacement using the L.monocytogenes CdaA protein (PDB 4RV7) as template. The two monomers in the crystallographic unit are shown in

teal and purple (for apo-DacACD) and in cyan and brown (for ApCpp-DacACD). The dimer is shown in two views with the second view in a 90˚

angle with the predicted active site residues D176, G177, T207 shown in stick representation in the 90˚ view (right). While the dacA sequence

starting from codon F101 were included in the construct, only residues Y110 to G260 were visible in chain A and residues S111 to T261 in chain

B. (B) Zoomed-in view of the S. aureus ApCpp-DacACD binding site (left) and DacACD dimerization interface (right). Electron densities

corresponding to ApCpp and the metal ion are displayed. ApCpp and the DacACD interacting residues are shown in stick representation.

Amino acid residues N166, T172 and P173 providing hydrogen bonding or van der Waals interactions are also shown in stick representation.

https://doi.org/10.1371/journal.ppat.1007537.g001
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DacACD-C variants were purified and the oligomeric state of the proteins was estimated by

size exclusion chromatography. The WT DacACD and DacACD-C variant had similar elution

profiles and eluted at a retention volume as expected for a DacACD dimer (S2 Fig). The main

peak for the DacACD-K variant eluted with the same retention volume as the WT DacACD and

DacACD-C variants indicating that the protein was still able to form a dimer. However, addi-

tional faster and slower eluting peaks were observed for the DacACD-K variant indicative of

protein unfolding or aggregation (earlier eluting peak) and monomer formation (later eluting

peak) (S2 Fig). These data indicate that introduction of lysine residues partially disrupts

DacACD dimer formation. To further assess if the DacACD-C variant could form disulfide-

bridge locked dimers, the purified protein was crystallized and its structure determined. The

protein crystallized in the same dimeric conformation as the DacACD protein and electron

densities consistent with the formation of two disulfide bonds were observed for the DacACD-

C variant, which were absent in the DacACD protein (Fig 2 and S1 Table).

Next, the purified proteins were tested for enzyme activity by quantifying the conversion of

α-P32-labelled ATP into P32-labelled c-di-AMP. First, the metal dependency of the WT

DacACD protein was assessed. To this end, DacACD was incubated with ATP spiked with a

small amount of α-P32-labelled ATP in buffers containing 1 or 10 mM of one of the divalent

cations Mg2+, Co2+ or Mn2+. After 4 h the reactions were stopped and the input ATP and c-di-

AMP reaction product quantified by phosphorimaging. This analysis revealed that the S.

aureusDacACD protein is most active in the presence of Mn2+ and hence all subsequent exper-

iments were performed in the presence of 10 mM MnCl2 (Fig 3A). Next, a time course experi-

ment was performed and the DacACD enzyme displayed an in vitro catalytic activity with an

average catalytic rate of 2.28x10-10 M/min (Fig 3B). This activity is slow, but consistent with

previous observations [23]. To assess the activity of the different DacACD variants, enzyme

activity assays were performed with the DacACD, DacACD-C, or DacACD-K (either obtained

from the predicted monomer or dimer peak) proteins. The DacACD-C variant displayed very

similar activity to the WT DacACD protein (Fig 3C), suggesting that locking the dimer through

two disulfide bridges does not influence the activity of the enzyme. In contrast, the DacACD-K

variant derived either from the late eluting (predicted monomer) or earlier eluting (predicted

dimer) peaks displayed very low activity (Fig 3C). We reasoned that the activity loss could be

due to an intrinsic instability of this protein variant. To test this, the stability of the DacACD-K

variant was assessed using a thermofluor assay and compared to that of the WT DacACD and

Fig 2. Structure of the DacACD-C variant. (A) X-ray structure of the DacACD-C variant. The structure of the tag-less DacACD-C variant was

solved by molecular replacement using the WT S. aureusDacACD protein shown in Fig 1 as template. The DacACD-C protein was found as a

dimer in the crystallographic unit. (B) Electron density of the dimer interface in DacACD-C, showing electron densities consistent with the

formation of two disulfide bonds between two DacACD-C monomers at sigma 1.3.

https://doi.org/10.1371/journal.ppat.1007537.g002
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DacACD-C variant. The melting curves for the DacACD and DacACD-C proteins were sigmoi-

dal, which is typical for well-folded proteins (Fig 3D). On the other hand, the DacACD-K vari-

ant displayed high levels of fluorescence from the beginning of the melting curve (Fig 3D),

which is indicative of an unfolded protein and likely explains the low enzymatic activity of the

DacACD-K variant. Taken together, these data show that WT DacACD and the ‘locked-dimer’

DacACD-C variant show similar enzymatic activities, suggesting that the stable dimer we

observed in our crystal structures will likely transiently interact with other dimers to form

higher oligomers for catalysis and c-di-AMP product formation.

Fig 3. Activity assays of DacACD and its variants. (A) Enzyme activity assay and metal-dependency of the WT DacACD protein. 5 μM DacACD was

incubated with 100 μM M ATP spiked with a small amount of radiolabeled ATP in buffer containing 1 mM or 10 mM of Mg2+, Co2+ or Mn2+ metal

ions. The reactions were incubated for 4 h at 37˚C and % ATP to c-di-AMP conversion determined. The average values and standard deviations from

three independent experiments were plotted. (B) DacACD cyclase activity time-course experiment. 5 μM DacACD was incubated with 100 μM ATP

spiked with radiolabeled ATP in buffer containing 10 mM Mn2+ and the reactions were stopped at the indicated time points. The % ATP that was

converted to c-di-AMP was determined and the average values and standard deviations from three independent experiments plotted. (C) Cyclase

activity of WT DacACD, DacACD-C and DacACD-K variants. The indicated protein was incubated with ATP for 4 h as described in panel B and the

average values of % ATP conversion and standard deviations from three independent experiments were plotted. (D) Thermofluor melting curves.

5 μM of the indicated protein was incubated with SYPRO Orange dye, the solution was heated from 25 to 95˚C in 1˚C increments and the

fluorescence readings determined. The melting curve for WT DacACD is shown in black, for the DacACD-C variant in red, for the DacACD-K variant

derived from the presumed dimer peak in blue and the DacACD-K variant derived from the presumed monomer peak in green.

https://doi.org/10.1371/journal.ppat.1007537.g003
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S. aureus DacACD and GlmM form a complex in vitro
Results from in vivo crosslinking and bacterial two-hybrid experiments suggested that the

phosphoglucosamine mutase GlmM can interact with the DacA homologs in B. subtilis and L.

lactis [17, 18]. To assess whether the S. aureusDacACD protein can interact with the S. aureus
GlmM protein, a plasmid for the overexpression of a C-terminally His-tagged S. aureus GlmM

protein (GlmM-His) was generated. Next, expression of the His-DacACD and GlmM-His pro-

teins was induced in E. coli, the cells lysed and the proteins purified by Ni-affinity and size

exclusion chromatography, or E. coli lysates from His-DacACD and GlmM-His overexpressing

strains mixed before affinity and size exclusion chromatography. When the two proteins were

purified together, a new faster eluting peak corresponding to a species of higher molecular

weight and indicating the formation of a complex, was obtained (Fig 4A). SDS-PAGE analysis

of aliquots from the different elution fractions confirmed the co-elution of the His-DacACD

and GlmM-His proteins in the high molecular weight peak (Fig 4A). To further confirm the

interaction of DacACD with GlmM in vitro, a pull-down assay was performed. For this pur-

pose, the His-tag was removed from DacACD and the purified tag-less protein subsequently

mixed in equimolar amount with purified GlmM-His. The protein mixture was then applied

to a Ni-NTA column and after two wash steps, bound proteins were eluted. The untagged

DacACD protein quantitatively co-eluted with GlmM-His, confirming the protein/protein

interaction (S3 Fig). As control, the tag-less DacACD protein was subjected to the same proce-

dure in the absence of GlmM-His. In this case, the protein was found in the load and wash

fractions. Taken together, these results show that DacA and GlmM can form a stable complex

in vitro, and that the two proteins can be co-purified as a single species. To estimate the size

and stoichiometry of the complex, the purified DacACD-GlmM complex was further analyzed

by SEC-MALS as well as native mass spectrometry. Based on the SEC-MALS elution profile,

Fig 4. The S. aureus DacACD and GlmM proteins form a stable complex in vitro. (A) Size exclusion profiles of the His-DacACD (blue line),

GlmM-His (red line) proteins and the His-DacACD/GlmM-His complex (black line). The insert shows a Coomassie-stained gel with aliquots of

fractions from the complex peak. The experiment was performed three times and a representative result is shown. (B) Native mass-spectrometry

experiment of the DacA/GlmM complex. The spectrum was deconvoluted using the software Amphitrite [53]. Experimental and calculated

spectra are shown in black and red, respectively. Charge state distributions corresponding to the different detected species are depicted in

different colours. The molecular weights reported correspond to: DacA/GlmM dimer complex (purple line, 277.896 kDa, four copies of DacACD

with four copies of GlmM); DacA/GlmM complex (brown line, 139.003 kDa, two copies of DacACD with two copies of GlmM–main DacA/

GlmM complex); GlmM dimer (green line, 99.983 kDa); GlmM monomer (purple line—50.302 kDa); DacACD dimer (blue line—39.232 kDa);

DacACD monomer (grey line—19.374 kDa) (S2 Table).

https://doi.org/10.1371/journal.ppat.1007537.g004
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the complex had an estimated molecular weight of 129 kDa ± 0.4% (S4 Fig) and based on the

native mass spectrometry analysis, the major species in the spectrum corresponded to a com-

plex of 139.003 kDa ± 10.41 Da (Fig 4B). These data are consistent with a DacACD-GlmM

complex comprising one GlmM dimer (theoretical mass 99.462 kDa) interacting with one

DacACD dimer (theoretical mass 19.374 kDa), with a theoretical molecular weight of 138.21

kDa (S2 Table).

S. aureus GlmM is a negative regulator of DacA activity both in vitro and in
vivo
A study with L. lactis indicated that GlmM might inhibit the activity of DacA upon binding

[17]. To investigate this further, c-di-AMP production by the S. aureusDacACD enzyme was

assessed in the absence or presence of GlmM. DacACD was incubated alone or mixed at a 1:2

molar ratio with GlmM, and conversion of ATP to c-di-AMP assessed after 4 h incubation at

37˚C. No ATP conversion was observed in the presence of GlmM (Fig 5A). In a second experi-

ment, a 2-fold molar excess of GlmM was added to a DacACD reaction, 30 min after initiating

the reaction, and the sample subsequently incubated for a further 150 min (180 min total reac-

tion time). As controls, 30 and 180 min DacACD enzyme reactions were also set up in the

absence of GlmM. When GlmM was added 30 min following the initiation of the DacACD

enzymatic cycle, the production of c-di-AMP was arrested (Fig 5B). Taken together, these data

show that GlmM can effectively block the activity of the DacACD cyclase domain in vitro with-

out the need for any additional cofactors.

Fig 5. S. aureus GlmM negatively impacts the activity of DacACD in vitro and in vivo. (A) DacACD enzyme activity in the presence of GlmM.

Enzyme assays were set up as described in Fig 3 in the absence or presence of 10 μM GlmM added at the start of the reactions and reactions

stopped after 4 h incubation. (B) Enzyme assays were set up with 5 μM DacACD and 10 μM GlmM added after 30 min incubation and the

reactions incubated for further 150 min (180 min total). As a control, DacACD enzyme reactions were also set up in the absence of GlmM and

incubated for 30 or 180 min. The average values of % ATP to c-di-AMP conversion and standard deviations from three independent

experiments are plotted. (C) ELISA determination of c-di-AMP levels in E. coli. Cell extracts were prepared from E. coli strains containing the

empty pBAD33 vector or producing DacA, DacA/YbbR, DacA/YbbR/GlmM or DacA/GlmM. The cellular c-di-AMP levels were determined by

ELISA and the average values (μM c-di-AMP per ml E. coli culture with an A600 of 10) and standard deviations of three independent

experiments plotted.

https://doi.org/10.1371/journal.ppat.1007537.g005
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To investigate this further and confirm that GlmM can also inhibit the activity of the full-

length membrane-anchored DacA enzyme, full-length DacA was expressed in E. coli either

alone, in the presence of YbbR or GlmM or in the presence of both, GlmM and YbbR, and c-

di-AMP production assessed by ELISA. To this end, dacA, dacA-ybbR or the complete dacA-
ybbR-glmM operon was cloned into plasmid pBAD33, allowing for arabinose inducible DacA,

DacA/YbbR or DacA/YbbR/GlmM expression. For expression of DacA and GlmM only, the

YbbR start codon was mutated and the dacA-no-ybbR-glmM operon inserted into plasmid

pBAD33. Next, DacA and YbbR production from the different constructs was confirmed by

western blot using protein-specific antibodies and GlmM production was assessed by visualiz-

ing proteins by Coomassie staining. With the exception of the empty vector control strain,

similar DacA amounts were produced in all strains regardless whether or not YbbR, GlmM or

YbbR and GlmM were co-expressed with the cyclase (S5 Fig). A clearly visible Coomassie

stainable band of the expected size for GlmM was observed for the two strains overproducing

GlmM (S5 Fig). YbbR production was also observed in the E. coli strain containing plasmids

pBAD33-dacA-ybbR or pBAD33-dacA-ybbR-glmM. Mutating the YbbR start codon drastically

reduced the production of YbbR but did not completely abolish its production, indicating that

a second internal start codon might be utilized (S5 Fig). Next, the c-di-AMP production was

assessed in the different strains. As expected, no c-di-AMP could be detected in E. coli contain-

ing the empty vector (Fig 5C). High amounts of c-di-AMP were detected upon DacA expres-

sion or expression of DacA/YbbR. On the other hand, c-di-AMP levels were drastically

reduced upon co-expression of GlmM, which is consistent with the data reported by Zhu et al.
[17] (Fig 5C). Taken together, these data show that GlmM is a negative regulator of the S.

aureus c-di-AMP cyclase DacA both in vivo and in vitro. Of note, when GlmM activity was

assessed in vitro in the presence of DacACD using a previously reported coupled enzyme assay

[40], no significant enzyme inhibition was observed. The specific activity of the pure GlmM

enzyme was estimated at 15.9 ± 3.1 μmol/min/mg of protein in the assay conditions used.

Addition of DacA in a 5- to 50-fold excess over GlmM did not at all inhibit the phosphogluco-

samine mutase activity and its presence in 400-fold excess only led to a slight 15% reduction of

GlmM activity. Taken together, these data indicate that only GlmM can impact the activity of

the c-di-AMP cyclase enzyme but likely not vice versa.

GlmM of Gram-negative bacteria do not regulate or interact with the S.

aureus DacA protein

Next, we tested if GlmM proteins from unrelated Gram-negative bacteria can also interact and

influence the activity of the S. aureusDacA protein. To this end, we overexpressed the S.

aureusDacA protein from pBAD33-dacA along with C-terminally His-tagged versions of the

E. coli (EC), Pseudomonas aeruginosa (PA) and as control S. aureus (SA) GlmM proteins in E.

coli and measured c-di-AMP levels by ELISA (Fig 6). As expected, expression of the S. aureus
GlmM-His protein (SA) blocked c-di-AMP production, while c-di-AMP levels were not

reduced upon expression of the E. coli or P. aeruginosaGlmM proteins (Fig 6B). However,

when we analyzed the GlmM protein levels by western-blot following induction with 1 mM

IPTG, we noted that the S. aureus proteins was expressed at significant higher levels as com-

pared to the other two GlmM proteins (Fig 6A). Therefore, we repeated the experiment using

10 mM IPTG for the induction of the E. coli and P. aeruginosaGlmM proteins but no (0 mM)

or very low levels (0.001 or 0.0001 mM) of IPTG for the induction of the S. aureus GlmM pro-

tein. In this case, similar GlmM amounts were observed for all strains (Fig 6C). Again, only

expression of the S. aureus GlmM protein (be it to a lesser extent) but not expression of the

GlmM proteins from the Gram-negative bacteria led to a reduction in the cellular c-di-AMP
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levels (Fig 6D). Next, we investigated the interaction of the S. aureusDacA and P. aeruginosa
GlmM proteins in vitro. The expression of the S. aureusHis-DacACD and P. aeruginosa
GlmM-His proteins were induced in E. coli, the cells lysed and the individual proteins purified

by Ni-affinity followed by size exclusion chromatography. In addition, the lysates from the S.

aureusHis-DacACD and P. aeruginosaGlmM-His overexpressing strains were mixed before

affinity and size exclusion chromatography. In contrast to the observation with the S. aureus
GlmM protein (Fig 4A), the P. aeruginosa GlmM-His protein did not coelute with the S.

aureusHis-DacACD (Fig 6E). Taken together, these data highlight a specificity in the interac-

tion between the S. aureusDacA and GlmM proteins, as no interaction was detected between

the S. aureusDacA protein and the GlmM proteins from the Gram-negative bacteria E. coli
and P. aeruginosa.

Fig 6. GlmM proteins from E. coli or P. aeruginosa do not interact or impact the activity of the S. aureus DacA enzyme. (A and C)

Detection of DacA and GlmM-His by western blot. Protein samples were prepared from E. coli XL1-Blue pBAD33-dacA containing either an

empty pTrcHis60 vector (-) or a plasmid for expression of the S. aureusGlmM-His (SA), the P. aeruginosaGlmM-His (PA) or the E. coli
GlmM-His (EC). DacA or the GlmM-His proteins were detected by western-blot using an anti-DacA or anti-His antibody as indicated below

the respective panel. DacA protein expression was induced with 0.2% arabinose and GlmM protein expression with 1 mM IPTG in (A) or with

the amount of IPTG as indicated in (C). (B and D). ELISA determination of c-di-AMP levels in E. coli. Cell extracts were prepared from the E.

coli strains used in panels A and C. The cellular c-di-AMP levels in μM per ml E. coli culture with an A600 of 10 were determined by ELISA and

the average values and standard deviations of three independent experiments plotted. (E) Coomassie stained gels. Aliquots from the size

exclusion fractions of the complex (top), the P. aeruginosaGlmMPA-His (middle) or the S. aureusHis-DacASA (bottom) were separated on 12%

PAA gels and proteins visualized by Coomassie staining. The experiment was performed twice, and a representative result is shown. GlmM and

DacA proteins are indicated with an asterisk and a square, respectively in panels A, C and E.

https://doi.org/10.1371/journal.ppat.1007537.g006
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S. aureus GlmM protein structure and small-angle X-ray scattering analysis

of the DacACD/GlmM complex

In order to gain structural information on the S. aureusDacACD/GlmM complex, we first set

out to determine the structure of the S. aureus GlmM protein in isolation. To this end, the C-

terminal His-tagged S. aureus GlmM protein was purified, the His-tag was removed, and the

purified protein crystallized in the presence of Mg2+ and glucosamine-6-P. The structure of

GlmM was obtained by molecular replacement using the GlmM protein structure from Bacil-
lus anthracis (PDB 3PDK) as a search model [41] (Fig 7 and S1 Table). While the protein was

crystallized in the presence of metal ion and substrate, no corresponding extra electron density

was observed. The S. aureusGlmM protein and the B. anthracis protein, which share 67%

identity on a protein level, displayed a similar fold and dimeric arrangement and the structures

overlapped with an RMSD of 0.996 Å. One GlmM monomer consisted of four α-β domains

with the fourth most C-terminal domain linked by a flexible loop (Fig 7). Next, we attempted

to crystallize and solve the structure of the S. aureusDacACD/GlmM complex. While crystals

were obtained under several conditions, poor diffraction prevented the structural determina-

tion of the complex. In order to gain structural information of the DacA/GlmM complex, the

single proteins and complex were subjected to small-angle X-ray scattering (SAXS) analysis

(Fig 8, S6 and S7 Figs and S3 Table). The reconstructed model for the GlmM sample showed

an elongated particle, consistent with the dimeric arrangement found in the crystal structure

(Fig 8B) and with previously published findings [42]. In the case of DacA, the model was most

consistent with the particle being a DacACD dimer, however an extra density was observed to

one extremity (Fig 8A), which we speculate is due to the presence of extra N-terminal amino

acids, not visible in the X-ray structure, and hence appear as a flexible and unstructured region

of the protein. The reconstructed envelope of the complex displays a bigger particle size as

compared to GlmM dimer alone, consistent with a DacACD dimer interacting with a GlmM

dimer (Fig 8C). A sequential fitting of the GlmM dimer structure followed by the fitting of the

DacA dimer structure into the SAXS envelope of the complex with Chimera [43] yielded the

best fit for a model with a correlation score of 0.9196 in which a DacA dimer is positioned on

top of a GlmM dimer (Fig 8C). In this model, the active sites of DacA protomers are occluded

through binding to the GlmM protein (Fig 8D), while the GlmM active sites are still accessible.

To validate the SAXS analysis, the reconstructed envelopes were used to calculate theoretical

Collision Cross Section (CCS) values using the program EM\IM [44]. These theoretical values

were subsequently compared to those experimentally determined by Ion-Mobility Mass Spec-

trometry. The theoretical values agree with the CCS determination (S4 Table), showing that

Fig 7. S. aureus GlmM structure. Structure of the S. aureusGlmM protein shown in ribbon representation. The protein was crystallized in the

presence of GlcN-6P and MgCl2 but no densities for the metal ion or substrate were present in the structure. The structure was solved by

molecular replacement using the B. anthracisGlmM protein (PDB 3PDK) as template. The protein crystallized as dimer and the two different

monomers are shown in orange and purple. The dimer is shown in two views with the second view rotated by 90˚.

https://doi.org/10.1371/journal.ppat.1007537.g007
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the structural models of DacA, GlmM and their complex obtained by SAXS correspond to the

shapes of the proteins in solution. Taken together, our model provides an explanation as to

how the interaction of DacA with GlmM inhibits c-di-AMP production without affecting the

activity of the GlmM enzyme.

Discussion

In this study, we have determined the structures of the S. aureus enzymes DacA and GlmM

and provide structural and functional information on the complex formed between these two

enzymes. Previously, these enzymes have been shown to interact, and using the information

Fig 8. Small Angle X-ray Scattering (SAXS) data for S. aureus proteins DacACD, GlmM and the DacACD/GlmM complex. Reconstructed

envelopes of the purified DacACD (A), GlmM (B) and DacACD/GlmM complex (C). DacACD (12 mg/ml), GlmM (8 mg/ml) and the DacACD/

GlmM complex (12 mg/ml) were injected onto a Superdex 200 5/150 column coupled to a Small-Angle X-Ray beam. All data were analyzed and

envelopes reconstructed using ScÅtter. Conversion of envelopes to maps and subsequent structure fitting were performed using Chimera. (D)

Zoomed in views of the DacACD active sites in the DacACD/GlmM SAXS model. Catalytic residues on both DacACD protomers are shown in

stick representations. The interaction of GlmM with DacACD covers the active sites, thus preventing DacACD dimers from interacting and

forming catalytically active species.

https://doi.org/10.1371/journal.ppat.1007537.g008
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obtained here, we can now propose a speculative molecular mechanism for the regulation of

the cyclase activity of DacA by GlmM. Specifically, our data suggest that GlmM blocks access

to the active site of DacA and in this manner prevents the formation of catalytically active

head-to-head DacA oligomers.

c-di-AMP production is essential for the growth of S. aureus under standard laboratory

conditions [20, 45] and the only enzyme in this bacterium that produces c-di-AMP is DacA.

The S. aureusDacACD catalytic domain investigated as part of this study has, as expected, a

very similar overall fold to the enzymatic domain of the L.monocytogenes CdaA cyclase [35].

However, there were also notable and interesting differences. As expected, the side chains of

amino acids D176 and G177 in the HDG motif and T207 before the RHR motif in the S. aureus
DacACD enzyme made contacts with the ribose and the phosphate backbone of ApCpp,

respectively (Fig 1). However, in addition to these residues, we also observe an additional π-

stacking interaction between residue Y192 and the adenine base (Fig 1) in the DacACD-ApCpp

structure. This residue is located in a loop region between ß4 and α4. A structure-based align-

ment using STRAP [46] showed that this residue is not conserved in T.maritima and B. subti-
lisDisA proteins, or in B. cereus CdaS, but present in L.monocytogenes CdaA (S8 Fig). This

indicates that this residue could potentially play an important role in fine-tuning c-di-AMP

production in S. aureus and other DacA/CdaA-containing bacteria by affecting the binding of

the nucleotide substrate.

Similar to other c-di-AMP cyclases, which require a metal ion as cofactor (usually Mg2+,

Mn2+ and/or Co2+) [23, 35, 47], we found that S. aureusDacACD has the highest in vitro
enzyme activity in the presence of Mn2+, followed by Mg2+ and was least active in the presence

of Co2+ (Fig 3). This is very similar to what has been described for theMycobacterium tubercu-
losis c-di-AMP cyclase Rv3586 (a DisA family enzyme), but differs from what has been

reported for the L.monocytogenes CdaA enzyme, which was most active in the presence of Co2

+, whereas Mg2+ did not support enzyme catalysis [35, 47]. In addition to ATP, for some c-di-

AMP cyclases it has been shown that ADP can also be used as substrate [47]. Interestingly,

when theM. tuberculosis c-di-AMP cyclase Rv3586 was provided with ADP as substrate, the

highest activity was seen in the presence of Mg2+, rather than Mn2+ [47]. While the actual

metal preference and requirement for the activity of c-di-AMP cyclases in vivo is not known, it

is conceivable that metal ion availability as well as substrate availability (ATP versus ADP)

might be an important factor in adjusting c-di-AMP levels in the cell.

c-di-AMP cyclase enzymes form higher-order oligomeric complexes in solution. The CdaS-

and DisA-type enzymes form hexamers and octamers, respectively [23, 33, 34], whereas the

catalytic domain of the L.monocytogenes cyclase CdaA was reported to be a dimer in solution

[35]. Indeed, for the c-di-AMP condensation reaction to take place, the enzyme requires two

catalytic sites in a symmetric head-to-head conformation. Here, we show that the S. aureus
DacACD protein is a dimer (S2 Fig and Fig 8). However, based on the data presented in this

study, we suggest that this dimer is not the active unit per se, as the protomers are not found in

a head-to-head conformation (Fig 1). We propose that multiple dimers need to form higher

oligomers (e.g. tetramers) in order to produce c-di-AMP (Figs 3 and 9). Therefore, by regulat-

ing the ability of DacACD to form higher oligomers its activity can be regulated and as dis-

cussed below, we proposed that this is the mechanism by which GlmM inhibits the activity of

DacA.

The same inactive (non-head-to-head) dimer conformation as observed in our DacACD

structure has also been observed in the hexamer model of the CdaS di-adenylate cyclase from

Bacillus spp. (PDB 2FB5) [33] (S9 Fig). Mehne et al. proposed that the hexamerization of CdaS

is driven by two sets of interactions: the interactions between the two N-terminal helices (YojJ

domain) and the interactions between residues found at the dimer interface between two DAC
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domains. The latter interactions are similar the ones we observed in the S. aureusDacACD

dimer (Fig 1 and S9 Fig) [33]. After deletion of the N-terminal helices, the B. subtilis CdaS

enzyme formed dimers in solution and this truncated protein had high catalytic activity [33].

However, it was not further investigated if the CdaS dimers were the active unit or if they still

needed to undergo higher oligomerization to be catalytically active, similar to what we

observed for the S. aureusDacACD enzyme. While for the DisA-type enzyme it seems clear

that the enzymatically active form is an octamer [23], additional studies are needed to deter-

mine in which oligomeric state CdaS- and CdaA/DacA-type c-di-AMP cyclases function in
vivo.

The membrane-anchored DacA/CdaA-type c-di-AMP cyclase enzyme is encoded in a con-

served three or four gene operon together with the predicted cyclase regulator YbbR (CdaR)

and the phosphoglucosamine mutase enzyme GlmM producing the essential peptidoglycan

synthesis intermediate glucosamine-1-P [24, 48]. Indeed, for S. aureus it has been shown that

all three genes are co-expressed from an upstream promoter [49]. However, a second internal

promoter is present in front of glmM suggesting that S. aureus produces higher GlmM protein

levels as compared to DacA and YbbR [49]. It is thought that both GlmM and YbbR can regu-

late the activity of the cyclase DacA/CdaA [17, 18]; however, for S. aureus we could not find

conclusive evidence for a regulatory function of YbbR in this nor in a previous study (Fig 5)

[12]. Recently, the first experimental evidence that the c-di-AMP cyclase DacA (CdaA), GlmM

and YbbR (CdaR) form a three-protein complex was obtained in B. subtilis and L. lactis [17,

18]. The data presented here provide the first structural insight into this regulatory complex

and further mechanistic information. Consistent with the in vivo work in L. lactis [17], we

show that the S. aureusGlmM protein (but not the E. coli or P. aeruginosaGlmM proteins) is a

strong negative regulator of the S. aureus cyclase DacACD (Fig 5). Since we performed this

work in vitro with purified proteins, it shows that no additional components are required for

this inhibitory function.

Our SAXS envelope data are most consistent with the formation of a complex in which a

DacACD dimer sits on top of the GlmM dimer, forming a dimer of dimers (Fig 8). The resolu-

tion of our SAXS reconstruction is too low to infer specific amino acid interactions between

DacACD and GlmM or to assess any conformational changes of DacACD upon GlmM binding.

Fig 9. Proposed model of DacA inhibition by GlmM. (Left) For active c-di-AMP synthesis, two (or more) DacA dimers interact forming

catalytically active head-to-head oligomers. (Right) When GlmM binds to a DacA dimer, we speculate that this will prevent DacA from forming

higher oligomers thereby turning off c-di-AMP production. GlmM dimer is colored in purple and a DacA dimer is colored in cyan (chain A)

and brown (chain B). Bound ATP is colored in yellow. DacA transmembrane helices are modeled on the membrane plane and connected to the

N-terminal helices of the DacACD domain by dashed lines.

https://doi.org/10.1371/journal.ppat.1007537.g009
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However, the data are of sufficient quality to construct models of the of DacACD-GlmM com-

plex. In our model, the DacACD active sites in both protomers are capped by the α5 helix of

GlmM and neighbouring residues (Fig 8D). Hence the interaction of the GlmM dimer with

the DacACD dimer will prevent DacACD from forming higher oligomers required for activity.

In addition, the interaction of GlmM with DacACD could potentially block the binding of sub-

strate to DacACD. Interestingly, positioned next to the α5 helix in GlmM is residue F155,

which in a previous study was shown to modulate the GlmM-CdaA interaction in L. lactis
[17]. Our SAXS-based model provides now a molecular rational as to why a residue in this

position could modulate complex formation and hence cyclase activity.

Within bacterial cells, the GlmM/DacA complex will likely be dynamic and in this manner

allowing for c-di-AMP levels to be adjusted based on to environmental signals. It is conceiv-

able that depending on the cellular levels of the substrate or product for GlmM (glucosamine-

6-P and glucosamine-1-P, respectively), the ability of GlmM to interact with DacA changes

and that in this manner c-di-AMP production is synchronized with the production of peptido-

glycan precursors. GlmM functions in a pathway together with GlmS, which produces the

GlmM substrate glucosamine-6-P and converts as part of this reaction glutamine to glutamate,

and GlmU, which acts after GlmM and produces UDP-N-acetylglucosamine. It is also possible

that the GlmM/DacA interaction could be affected by the activity of GlmS and GlmU and

availability of their substrates. This possibility is intriguing, as previous studies have revealed

an impact of cellular glutamine, glutamate and UDP-N-acetylglucosamine levels on the cellular

c-di-AMP levels [17, 18, 50].

Taken together, our results provide the first structural characterization of the DacA/GlmM

complex providing mechanistic insight into how c-di-AMP production is controlled directly

at the synthesis level through the binding of GlmM to DacA. Additional work is needed to bet-

ter understand the dynamics of this complex, in particular in the context of the bacterial mem-

brane and how this regulatory complex can be modulated by cellular or external stimuli.

Materials and methods

Bacterial strains and plasmid construction

All strains used in this study are listed in S5 Table and primers used for plasmid construction

are listed in S6 Table. E. coli strains were grown in Lysogenic broth (LB) supplemented when

appropriate with the antibiotics indicated in S5 Table. Protein expression was induced with 0.5

mM IPTG unless specified otherwise in the text or 0.2% arabinose. Plasmids for the expression

of the S. aureusDacA and GlmM proteins were constructed as follows: The DNA fragments

coding for the S. aureusDacA catalytic domain starting from amino acid residue F101

(referred to as DacACD domain) and GlmM were amplified by a PCR using LAC� genomic

DNA as template and primer pairs ANG1135/ANG1137 (for DacACD) or ANG2342/

ANG2343 (for GlmM). The primers for cloning glmM contained DNA sequences for append-

ing a C-terminal 6-His tag proceeded by a thrombin cleavage site. The PCR products were

digested with NheI/EcoRI (for DacACD) or NcoI/XhoI (for GlmM-His) and then ligated with

plasmid pET28b, which has been digested with the same enzymes. The resulting plasmids

pET28b-His-dacACD and pET28b-glmM-His were initially recovered in E. coli XL1-Blue yield-

ing strains ANG1858 and ANG3994 and subsequently introduced into E. coli BL21 (DE3)

yielding the protein overexpression strains ANG1865 and ANG3997, respectively. Plasmids

pET28b-His-dacACD-K and pET28b-His-dacACD-C for the expression of the DacACD variants

with amino acid residues N166 and T172 replaced by lysines (DacACD-K variant) or cysteines

(DacACD-C variant) were constructed by Splicing Overhang Extensions (SOE) PCR. Primer

pairs ANG1135/ANG2616 and ANG2617/ANG1137 (DacACD-K variant) or ANG1135/

Analysis of the S. aureus DacA/GlmM complex

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007537 January 22, 2019 16 / 28

https://doi.org/10.1371/journal.ppat.1007537


ANG2618 and ANG2619/ANG1137 (DacACD-C variant) were used for the first PCR. Next,

the respective PCR products were fused in a second PCR using primer ANG1135 and

ANG1137. The resulting products were digested with NheI/EcoRI and ligated with pET28b

that had been cut with the same enzymes. The resulting plasmids pET28b-His-dacACD-K and

pET28b-His-dacACD-C were initially recovered in E. coli XL1-Blue giving strains ANG4319

and ANG4321 and subsequently introduced in E. coli BL21 (DE3) yielding strains ANG4320

and ANG4322. For construction of plasmids pBAD33-dacA, pBAD33-dacA-ybbR and

pBAD33-dacA-ybbR-glmM the dacA, dacA-ybbR and dacA-ybbR-glmM regions were amplified

by PCR from S. aureus LAC� chromosomal DNA using primer pairs ANG928/ANG2475,

ANG928/ANG2476 and ANG928/ANG2477, respectively. The PCR products were cut with

KpnI and HindIII and ligated with plasmid pBAD33, which had been cut with the same

enzymes. The resulting plasmids pBAD33-dacA, pBAD33-dacA-ybbR and pBAD33-dacA-
ybbR-glmM were recovered in E. coli XL1-Blue yielding strains ANG4120, ANG4121 and

ANG4122. For construction of plasmid pBAD33-dacA-no-ybbR-glmM (strain ANG4263), the

YbbR start codon was mutated by SOE PCR. To this end, the front and back parts of the dacA-
no-ybbR-glmM insert were amplified using plasmid pBAD33-dacA-ybbR-glmM as template

and primer pairs ANG1244/ANG2597 and ANG2598/ANG1245, respectively. The PCR frag-

ments were fusing in a second PCR using primer pair ANG1244/ANG1245. The resulting

product was digested with KpnI and HindIII and cloned into plasmid pBAD33 cut with the

same enzymes. The sequences of inserts were verified by fluorescent automated sequencing at

GATC Biotech. For the overexpression of the S. aureusDacA enzyme and His-tagged GlmM

proteins from different bacteria, the empty control plasmid pTrcHis60, as well as plasmids

pMLJ4 (GlmM-His E. coli), pMLJ11 (GlmM-His S. aureus) or pMLD137 (GlmM-His P. aeru-
ginosa) were introduced into E. coli strain XL1-Blue pBAD33-dacA, yielding strains ANG5174,

ANG5175, ANG5177 and ANG5178, respectively.

Protein expression, purification, and histidine-tag cleavage

One to two litre cultures of E. coli strains BL21 (DE3) containing plasmids pET28b-His-

dacACD (ANG1865), pET28b-His-dacACD-K (ANG4320), pET28b-His-dacACD-C (ANG4322)

or pET28b-glmM-His (ANG3997) were grown in LB medium supplemented with kanamycin

(30 μg/ml) at 37˚C with agitation. Once the cultures reached an A600 of approximately 0.5–0.6,

protein expression was induced with 0.5 mM IPTG and the cultures were subsequently incu-

bated for a further 3 hours at 37˚C. Cells were harvested by centrifugation, suspended in 20 ml

of 50 mM Tris pH 7.5, 500 mM NaCl buffer and lysed by passing the cell suspensions twice

through a French press cell at 1100 psi. For the purification of the His-DacACD/GlmM-His

complex, the appropriate cell lysates were mixed after lysis and incubated on ice for 10 min-

utes. Next, the lysates were clarified by centrifugation at 20,000 × g for 40 min and then loaded

by gravity flow onto columns containing 4 ml Ni-NTA resin (Qiagen) equilibrated prior to use

with 50 mM Tris pH 7.5, 500 mM NaCl buffer. The columns were washed with 30 ml of 50

mM Tris pH 7.5, 500 mM NaCl, then 30 ml of 50 mM Tris pH 7.5, 500 mM NaCl, 50 mM

imidazole buffer and the proteins eluted in 5 × 1 ml fractions with 50 mM Tris pH 7.5, 200

mM NaCl, 500 mM imidazole buffer. Elution fractions containing the purified protein or pro-

tein complex were pooled and then loaded onto a Superdex 200 10/60 Hiload column (GE

Healthcare), equilibrated with 30 mM Tris pH 7.5, 150 mM NaCl buffer. When the GlmM-His

protein was purified alone, DTT was added to the purified protein at a final concentration of 1

mM after the size-exclusion chromatography step to maintain the protein in a soluble state. To

cleave the His-tag from proteins, 20 U thrombin (Sigma) was added per 10 mg protein after

the Ni-NTA column purification step and the mixture was incubated overnight at 4˚C with
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agitation. The tag-less proteins were subsequently purified by size exclusion chromatography

as described above. The purified proteins or complex were concentrated using 10 kDa cutoff

Amicon centricons (Millipore). Protein concentration was measured either by determining

the absorbance at 280 nm or by the Bradford method. For the investigation of the interaction

between the S. aureusHis-DacACD enzyme and the P. aurugniosa GlmM-His, one litre cul-

tures of E. coli strain BL21 (DE3) containing plasmid pET28b-His-dacACD (ANG1865) was

grown in LB medium supplemented with kanamycin (30 μg/ml) at 37˚C with agitation. Once

the culture reached an A600 of 0.5, protein expression was induced with 0.5 mM IPTG and the

culture was subsequently incubated O/N at 16˚C. Strain XL1-Blue pMLD137 (GlmM-His P.

aeruginosa) was grown to an A600 of 0.5 and protein expression was induced with 0.5 mM

IPTG and the culture subsequently incubated for an additional 4 hours at 37˚C. Cells were har-

vested by centrifugation, suspended in 20 ml of 50 mM Tris pH 7.5, 500 mM NaCl buffer sup-

plemented with 0.1% v/v ß-mercaptoethanol and complete EDTA free protease inhibitor

(Roche) and lysed by sonication for 2 min at 15 sec on and 30 sec off intervals at 60% ampli-

tude. The proteins and complex were purified by nickel affinity chromatography as described

above but using only 2 ml of Ni-NTA resin and eluting the proteins in 2.5 ml of 50 mM Tris

pH 7.5, 200 mM NaCl, 500 mM imidazole buffer supplemented with 0.1% v/v ß-mercap-

toethanol. Next, 500 μl of the eluate was separate on a Superdex 200 10/300GL column (GE

Healthcare) using 30 mM Tris pH 7.5, 150 mM NaCl as running buffer. 0.5 ml fractions were

collected, and aliquots of the indicated elution fractions separated on 12% PAA gels and pro-

teins visualized by Coomassie staining.

SEC-MALS and native mass spectrometry analysis of the DacACD/GlmM

protein complex

100 μl of the purified, tag-less DacACD/GlmM protein complex at 18 mg/ml was loaded onto a

Superdex 200 Increase 10/300 column (GE Healthcare) pre-equilibrated with 30 mM Tris pH

7.5, 150 mM NaCl buffer and run at 0.5 ml/min in the same buffer. The column was coupled

to a MALS detector and refractometer and the UV absorbance, laser scattering and refractive

index change were monitored throughout the run. The data were analysed using the ASTRA

6.0 software and fitted according to the Zimm model for static light scattering. The experiment

was performed in duplicate and a representative graph is shown. Prior to the native mass spec-

trometry experiment, the tag-less DacACD/GlmM was loaded onto a Superdex200 10/300 col-

umn (GE Healthcare) pre-equilibrated with 200 mM ammonium acetate pH 7.5. Samples were

further buffer exchanged with Amicon Ultra centrifugal filtration units (Merck Millipore)

using 200 mM Ammonium Acetate (Fisher Scientific). Samples were diluted to 13.5 μM. The

samples were directly introduced into a first generation Waters Synapt QToF (Waters Corpo-

ration, UK) using nanoelectrospray gold-coated borosilicate glass capillaries prepared in-house
[51]. Mass calibration was performed using 30 mg/mL Caesium Iodide (Fluka) solution.

Machine parameters used were: capillary 1.4 kV, sampling cone 40 V, extraction cone 4 V,

backing pressure 6.20 mbar, trap CE 15 eV, transfer CE 13 eV, bias 16 V, source wave velocity

300 ms-1, source wave height 0.2 V, trap wave velocity 300 ms-1, trap wave height 0.2 V, IMS

wave velocity 260 ms-1, IMS wave height 8.0 V, transfer wave velocity 260 ms-1, transfer wave

height 8.0 V. For collision cross section calculation calibrants were sprayed from 200mM

Ammonium Acetate solution. The calibrants used were Cytochrome C (Calbiochem), β-Lacto-

globulin (Sigma Aldrich), Bovine Serum Albumin (Sigma Aldrich), Concanavalin A (Sigma

Aldrich), Serum P Albumin (Calbiochem) and Pyruvate Kinase (Sigma Aldrich). The CCS cal-

ibration curve was produced using the method described by Thalassinos et al. [52], with a
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calculated R2 value of 0.9601. Spectra were analyzed using MassLynx v4.1 (Waters Corpora-

tion, UK) and the program Amphitrite [53].

Protein crystallization, structure solution and analysis

The tag-less, nucleotide-free DacACD protein and tag-less DacACD-C variant were crystallized

in 200 mM LiCl2, 100 mM Na-cacodylate pH 6.5, 30% PEG400, using a protein concentration

of 7.5 mg/ml. To obtain the ApCpp-bound DacACD complex structure, the tag-less DacACD

protein at a concentration of 7.5 mg/ml was incubated for 30 min on ice with 2 mM ApCpp

(Jena Bioscience) and 2 mM MnCl2 and the protein subsequently crystallized in 10 mM MgCl2,

50 mM MES pH 5.8, 0.2M KCl and 3% PEG8000 buffer. The tag-less GlmM protein was crystal-

lized in the presence of 2 mM MgCl2 and 2 mM GlcN-6P (Sigma) in 2.0 M sodium malonate

buffer. All proteins were crystallized by the vapour diffusion method. DacACD, DacACD-C and

GlmM crystals were frozen in liquid nitrogen without the addition of further cryo-protectants

and datasets collected at the I03 Beamline at the Diamond Light Source (Harwell Campus, Did-

cot, UK). Data integration was performed with DIALS [54], the reflections were scaled and

merged with Aimless [55] and intensities were converted to structure factors using Ctruncate

[56]. Analysis of the Matthews coefficient revealed that two protein molecules were present in

the asymmetric unit for all proteins. The structures were solved by the molecular replacement

method with Phaser [57] using the L.monocytogenes CdaA protein (PDB 4RV7) as a template

for DacACD or the B. anthracisGlmM protein (PDB 3PDK) as a template for the S. aureus
GlmM protein. Structure refinement was performed with Phenix [58] and model building with

Coot [59]. Structure figures were created with Pymol and Chimera [43, 60].

Affinity pull-down experiments

For the pull-down experiment, 50 μM tag-less DacACD and 50 μM GlmM-His protein were

mixed in 30 mM Tris pH 7.5, 150 mM NaCl buffer and incubated on ice for 10 min. Next, the

protein mixture was applied by gravity flow to a column containing 1 ml of Ni-NTA equili-

brated with 30 mM Tris pH 7.5, 150 mM NaCl buffer. As a control, 500 μl of a 50 μM tag-less

DacA protein solution in 30 mM Tris pH 7.5, 150 mM NaCl were also applied by gravity flow

onto a column. The flow-through fractions were collected for subsequent SDS-PAGE analysis.

The columns were then washed with 15 ml of 30 mM Tris pH 7.5, 150 mM NaCl, 10 mM imid-

azole buffer and the wash fraction collected and proteins finally eluted with 2 ml 30 mM Tris

pH 7.5, 150 mM NaCl, 500 mM imidazole buffer. Aliquots of the load, flow through, wash and

elution fractions were run on a 12% SDS-PAGE gel and proteins visualized by Coomassie

staining. The DacACD/GlmM-His pulldown experiment was performed in triplicate and a rep-

resentative result is shown; the control experiment using the DacACD protein alone was per-

formed once.

DacACD enzyme activity assay

To assess the metal dependency of the S. aureusDacACD enzyme, enzyme reactions were set

up as follows: 2 μl of 10X reaction buffer (400 mM Hepes pH 7, 1 M NaCl, 100 mM or 10 mM

of MgCl2, CoCl2 or MnCl2) was mixed on ice with 13.6 μl of water and 2 μl of 1 mM ATP.

Next, 2 μl of DacACD from a 50 μM stock solution and 0.4 μl of α-P32-labelled ATP (Perkin

Elmer—3.3 μM, 250 μCi) were then added to the sample yielding a final reaction volume of

20 μl. The reactions were incubated at 37˚C for 4 h. Reactions were stopped by heating for 5

min at 95˚C and the conversion of ATP to c-di-AMP assessed by spotting 1 μl of each reaction

onto a TLC plate (Millipore). The nucleotides were separated using a 3.52 M (NH4)2SO4 and

1.5 M KH2PO4 (mixed in a 1:1.5 v/v ratio) buffer system, the TLC plate were subsequently
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dried and the radioactive signal detected using a Typhoon FLA 700 imager. The bands corre-

sponding to radioactive ATP and c-di-AMP were quantified using the ImageQuant software

and the % ATP to c-di-AMP conversion calculated. As the highest enzyme activity was seen in

the presence of MnCl2, all subsequent enzyme reactions were set up in reaction buffer contain-

ing a final concentration of 10 mM MnCl2. For the time course experiment, 100-μl reactions

were set and 10-μl aliquots removed at the indicated time point and stopped by heating. The

activity of the DacACD-K and DacACD-C variants was assessed by setting up 20-μl reactions as

described above using a final protein concentration of 5 μM and incubating the reactions for 4

h at 37˚C. To analyze the ATP conversion of DacACD when bound to GlmM, 2 μl of GlmM

from a 100 μM stock solution was added to a standard enzyme reaction yielding a DacACD:

GlmM molar ratio of 1:2 and the reactions were incubated for 4 h at 37˚C. To evaluate the

impact of the addition of GlmM when added to an ongoing DacACD enzyme reaction, 2 μl of

GlmM from a 100 μM stock solution were added 30 min after initiating the reaction and the

reaction was incubation for a further 2 h. As control, DacACD reactions set up in the absence

of GlmM were stopped after 30 min and 3 h. The enzyme assays were performed in triplicate

and the average values and standard deviations plotted.

GlmM enzyme activity assay

The phosphoglucosamine mutase activity of GlmM was determined by using a coupled radio-

active assay in which the GlcN-1-P synthesized from GlcN-6-P by GlmM was quantitatively

converted to N-acetylglucosamine-1- phosphate (GlcNAc-1-P) in the presence of pure GlmU

enzyme [40]. The standard assay mixture (50 μl) contained 50 mM Tris/HCl (pH 8), 3 mM

MgCl2, 1 mM GlcN-6-P, 0.4 mM [14C]acetyl-CoA (1.9 GBq/mmol, 700 Bq), 0.7 mM glucose-

1,6-diphosphate, pure E. coli GlmU (30 ng) and S. aureus GlmM (10–50 ng) enzymes (appro-

priate dilutions in 20 mM phosphate buffer, pH 7.2, containing 0.5 mM MgCl2 and 0.1%

2-mercaptoethanol). When the DacA protein was also included in the assay, pure GlmM and

DacA proteins were first pre-incubated together with different ratios at 37˚C for 5 min before

addition to the reaction mixture at t = 0. Then, mixtures were incubated at 37˚C for 30 min

and the reactions were stopped by the addition of 10 μl of glacial acetic acid. The radioactive

substrate (acetyl-CoA) and product (GlcNAc-1-P) were separated by thin-layer chromatogra-

phy (TLC) on pre-coated silica gel 60F254 plates (Merck) using 1-propanol/ammonium

hydroxide/water (6:3:1, v/v) as the mobile phase (Rf factors of these compounds were 0.72 and

0.17, respectively). Radioactive spots were located and quantitated with a radioactivity scanner

(Rita Star, Raytest Isotopenmeβgeräte GmbH, Straubenhardt, Germany).

Assessment of protein stability by thermofluor analysis

To assess the protein stability, a thermofluor experiment was performed. Reactions were set up

as follows: 2 μl of either 10X enzyme reaction buffer (400 mM Hepes pH 7, 1 M NaCl, 100 mM

MnCl2) or 10X protein purification buffer (300 mM Tris pH 7.5, 1.5M NaCl) were added to

the appropriate wells of a 96-well qRT-PCR plate and mixed with 15 μl of H2O. Next, 2 μl of

100 μM DacACD, DacACD-C, DacACD-K (monomer) or DacACD-K (dimer) protein stock

solutions were added and finally 1 μl of 100X Sypro orange was added to yield a total reaction

volume of 20 μl and a final concentration of Sypro orange of 5X. The reactions for each protein

were set up in triplicate in a 96-well plate. An Applied Biosystems OneStepPlus real-time PCR

system was used for the thermal unfolding reactions and the temperature was increased every

30 s by 1˚C from 25˚C to 95˚C and the fluorescence intensities measured. The data were ana-

lyzed using the Applied Biosystems StepOne Plus software. Fluorescence readings of the tripli-

cate samples were averaged and normalized for each protein as previously described [61] using
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the following equation: (F-Fmin)/(Fmax-Fmin) where F is the fluorescence value at each tempera-

ture, Fmin is the average minimum fluorescence value detected for the each protein and Fmax

the average maximum value detected for the each protein.

Small-angle X-ray scattering

SAXS data for the tag-less DacACD and GlmM proteins as well as the DacACD/GlmM complex

were collected at the B21 beamline at the Diamond Light Source (Didcot, UK) using an Agilent

1200 HPLC system equipped with a Superdex 200 5/150 column (GE Healthcare). Prior to

data collection, the column was equilibrated with 30 mM Tris pH 7.5, 150 mM NaCl. 50 μl of

12.8 mg/ml DacACD, 10 mg/ml GlmM or 15 mg/ml DacACD/GlmM protein solutions were

loaded onto the size exclusion column and the data collected continuously during the sample

elution. All datasets were analyzed using ScÅtter (http://www.bioisis.net) using the scattering

frames corresponding to the elution peaks. Particle reconstruction was performed using

DAMMIF [62], averaging 13 models in slow mode. Mean NSD values obtained from DAM-

FILT were 0.723 for the DacACD/GlmM complex, 0.763 for GlmM and 0.738 for DacACD.

Quantification of c-di-AMP by ELISA

E. coli XL1-Blue strains containing plasmid pBAD33 and derivatives thereof allowing expres-

sion of the S. aureusDacA, YbbR and/or GlmM protein from an arabinose inducible promoter

were grown overnight at 37˚C in 5 ml LB + 0.2% glucose + 20 μg/ml chloramphenicol. The

next day, the cultures were diluted 1:200 into 20 ml fresh LB medium supplemented with

20 μg/ml of chloramphenicol and incubated for 2 h 45 min at 37˚C. Next, arabinose was added

to a final concentration of 0.2% and the cultures incubated for a further 3 h at 37˚C. The A600

was measured and cells equivalent to 10 ml at A600 of 1 were collected by centrifugation,

washed twice with phosphate buffered saline (PBS) pH 7.4 and frozen. For the co-expression

of the S. aureusDacA protein and the GlmM-His proteins from different bacteria, E. coli
XL1-Blue strains containing plasmid pBAD33-dacA and the empty vector pTrcHis60, or plas-

mids pMLJ4 (GlmM-His E. coli), pMLJ11 (GlmM-His S. aureus), or pMLD137 (GlmM-His P.

aeruginosa) were grown overnight at 37˚C in 5 ml LB + 0.2% glucose with 100 μg/ml ampicil-

lin and 20 μg/ml chloramphenicol. The next day, the cultures were diluted 1:200 into 20 ml

fresh LB medium supplemented with the appropriate antibiotics and incubated for 2 h 45 min

at 37˚C. Next, IPTG was added to a final concentration as indicated in the figure and legend

and the cultures were incubated for 15 min at 37˚C. Next, arabinose was added to a final con-

centration of 0.2% and the cultures incubated for a further 3 h at 37˚C. The A600 was measured

and cells equivalent to 10 ml of A600 of 1 were collected by centrifugation, the cells washed

twice with phosphate buffered saline (PBS) pH 7.4 and frozen. For the ELISA assay, the cell

pellets were thawed and suspended in 1 ml 50 mM Tris pH 8 buffer or 1 ml 50 mM Tris pH 8

buffer containing 1 mg/ml lysozyme. The cells were lysed by sonication for 2 to 3 min with 10

sec. on and 10 sec. off cycles at 40% amplitude and the samples were subsequently boiled for

10 min. The cell debris was removed by centrifugation at 20000 × g for 5 min and the soluble

fraction transferred to a fresh tube. A competitive ELISA for the quantification of the cellular

c-di-AMP levels was performed as previously described [12, 63]. Briefly, the ELISA was per-

formed as follows: the wells of a NUNC Maxisorb ELISA 96-well plate were coated with the

Streptococcus pneumoniae c-di-AMP binding protein CpaA by placing 100 μl of a 10 μg/ml

protein solution in 50 mM Na2CO3, 50 mM NaHCO3 pH 9.6 buffer into the appropriate wells

and the plate was subsequently incubated overnight at 4˚C. The coating solution was removed,

the wells washed 3 times with 200 μl PBS pH 7.4 containing 0.05% Tween 20 (PBST) and then

blocked with 150 μl of 5% BSA in PBS pH 7.4 solution and the plate was incubated at 18˚C for
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1 h. Next, the blocking solution was removed and each well was washed 3 times with 200 μl

PBST. Reference samples for the c-di-AMP concentration standard curve and the E. coli sam-

ples were prepared as follows: For the standard curve, c-di-AMP (Biolog) solutions in 50 mM

Tris pH 8 buffer were prepared ranging from 300 nM to 3.125 μM and mixed with an equal

volume of a 50 nM biotin-c-di-AMP solution. For the E. coli samples, appropriate dilutions of

the extracts were prepared in 50 mM Tris pH 8 and each sample mixed with an equal volume

of the 50 nM biotin c-di-AMP solution. Next, 100 μl of the standard solutions and E. coli sam-

ples were added in triplicate to the CpaA protein-coated ELISA plate. The plate was incubated

at 18˚C for 2 h and the wells were subsequently washed 3 times with 200 μl PBST buffer. Next,

100 μl of High Sensitivity Streptavidin solution (ThermoFisher Scientific) diluted 1:5,000 in

PBS was added to each well and the plate incubated at 18˚C for 1 hr. The wells were washed 3

times with 200 μl PBST buffer and finally 100 μl of the developing solution, which was made

up by dissolving a 10 mg o-phenylenediamine dihydrochloride tablet (OPD) (Merck) in 20 ml

citrate buffer pH 5 buffer supplemented with 20 μl 30% H2O2, was added to each well. The

plate was incubated at 18˚C in the dark for 30 min and the reaction stopped by the addition of

100 to 200 μl 2 M H2SO4 to each well. The absorbance was subsequently measured at 480 nm

and the readings for the c-di-AMP standards were used to generate a second order polynomial

calibration curve and the quadratic equation was used to determine the c-di-AMP concentra-

tions (in μM) per ml E. coli samples with A600 = 10. For each experiment, the average value of

the triplicate sample on the ELISA plate was determined. The experiment was performed three

times with independent E. coli samples and as a final result the average value and standard

deviations from all three experiments was plotted.

Detection of DacA and YbbR by western blot and GlmM by coomassie

staining

The E. coli cultures used for the detection of c-di-AMP by ELISA were also used for the detec-

tion of DacA and YbbR by western blot and GlmM by Coomassie staining or GlmM-His by

western blot with an His antibody. Following the 3 h induction step with 0.2% arabinose, bacte-

ria from 1-ml culture equivalent to an A600 of 1 were harvested and suspended in 100 μl 2× SDS

sample buffer. The samples were boiled for 10 min and centrifuged for 5 min at 13,000 × g.

Next, 10 μl of each sample was run on a 12% SDS-PAGE gel and to assess the overproduction of

GlmM, proteins were visualized by Coomassie staining. The DacA and YbbR proteins were

detected by western blot using protein-specific antibodies primary antibodies produced at Cova-

lab and previously used [12, 45] and the GlmM-His proteins using an HRP-conjugated His-tag

antibody (Sigma). To this end, the proteins were electro-transferred to PVDF membranes, the

membranes blocked with 5% (w/v) milk in Tris buffered saline containing 0.1% (v/v) Tween-20

(TBST). The membranes were subsequently incubated with DacA or YbbR-specific polyclonal

rabbit antibodies in 5% (w/v) milk in TBST buffer at a 1:5000 dilution. After washing the mem-

branes with TBST buffer, they were incubated with the secondary HRP-conjugated anti-rabbit

IgG antibody (Cell signaling Technology) used at a 1:10000 dilution. The HRP-linked His-tag

antibody was used at a 1:5,000 or 1:10,000 dilution. Next, the membranes were washed and the

blots developed using the Clarity Western ECL Blotting Substrate (Bio-Rad) and imaged using a

ChemiDoc Touch system (Bio-Rad). The experiment was performed on three independently

grown samples and a representative result is shown.

Accession numbers

Structure coordinates were deposited in the Protein Database, under PDB codes 6GYW

(nucleotide-free DacACD), 6GYX (ApCpp-bound DacACD), 6GYY (DacACD-C mutant),
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6GYZ (GlmM). SAXS models were deposited in the SASBDB database, under accession codes

SASDE78 (DacACD/GlmM complex), SASDE88 (GlmM) and SASDE98 (DacACD).

Supporting information

S1 Fig. Model of the DacACD oligomerization required for catalytic activity. (A) Symmetry-

related molecules found in the ApCpp-DacACD crystal lattice. Two DacACD dimers can be

found close to each other, with the two incoming protomers not blocked by steric hindrance

and free to be engaged in ATP condensation. ApCpp molecules are colored in yellow and

shown as stick representations. (B) Model of c-di-AMP production by two interacting DacACD

dimers. Two protomers can be engaged in a head-to-head transient dimer similar to that

found in the catalytic domain of DisA (green, PDB 4YXJ), thus allowing the condensation of

two ATP molecules.

(TIF)

S2 Fig. Size exclusion profiles of WT DacACD and DacACD variants. WT DacACD, DacACD-

C and DacACD-K proteins were purified over a Ni-NTA column, the His-tags removed by

thrombin cleavage and the proteins subsequently analyzed on a Superdex 200 10/300 size

exclusion column and UV profiles recorded at 280 nm. The WT DacACD UV profile is shown

in black, the DacACD-K profile in blue and the DacACD-C profile in red. The experiment was

performed in duplicate and a representative result is shown.

(TIF)

S3 Fig. Pull-down assay of GlmM-His and tag-less DacACD. Coomassie-stained gel with

fraction from an affinity pull-down experiment. Equimolar amounts of the GlmM-His and the

tag-less DacACD protein were mixed and purified over a Ni-NTA column. Aliquots of the

load, flow-through, wash and elution fractions were separated on 12% SDS-PAGE gel and

proteins visualized by Coomassie staining. The experiment was performed in triplicate and a

representative result is shown. As control, the tag-less DacACD protein was purified once over

a Ni-NTA column in the absence of GlmM-His and load, flow-through, wash and elution frac-

tions were analyzed on a 12% SDS-PAGE gel and proteins visualized by Coomassie staining.

(TIF)

S4 Fig. SEC-MALS analysis of the purified tag-less DacACD/GlmM complex. 100 μl of the

purified, tag-less DacACD/GlmM protein complex at 18 mg/ml were separated on a Superdex

200 Increase 10/300 column coupled to a MALS detector and refractometer. The UV absor-

bance, laser scattering and refractive index change were monitored. The data were analyzed

using the ASTRA 6.0 software and fitted according to the Zimm model for static light scatter-

ing. The experiment was performed twice and a representative result is shown.

(TIF)

S5 Fig. Expression of full-length DacA, YbbR and GlmM proteins in E. coli. E. coli strains

containing pBAD33-derived vectors were grown to mid-log phase and expression of dacA,

dacA-ybbR, dacA-ybbR-glmM or dacA-no-ybbR-glmM induced for 3 h by the addition of 0.2%

arabinose. Subsequently, samples were prepared and proteins separated on 12% PAA gels and

the DacA and YbbR proteins detected by western-blot and GlmM detected by Coomassie

staining. The experiment was performed three times and a representative western-blot or Coo-

massie-stained gel is shown.

(TIF)

S6 Fig. SAXS scattering curves and SEC-SAXS elution profiles of the purified, tag-less

DacACD/GlmM, GlmM and DacACD proteins. 50 μl of (A) DacACD, (B) GlmM or (C) the
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DacACD/GlmM complex were injected onto a Superdex 200 5/150 column coupled to the B21

Small-Angle X-Ray Beamline at Diamond Light Source (Didcot, UK). A full dataset of 620

scattering frames was collected and the data were analyzed with ScÅtter to calculate the scatter-

ing curves. (D) Radius of gyration (Rg) plots of DacACD, GlmM and the DacACD/GlmM com-

plex were produced using the program ScÅtter. Scattering frames were selected according to

homogeneity of the estimated Rg values.

(TIF)

S7 Fig. Guinier plots and FOXS fitting curves of DacACD, GlmM and the DacACD/GlmM

complex. Guinier plots (left) of (A) DacACD, (B) GlmM or (C) the DacACD/GlmM complex

were analyzed using the program ScÅtter to assess sample homogeneity during the SAXS

experiments. The structural models of DacACD, GlmM and the complex were then used to cal-

culate theoretical SAXS scattering curves using the program FOXS and subsequently com-

pared to the experimental SAXS scattering curves. Fitting profiles of the experimental and

theoretical curves are shown in the panels on the right.

(TIF)

S8 Fig. Structure-based alignment of the different DAC domains. A structure-based align-

ment of the DAC domains from the S. aureusDacACD (DacA_Sau) starting from residue Y110

and ending with residue G260 (using full-length DacA amino acid numbering), L.monocyto-
genes CdaACD (CdaA_Lmo), B. cereus CdaS (CdaS_Bce), T.maritimaDisA (DisA_Tma) was

generated in STRAP. Conserved DGA and RHR motifs are highlighted in red. The position of

the amino acid residue Y192 in the S. aureusDacA protein making an additional pi-stacking

contact with the ribose base of the substrate is highlighted in teal. DacACD residues making

contacts with the ApCpp ligand are highlighted with an asterisk.

(TIF)

S9 Fig. Overlay of a DacACD dimer with the CdaS hexamer model. The CdaS hexamer

model was built from symmetry mates of the CdaS trimer structure (PDB 2FB5), as reported

in Mehne et al. [33]. The CdaS DAC domain is colored in green, while the two N-terminal

helices are colored in purple. DacACD protomers are colored in cyan and brown. Active site

residues are colored in black and red for CdaS and DacACD, respectively. DacACD and CdaS

DAC domain overlap with a r.m.s.d. of 0.58 Å.

(TIF)

S1 Table. Crystallographic data and refinement statistics.

(PDF)

S2 Table. Theoretical and experimental masses of DacACD and GlmM species.

(PDF)

S3 Table. SAXS data statistics.

(PDF)

S4 Table. Collision Cross Section (CCS) parameters.

(PDF)

S5 Table. Bacterial strains used in this study.

(PDF)

S6 Table. Primers used in this study.

(PDF)
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