
HAL Id: hal-02174845
https://hal.science/hal-02174845v2

Preprint submitted on 13 Sep 2019 (v2), last revised 13 Jan 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QuicK-means: Acceleration of K-means by learning a
fast transform

Luc Giffon, Valentin Emiya, Liva Ralaivola, Hachem Kadri

To cite this version:
Luc Giffon, Valentin Emiya, Liva Ralaivola, Hachem Kadri. QuicK-means: Acceleration of K-means
by learning a fast transform. 2019. �hal-02174845v2�

https://hal.science/hal-02174845v2
https://hal.archives-ouvertes.fr

QuicK-means: Acceleration of K-means by Learning a Fast Transform

Luc Giffon 1, Valentin Emiya 1, Liva Ralaivola 2, Hachem Kadri1

1 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
2 Criteo, France

Abstract

K-means – and the celebrated Lloyd’s algorithm – is more
than the clustering method it was originally designed to be.
It has indeed proven pivotal to help increase the speed of
many machine learning and data analysis techniques such as
indexing, nearest-neighbor search and prediction, data com-
pression; its beneficial use has been shown to carry over to
the acceleration of kernel machines (when using the Nyström
method). Here, we propose a fast extension of K-means,
dubbed QuicK-means, that rests on the idea of expressing
the matrix of the K cluster centers as a product of sparse
matrices, a feat made possible by recent results devoted to
find approximations of matrices as a product of sparse factors.
Using such a decomposition squashes the complexity of the
matrix-vector product between the factorized K ×D center
matrix U and any vector from O(KD) to O(A logA +B),
with A = min(K,D) and B = max(K,D), where D is
the dimension of the data. This drastic computational saving
has a direct impact in the assignment process of a point to
a cluster. We precisely show that resorting to a factorization
step at each iteration does not impair the convergence of the
optimization scheme and that, depending on the context, it
may entail a reduction of the training time. Finally, we provide
discussions and numerical simulations that show the versatility
of our computationally-efficient QuicK-means algorithm.

1 Introduction
K-means is one of the most popular clustering algo-
rithms (Hartigan and Wong 1979; Jain 2010) and it can
be used beyond clustering, for tasks such as indexing, data
compression, nearest-neighbor search and prediction, and
local network community detection (Muja and Lowe 2014;
Van Laarhoven and Marchiori 2016). K-means is also a piv-
otal process to increase the speed and the accuracy of learning
procedures, e.g., for kernel machines (Si, Hsieh, and Dhillon
2016) and RBF networks (Que and Belkin 2016), when com-
bined with the Nyström approximation. The conventional
K-means algorithm, i.e. Lloyd’s algorithm, has aO (NKD)
complexity per iteration when learning K clusters from N
data points in dimensionD. In addition, the larger the number
of clusters, the more iterations are needed to converge (Arthur

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Vassilvitskii 2006). As data dimensionality and sam-
ple size grow, it is critical to have at hand cost-effective
alternatives to the computationally expensive conventional
K-means. Known strategies to alleviate its computational is-
sues rely on batch-, sparsity- and randomization-based meth-
ods (Sculley 2010; Boutsidis et al. 2014; Shen et al. 2017;
Liu, Shen, and Tsang 2017).

Fast transforms have recently received increased attention
in machine learning as they can speed up random projec-
tions (Le, Sarlós, and Smola 2013; Gittens and Mahoney
2016) and to improve landmark-based approximations (Si,
Hsieh, and Dhillon 2016). These works focused on fixed
fast transforms such as well-known Fourier and Hadamard
transforms. A question is whether one can go beyond and
learn fast transforms that fit the data. Recently, Le Magoarou
and Gribonval (2016) introduced an approach aimed at re-
ducing the complexity of applying linear operators in high
dimension by approximately factorizing the corresponding
matrix into few sparse factors. Indeed, the aforementioned
fixed fast transforms can be factorized into few sparse ma-
trices. In this paper, we take this idea further and investigate
computationally-efficient variants of K-means by learning
fast transforms from data. After introducing the background
elements in Section 2, we make the following contributions:
• in Section 3.1, we introduce QK-means, a fast extension

of K-means that rests on learning a fast transform that
approximate the matrix of centers;

• in Section 3.2, we show that each update step in one itera-
tion of our algorithm reduces the overall objective, which
establishes the convergence of QK-means;

• in Section 3.3, we provide a complexity analysis of
QK-means, showing that the computational gain has a
direct impact in assigning a point to a cluster;

• in Section 4, an empirical evaluation of QK-means perfor-
mance demonstrates its effectiveness on different datasets
in the contexts of clustering, nearest neighbor search and
kernel Nyström approximation.

2 Preliminaries
We briefly review the basics of K-means and give back-
ground on learning fast transforms. To assist the reading, we

Symbol Meaning

JMK set of integers from 1 to M
‖ · ‖ L2-norm
‖ · ‖F Frobenius norm
‖ · ‖0 L0-norm
‖ · ‖2 spectral norm
Dv diagonal matrix with vector v on the diagonal
D data dimension
K number of clusters
Q number of sparse factors
x1, . . . ,xN data points
X ∈ RN×D data matrix
t cluster assignment vector
u1, . . . ,uK K-means centers
U ∈ RK×D K-means center matrix
v1, . . . ,vK QK-means centers
V ∈ RK×D QK-means center matrix
S1, . . . ,SQ sparse matrices
E1, . . . , EQ sparsity constraint sets
δE indicator functions for set E

Table 1: Notation used in this paper.

list the notations used in the paper in Table 1.

2.1 K-means
The K-means problem aims to partition a set X =
{x1, . . . ,xN} of N vectors xn ∈ RD into a predefined num-
ber K of clusters by minimizing the distance between each
xn to the center uk ∈ RD of the cluster k it belongs to —the
optimal center uk is the mean vector of the points assigned
to cluster k. The optimization problem of K-means is

arg min
U,t

∑
k∈JKK

∑
n:tn=k

‖xn − uk‖2, (1)

where U = {u1, . . . ,uK} is the set of centers and t ∈ JKKN

is the assignment vector that puts xn in cluster k if tn = k.

Lloyd’s algorithm (a.k.a. K-means algorithm) The
most popular procedure to (approximately) solve the
K-means problem is Lloyd’s algorithm, often referred to as
the K-means algorithm —as in here. It alternates between i)
an assignment step that decides the current cluster to which
each point xn belongs and ii) a reestimation step which ad-
justs the cluster centers. After an initialization of the set U(0)

of K cluster centers, the algorithm proceeds as follows: at
iteration τ , the assignments are updated as

t(τ)n ← arg min
k∈JK]K

∥∥∥xn − u
(τ−1)
k

∥∥∥2
2
, ∀n ∈ JNK , (2)

and the reestimation of the cluster centers is done as

u
(τ)
k ← x̂k(t(τ)) :=

1

n
(τ)
k

∑
n:t

(τ)
n =k

xn, ∀k ∈ JKK , (3)

where n(τ)k is the number of points in cluster k at time τ
and x̂k(t) is the mean vector of the elements of cluster k
according to assignment t.

Complexity of Lloyd’s algorithm. The cost of the assign-
ment step (2) isO(NDK) while that of the centers update (3)
is O (ND). Hence, the bottleneck of the total time complex-
ity O(NDK) stems from the assignment step.

Contribution. Our main contribution rests on the idea that
(2) may be computed more efficiently if the matrix U of
centers is approximated by a fast-transform matrix, which is
learned thanks to a dedicated procedure that we now discuss.

2.2 Learning Fast-Transform Structures
Linear operators structured as products of sparse matri-
ces. The popularity of some linear operators from RM to
RM (with M < ∞) like Fourier or Hadamard transforms
comes from both their mathematical properties and their abil-
ity to compute the mapping of some input x ∈ RM with
efficiency, typically in O (M logM) in lieu of O

(
M2
)

op-
erations. The core feature of the related fast algorithms is
that the matrix U ∈ RM×M of such linear operators can be
written as the product U = Πq∈JQKSq of Q = O (logM)
sparse matrices Sq with ‖Sq‖0 = O (M) non-zero co-
efficients per factor (Le Magoarou and Gribonval 2016;
Morgenstern 1975): for any vector x ∈ RM , Ux can thus
be computed as O (logM) products S0 (S1 (· · · (SQ−1x)))
between a sparse matrix and a vector, the cost of each product
being O (M), amounting to a O(M logM) time complexity.

Approximating any matrix by learning a fast transform.
When the linear operator U is an arbitrary matrix, one may
approximate it with such a sparse-product structure by learn-
ing the factors {Sq}q∈JQK in order to benefit from a fast
algorithm. Le Magoarou and Gribonval (2016) proposed al-
gorithmic strategies to learn such a factorization. Based on
the proximal alternating linearized minimization (PALM) al-
gorithm (Bolte, Sabach, and Teboulle 2014), the PALM for
Multi-layer Sparse Approximation (palm4MSA) algorithm
aims at approximating a matrix U ∈ RK×D as a product of
sparse matrices by solving

min
{Sq}q∈JQK

∥∥∥∥∥∥U−
∏
q∈JQK

Sq

∥∥∥∥∥∥
2

F

+
∑
q∈JQK

δEq (Sq), (4)

where for each q ∈ JQK, δEq (Sq) = 0 if Sq ∈ Eq and
δEq (Sq) = +∞ otherwise. Eq is a constraint set that typ-
ically imposes a sparsity structure on its elements, as well as
a scaling constraint. Although this problem is non-convex and
the computation of a global optimum cannot be ascertained,
the palm4MSA algorithm is able to find local minima with
convergence guarantees. (In addition to the reference papers,
details on palm4MSA are in the supplementary material.)

3 QuicK-means
We now introduce our main contribution, QuicK-means,
shortened as QK-means, show its convergence property and
analyze its computational complexity.

3.1 QK-means: Encoding Centers as Products of
Sparse Matrices

QK-means is a variant of the K-means algorithm in
which the matrix of centers U is approximated as a product∏
∈JQK Sq of sparse matrices Sq. Doing so will allow us to

cope with the computational bulk imposed by the product Ux
that shows up in the cluster assignment process —rewrite (2)

by developing
∥∥∥xn − u

(τ−1)
k

∥∥∥2
2

to see it.
Building upon the K-means optimization problem (1)

and fast-operator approximation problem (4) the QK-means
optimization problem writes:

arg min
{Sq}Qq=1,t

g
(
{Sq}Qq=1 , t

)
, (5)

where

g
(
{Sq}Qq=1 , t

)
:=

∑
k∈JKK

∑
n:tn=k

‖xn − vk‖2 +
∑
q∈JQK

δEq (Sq)

(6)

and V =
∏
q∈JQK Sq .

This is a constrained version of the K-means optimiza-
tion problem (1) in which centers vk are constrained to form
a matrix V with a fast-operator structure, the indicator func-
tions δEq imposing the sparsity of matrices Sq. More details
on the modeling choices are given in Section 4.1.

Problem (5) can be solved using Algorithm 1, which pro-
ceeds in a similar way as Lloyd’s algorithm by alternating
an assignment step at line 3 and an update of the centers at
lines 4–8. The assignment step can be computed efficiently
thanks to the structure of V. The update of the centers relies
on learning a fast-operator V that approximate the true center
matrix U weighted by the number of examples nk assigned
to each cluster k.

3.2 Convergence of QK-means
Similarly to K-means, QK-means converges locally as
stated in the following proposition.

Proposition. The iterates
{
S(τ)

}
q∈JQK and t(τ) in Algo-

rithm 1 are such that, ∀τ ≥ 1

g

({
S(τ+1)
q

}Q
q=1

, t(τ+1)

)
≤ g

({
S(τ)
q

}Q
q=1

, t(τ)
)
,

which implies the convergence of the procedure.

Proof. We show that each step of the algorithm does not
increase the overall objective function.

Assignment step (Line 3) For a fixed V(τ−1), the opti-
mization problem at Line 3 is separable for each example
indexed by n ∈ JNK and the new indicator vector t(τ) is thus
defined as:

t(τ)n = arg min
k∈JKK

∥∥∥xn − v
(τ−1)
k

∥∥∥2
2
. (7)

This step minimizes the first term in (6) w.r.t. t while the
second term is constant so we have

g

({
S(τ−1)
q

}Q
q=1

, t(τ)
)
≤ g

({
S(τ−1)
q

}Q
q=1

, t(τ−1)
)
.

Centers update step (Lines 4–8). We now consider a fixed
assignment vector t. We first note that for any cluster k with
true center uk and any vectors vk, the following holds:∑
n:tn=k

‖xn − vk‖2 =
∑

n:tn=k

‖xn − uk‖2 + nk ‖uk − vk‖2 ,

(8)

(See supplementary material Section D for step by step cal-
culus)

For t fixed, the new sparsely-factorized centers are set as
solutions of the problem arg minS1,...,SQ g(S1, . . . ,SQ, t)
which rewrites, thanks to (8) as

argmin
S1,...,SQ

∥∥D√n(U−V)
∥∥2
F
+
∑
k∈JKK

ck +
∑
q∈JQK

δq(Sq)

s. t. V =
∏
q∈JQK

Sq

= argmin
S1,...,SQ

∥∥∥∥∥∥A−
∏

q∈{JQK∪{0}}

Sq

∥∥∥∥∥∥
2

F

+
∑

q∈{JQK∪{0}}

δq(Sq)

(9)

where:

•
√
n ∈ RK is the pairwise square root of the vector indi-

cating the number of observations nk := |{n : tn = k}|
in each cluster k;

• U ∈ RK×d refers to the unconstrained center matrix ob-
tained from the data matrix X and the indicator vector t:
uk := 1

nk

∑
n:tn=k

xn (see Line 4);
• D√n(U−V) is the matrix with

√
nk (uk − vk) as row k;

• ck :=
∑

n
tn=k

‖xn − uk‖ is constant w.r.t. S1, . . . ,SQ;

• A := D√nU is the unconstrained center matrix
reweighted by the size of each cluster (see Line 5).

We note that problem (9) has exactly the form of (4) hence
the palm4MSA algorithm is used in Line 7 to obtain an
approximation of A. The first factor S0 is set to D√n by
setting E0 to a singleton at Line 6. Starting the minimization
process at the previous estimates

{
S
(τ−1)
q

}
q∈JQK

, we get

that g(S
(τ)
1 , . . . ,S

(τ)
Q , t(τ)) ≤ g(S

(τ−1)
1 , . . . ,S

(τ−1)
Q , t(τ)).

We finally have, for any τ :

g
(
S
(τ)
1 , . . . ,S

(τ)
Q , t(τ)

)
≤ g

(
S
(τ−1)
1 , . . . ,S

(τ−1)
Q , t(τ)

)
≤ g

(
S
(τ−1)
1 , . . . ,S

(τ−1)
Q , t(τ−1)

)
.

which is a sufficient condition to assert that Algorithm 1
converges (the sequence of objective values is nonincreasing
and lower bounded, thus convergent).

Algorithm 1 QK-means algorithm and its time complexity. Here A := min (K,D) and B := max (K,D)

Require: X ∈ RN×D, K, initialization
{
S
(0)
q : S

(0)
q ∈ Eq

}
q∈JQK

1: Set V(0) : x 7→
∏
q∈JQK S

(0)
q x

2: for τ = 1, 2, . . . until convergence do

3: t(τ) := arg mint∈JKKN
∑
n∈JNK

∥∥∥xn − v
(τ−1)
tn

∥∥∥2 O (N (A logA +B) +AB)

4: ∀k ∈ JKK ,uk := 1
nk

∑
n:t

(τ)
n =k

xn with nk := |{n : t
(τ)
n = k}| O (ND)

5: A := D√n ×U O (KD)

6: E0 :=
{
D√n

}
7:

{
S
(τ)
q

}Q
q=0

:= arg min{Sq}Qq=0

∥∥∥A−∏Q
q=0 Sq

∥∥∥2
F

+
∑Q
q=0 δEq (Sq) O

(
AB

(
log2A + logB

))
8: Set V(τ) : x 7→

∏
q∈JQK S

(τ)
q x O (1)

9: end for
Ensure: assignement vector t and sparse matrices {Sq : Sq ∈ Eq}q∈JQK

3.3 Complexity analysis
Since the space complexity of the proposed QK-means al-
gorithm is comparable to that of K-means, we only de-
tail its time complexity. We set A = min (K,D) and
B = max (K,D), and assume that the number of factors sat-
isfies Q = O (logA). The analysis is proposed under the fol-
lowing assumptions: the product between two dense matrices
of shapes N1 ×N2 and N2 ×N3 can be done O (N1N2N3)
operations; the product between a sparse matrix with O (S)
non-zero entries and a dense vector can be done in O (S) op-
erations; the product between two sparse matrices of shapes
N1 ×N2 and N2 ×N3, both having O (S) non-zero values
can be done in O (Smin (N1, N3)) and the number of non-
zero entries in the resulting matrix is O

(
S2
)
.

Complexity of the K-means algorithm. The algorithm
complexity is dominated by its cluster assignation step, re-
quiring O (NKD) = O (NAB) operations (see Eq. (2)).

Complexity of algorithm palm4MSA. The procedure
consists in an alternate optimization of each sparse factor.
At each iteration, the whole set of Q factors is updated with
at a cost in O

(
AB

(
log2A + logB

))
, as detailed in the

supplemental material (Section A). The bottleneck is the
computation of the gradient, which benefits from fast compu-
tations with sparse matrices.

Complexity of QK-means. The complexity of each itera-
tion of QK-means is O

(
N (A logA +B) +AB log2A

)
.

The complexities of the main steps are given in Algorithm 1.
The assignation step (line 3 and Eq. (2)) benefits from the

fast computation of VX in O (N (A logA +B)) while the
computation of the norms of the cluster centers is inO (AB).

The computation of the centers of each cluster at line 4 is
the same as in K-means and takes O (ND) operations.

The update of the fast transform, in lines 5 to 8 is a compu-
tational overload compared to K-means. Its time complexity
is dominated by the update of the sparse factors at line 7, in

O
(
AB log2A

)
. Note that the overall cost of QK-means is

dominated by the cost of the assignement step as soon as
the number of examples N is greater than log3A. One can
see that the computational bottleneck of K-means is here
reduced, which shows the advantage of using QK-means
when N , K and D are large.

4 Experiments and applications
4.1 Experimental setting
Implementation details. The code has been written in
Python, including the palm4MSA algorithm. Running times
are measured on a computer grid with 3.8GHz-CPUs
(2.5GHz in Figure 3). Fast operators V based on sparse
matrices Sq are implemented with csr_matrix objects
from the scipy.linalg package. While more efficient
implementations may be beneficial for larger deployment,
our implementation is sufficient as a proof of concept for
assessing the performance of the proposed approach as illus-
trated by running times benchmarking in the Section C of
supplementary material.

Datasets. We present results on real-world and toy datasets.
Our experiments are conducted on synthetic and real-world
data sets to show (i) — quantitatively and qualitatively
— the good quality of the obtained centers when using
our method on the MNIST (LeCun and Cortes 2010) and
Fashion-Mnist (Pedregosa et al. 2011) (D = 784,
K = 10) datasets and (ii) the speed up offered by our method
QK-means when the number of clusters and the dimension-
ality of the data are sufficiently large on the blobs synthetic
dataset from sklearn.dataset (D = 2000, K = 1000)
and the Caltech256 (Griffin, Holub, and Perona 2007)
dataset (D = 2352, K = 256) (see supplementary material
Section B for compact statistics table).

Algorithm settings. QK-means is used with Q :=
log2 (A) sparse factors, where A := min (K,D). All factors
Sq are with shapeA×A except, depending on the shape of A,

the leftmost one (K ×A) or the rightmost one (A×D). The
sparsity constraint of each factor Sq is set in Eq and is gov-
erned by a global parameter denoted as sparsity level, which
indicates the desired number of non-zero coefficients in each
row and in each column of Sq . Since the projection onto this
set of structured-sparsity constraints may be computationally
expensive, this projection is relaxed in the implementation
of palm4MSA and only guarantees that the number of non-
zero coefficients in each row and each column is at least the
sparsity level, as in (Le Magoarou and Gribonval 2016). The
actual number of non-zero coefficients in the sparse factors is
measured at the end of the optimization process and reported
in the results. Additional details about palm4MSA are given
in supplementary material Section A. The stopping criterion
of K-means and QK-means consists of a tolerance set to
10−6 on the relative variation of the objective function and a
maximum number of iterations set to 10. The same principle
governs the stopping criterion of palm4MSAwith a tolerance
set to 10−6 and a maximum number of iterations set to 300.
Each experiment have been replicated using different seed
values for random initialisation. Competing techniques share
the same seed values, hence share the same initialisation of
centers as they are sampled uniformly from the dataset. For
the QK-means experiments, the inital matrix of centroids
is processed once by the Hierarchical-palm4MSA euristic
proposed in (Le Magoarou and Gribonval 2016) but then the
simple palm4MSA algorithm is used inside QK-means as
it didn’t impact much of the performance while saving a lot
of time. (See supplementary material Section E for details).

4.2 Clustering
Approximation quality. One important question is the
ability of the fast-structure model to fit arbitrary data. Indeed,
no theoretical result about the expressivity of such models is
currently available. In order to assess this approximation qual-
ity, the MNIST and Fashion-MNIST data have been clustered
into K = 30 clusters by K-means and QK-means with
several sparsity levels. Results are reported in Figure 1. In
Figures 1a and 1b, one can observe that the objective function
of QK-means is decreasing in a similar way as K-means
over iterations. In particular, the use of the fast-structure
model does not seem to increase the number of iteration nec-
essary before convergence. At the end of the iterations, the
value of objective function for QK-means is slightly above
that of K-means. As expected, the sparser the model, the
more degradation in the objective function. However, even
very sparse models do not degrade the results significantly.
The approximation quality can be assessed visually, in a more
subjective and interpretable way, in Figures 1c to 5d where
the obtained centers are displayed as images. Although some
degradation may be observed in some images, one can note
that each image obtained with QK-means clearly represents
a single visual item without noticeable interference with other
items.

Clustering assignation times. Higher dimensions are re-
quired to assess the computational benefits of the proposed
approach, as shown here with the comparison between the

MNIST dataset and the others: the MNIST dataset has low
dimensionality and low cluster number then the vector assig-
nation times are even worse due to the computational over-
load induced by our poor implementation. Results reported
in Table 2 show that in this setting and with the current im-
plementation, the computational advantage of QK-means
is observed in high dimension, for K = 256 and K = 512
clusters. It is worth noticing that when K increases, the run-
ning times are not affected that much for QK-means while it
significantly grows for K-means. These trends are directly
related to the number of model parameters that are reported
in the figure. It can be noticed that these numbers of param-
eters doesn’t necessarily grow with the number of clusters
because each sparse factor must have at least a given number
of value for each line and each column of the sparse factor,
in this case 2.

4.3 Nearest-neighbor search in a large dataset
The Nearest-neighbor search is a fundamental task that suf-
fers from computational limitations when the dataset is large.
Fast strategies have been proposed, e.g., using kd trees or
ball trees. One may also use a clustering strategy to perform
an approximate nearest-neighbor search: the query is first
compared to K centers computed beforehand by clustering
the whole dataset, and the nearest neighbor search is then
performed among a lower number of data points, within the
related cluster. We compare this strategy using K-means
and QK-means against the scikit-learn implementa-
tion (Pedregosa et al. 2011) of the nearest-neighbor search
(brute force search, kd tree, ball tree). Inference time results
and accuracy results are displayed in Table 2. The results
for the Brute Force Search, KD Tree and Ball Tree are not
available for some dataset because they were longer than 10
times the K-means search version in the same setting. The
running times reported in the table show a drastic advantage
of using a clustering-based approximate search and this ad-
vantage is even stronger with the clustering obtained by our
QK-means method. We see that for the Blobs dataset, this
speed-up comes at a cost as we can see a drop in classification
performance but not for the other datasets. We believe our
method is more sensible to the very noisy nature of the blobs
dataset.

4.4 Nyström approximation
In this sub-section, we show how we can take advantage of
the fast-operator obtained as output of our QK-means algo-
rithm in order to speed-up the computation in the Nyström
approximation. We start by giving background knowledge
on the Nyström approximation then we present some recent
work aiming at accelerating it using well know fast-transform
method. We finally stem on this work to present a novel ap-
proach based on our QK-means algorithm.

Background on the Nyström approximation Standard
kernel machines are often impossible to use in large-scale
applications because of their high computational cost asso-
ciated with the kernel matrix K which has O(n2) storage
andO(n2d) computational complexity: ∀i, j ∈ JNK ,Ki,j =
k(xi,xj). A well-known strategy to overcome this problem

(a) MNIST, K = 30: objective function. (b) Fashion-MNIST, K = 30: objective function.

(c) K-means centers. (d) K-means centers.

(e) QK-means centers. (f) QK-means centers.

Figure 1: Clustering results on MNIST (left) and Fashion-MNIST (right) for K = 30 clusters.

Blobs
K=128

Blobs
K=256

Blobs
K=512

Caltech
K=128

Caltech
K=256

Caltech
K=512

MNIST
K=10

MNIST
K=16

MNIST
K=30

Vector assignation
time (ms)

K-means 0.3 3.1 5.7 0.2 1.5 4.2 0.003 0.005 0.006
QK-means 1.2 1.4 1.3 1.3 1.5 1.7 0.5 0.6 0.8

Nyström Inference
time (ms)

K-means 0.11 0.17 0.32 0.09 0.14 0.21 0.06 0.06 0.07
QK-means 0.13 0.18 0.22 0.24 0.30 0.40 0.08 0.07 0.06

1NN
Accuracy

K-means 0.96 0.97 0.99 0.11 0.11 0.11 0.96 0.96 0.96
QK-means 0.61 0.49 0.37 0.10 0.10 0.09 0.96 0.96 0.95

Ball-tree timed-out timed-out 0.97

1NN
Runtime (s)

K-means 17.2 15.8 9.5 74.4 50.0 35.3 0.74 0.83 0.88
QK-means 5.3 3.0 1.2 67.0 30.9 19.8 0.73 0.79 0.86

Ball-tree timed-out timed-out 553.0

Nyström + SVM
Accuracy

K-means 0.98 1.0 1.0 0.16 0.17 0.18 0.74 0.83 0.88
QK-means 0.95 1.0 1.0 0.15 0.16 0.16 0.73 0.79 0.86

Number of
parameters

K-means 256, 000 512, 000 1, 024, 000 301, 056 602, 112 1, 204, 224 7, 840 12, 544 25, 088
QK-means 6,207 8,656 14,078 10,409 13,846 21,013 2,610 2,269 2,427

Table 2: Results of numerical experiments: average Nyström transformation time for a sample set of size 5000; 1-nearest
neighbor and SVM classification accuracy on top of Nyström transformation on the test set. The QK-means results are obtained
with sparse factors with at least 2 values in each line/column. Every experiment results are averaged over 5 runs. Best results
are bold while second best are underlined (when necessary). “Ball-tree” aggregates the results of the “brute” and “kd-tree”
implementations of 1NN from sklearn as it has given the best results of those. The vector assignation time is measured for
one vector while the other times are measured for a whole matrix at once (See supplementary material Section C for benchmark)

is to use the Nyström method which computes a low-rank
approximation of the kernel matrix on the basis of some
pre-selected landmark points.

Given K � n landmark points {Ui}Ki=1, the Nyström
method gives the following approximation of the full kernel
matrix:

K ≈ K̃ = CW†CT , (10)

with W ∈ RK×K containing all the kernel values between
landmarks: ∀i, j ∈ [[K]] Wi,j = k(Ui,Uj); W† being the
pseudo-inverse of W and C ∈ Rn×K containing the kernel
values between landmark points and all data points: ∀i ∈
[[n]],∀j ∈ [[K]] Ci,j = k(Xi,Uj).

Efficient Nyström approximation A substantial amount
of research has been conducted toward landmark point selec-
tion methods for improved approximation accuracy (Kumar,
Mohri, and Talwalkar 2012) (Musco and Musco 2017), but
much less has been done to improve computation speed. In
(Si, Hsieh, and Dhillon 2016), the authors propose an al-
gorithm to learn the matrix of landmark points with some
structure constraint, so that its utilisation is fast, taking advan-
tage of fast-transforms. This results in an efficient Nyström
approximation that is faster to use both in the training and
testing phases of some ulterior machine learning application.

Remarking that the main computation cost of the Nyström
approximation comes from the computation of the kernel
function between the train/test samples and the landmark
points, (Si, Hsieh, and Dhillon 2016) aim at accelerating this
step. In particular, they focus on a family of kernel func-
tions that has the form k(xi,xj) = f(xi)f(xj)g(xTi xj),
where f : Rd → R and g : R → R. They show that
this family of functions contains some widely used kernels
such as the Gaussian and the polynomial kernel. Given a
set of K landmark points U ∈ RK×d and a sample x,
the computational time for computing the kernel between
x and each row of U (necessary for the Nyström approxi-
mation) is bottlenecked by the computation of the product
Ux. They hence propose to write the U matrix as the con-
catenation of structured s = K/d product of matrices such
that U =

[
V1H

T , · · · ,VsH
T
]T

, where the H is a d × d
matrix associated with a fast transform such as the Haar or
Hadamard matrix, and the Vis are some d× d diagonal ma-
trices to be either chosen with a standard landmark selection
method or learned using an algorithm they provide.

Depending on the H matrix chosen, it is possible to im-
prove the time complexity for the computation of Ux from
O(Kd) to O(K log d) (Fast Hadamard transform) or O(K)
(Fast Haar Transform).

QK-means in Nyström We propose to use our
QK-means algorithm in order to learn directly the U
matrix in the Nyström approximation so that the matrix-
vector multiplication Ux is cheap to compute, but the
structure of U is not constrained by some pre-defined
transform matrix. We propose to take the objective U matrix
as the K-means matrix of X since it has been shown to
achieve good reconstruction accuracy in the Nyström method
(Kumar, Mohri, and Talwalkar 2012).

As shown in the next sub-section, our algorithm allows to
obtain an efficient Nyström approximation, while not reduc-
ing too much the quality of the K-means landmark points
which are encoded as a factorization of sparse matrix.

Results The Table 2 summarizes the results achieved in the
Nyström approximation setting. An histogram representation
and an evaluation for other sparsity factors are available in
the supplementary material Section F.

The “Nyström inference time” displays the average time
for computing one line of the approximated matrix in Equa-
tion 10. For K = 512, when the landmark matrix is
big enough, we clearly see the speed-up offered using the
QK-means method on the Blobs dataset. Intringingly, this
speed-up is not sensible for the Caltech dataset even
though the vector assignation time was still faster.

From a more practical point of view, we show in Table 2
that the Nyström approximation based on QK-means can
then be used in a linear SVM and achieve as good perfor-
mance as the one based on the K-means approach.

5 Conclusion
In this paper, we have proposed a variant of the K-means
algorithm, named QK-means, designed to achieve a similar
goal – clustering data points around K learned centers – with
a much lower computational complexity as the dimension of
the data, the number of examples and the number of clusters
get high. Our approach is based on the approximation of the
matrix of centers by an operator structured as a product of
a small number of sparse matrices, resulting in a low time
and space complexity when applied to data vectors. We have
shown the convergence properties of the proposed algorithm
and provided its complexity analysis.

An implementation prototype has been run in several core
machine learning use cases including clustering, nearest-
neighbor search and Nyström approximation. The experimen-
tal results illustrate the computational gain in high dimension
at inference time as well as the good approximation qualities
of the proposed model.

Beyond these modeling, algorithmic and experimental con-
tributions to low-complexity high-dimensional machine learn-
ing, we have identified several important questions that are
still to be addressed. First, although learning the fast-structure
operator has been nicely integrated in the training algorithm
with an advantageous theoretical time and space complex-
ity, exhibiting gains in actual running times has not been
achieved yet for the QK-means learning procedure, com-
pared to K-means. This may be obtained in even higher
dimensions than in the proposed experimental settings, which
may require a new version of QK-means using batches of
data in order to process amounts of data that do not fit in mem-
ory. Second, the expressiveness of the fast-structure model is
still to be theoretically studied, while our experiments seems
to show that arbitrary matrices may be well fitted by such
models. Third, we believe that learning fast-structure linear
operators during the training procedure may be generalized
to many core machine learning methods in order to speed
them up and make them scale to larger dimensions.

References
[Arthur and Vassilvitskii 2006] Arthur, D., and Vassilvitskii,
S. 2006. How slow is the k-means method? In Symposium
on Computational Geometry, volume 6, 1–10.

[Bolte, Sabach, and Teboulle 2014] Bolte, J.; Sabach, S.; and
Teboulle, M. 2014. Proximal alternating linearized minimiza-
tion or nonconvex and nonsmooth problems. Mathematical
Programming 146(1-2):459–494.

[Boutsidis et al. 2014] Boutsidis, C.; Zouzias, A.; Mahoney,
M. W.; and Drineas, P. 2014. Randomized dimensionality
reduction for k-means clustering. IEEE Transactions on
Information Theory 61(2):1045–1062.

[Gittens and Mahoney 2016] Gittens, A., and Mahoney,
M. W. 2016. Revisiting the nyström method for improved
large-scale machine learning. The Journal of Machine Learn-
ing Research 17(1):3977–4041.

[Griffin, Holub, and Perona 2007] Griffin, G.; Holub, A.; and
Perona, P. 2007. Caltech-256 object category dataset.

[Hartigan and Wong 1979] Hartigan, J. A., and Wong, M. A.
1979. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28(1):100–108.

[Jain 2010] Jain, A. K. 2010. Data clustering: 50 years be-
yond k-means. Pattern recognition letters 31(8):651–666.

[Kumar, Mohri, and Talwalkar 2012] Kumar, S.; Mohri, M.;
and Talwalkar, A. 2012. Sampling methods for the nyström
method. Journal of Machine Learning Research 13(Apr):981–
1006.

[Le Magoarou and Gribonval 2016] Le Magoarou, L., and
Gribonval, R. 2016. Flexible multilayer sparse approxima-
tions of matrices and applications. IEEE Journal of Selected
Topics in Signal Processing 10(4):688–700.

[Le, Sarlós, and Smola 2013] Le, Q.; Sarlós, T.; and Smola,
A. 2013. Fastfood—approximating kernel expansions in
loglinear time. In International Conference on Machine
Learning.

[LeCun and Cortes 2010] LeCun, Y., and Cortes, C. 2010.
MNIST handwritten digit database.

[Liu, Shen, and Tsang 2017] Liu, W.; Shen, X.; and Tsang, I.
2017. Sparse embedded k-means clustering. In Advances in
Neural Information Processing Systems, 3319–3327.

[Morgenstern 1975] Morgenstern, J. 1975. The Linear Com-
plexity of Computation. Journal of the ACM 22(2):184–194.

[Muja and Lowe 2014] Muja, M., and Lowe, D. G. 2014.
Scalable nearest neighbor algorithms for high dimensional
data. IEEE transactions on pattern analysis and machine
intelligence 36(11):2227–2240.

[Musco and Musco 2017] Musco, C., and Musco, C. 2017.
Recursive sampling for the nystrom method. In Advances in
Neural Information Processing Systems, 3833–3845.

[Pedregosa et al. 2011] Pedregosa, F.; Varoquaux, G.; Gram-
fort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Pret-
tenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos,
A.; Cournapeau, D.; Brucher, M.; Perrot, M.; and Duchesnay,

E. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830.

[Que and Belkin 2016] Que, Q., and Belkin, M. 2016. Back
to the future: Radial basis function networks revisited. In
AISTATS, 1375–1383.

[Sculley 2010] Sculley, D. 2010. Web-scale k-means cluster-
ing. In Proceedings of the 19th international conference on
World wide web, 1177–1178. ACM.

[Shen et al. 2017] Shen, X.; Liu, W.; Tsang, I.; Shen, F.; and
Sun, Q.-S. 2017. Compressed k-means for large-scale clus-
tering. In Thirty-First AAAI Conference on Artificial Intelli-
gence.

[Si, Hsieh, and Dhillon 2016] Si, S.; Hsieh, C.-J.; and
Dhillon, I. 2016. Computationally efficient nyström approxi-
mation using fast transforms. In International Conference on
Machine Learning, 2655–2663.

[Van Laarhoven and Marchiori 2016] Van Laarhoven, T., and
Marchiori, E. 2016. Local network community detection
with continuous optimization of conductance and weighted
kernel k-means. The Journal of Machine Learning Research
17(1):5148–5175.

Supplemental material
A palm4MSA algorithm

The palm4MSA algorithm (Le Magoarou and Gribonval 2016) is given in Algorithm 2 together with the time complexity of
each line, using A = min(K,D) and B = max(K,D). Even more general constraints can be used, the constraint sets Eq
are typically defined as the intersection of the set of unit Frobenius-norm matrices and of a set of sparse matrices. The unit
Frobenius norm is used together with the λ factor to avoid a scaling indeterminacy. Note that to simplify the model presentation,
factor λ is used internally in palm4MSA and is integrated in factor S1 at the end of the algorithm (Line 14) so that S1 does
not satisfy the unit Frobenius norm in E1 at the end of the algorithm. The sparse constraints we used, as in (Le Magoarou and
Gribonval 2016), consist of trying to have a given number of non-zero coefficients in each row and in each column. This number
of non-zero coefficients is called sparsity level in this paper. In practice, the projection function at Line 9 keeps the largest
non-zero coefficients in each row and in each column, which only guarantees the actual number of non-zero coefficients is at
least equal to the sparsity level.

Algorithm 2 palm4MSA algorithm

Require: The matrix to factorize U ∈ RK×D, the desired number of factors Q, the constraint sets Eq , q ∈ JQK and a stopping
criterion (e.g., here, a number of iterations I).

1: λ← ‖S1‖F O (B)
2: S1 ← 1

λS1 O (B)
3: for i ∈ JIK while the stopping criterion is not met do
4: for q = Q down to 1 do
5: Lq ←

∏q−1
l=1 S

(i)
l

6: Rq ←
∏Q
l=q+1 S

(i+1)
l

7: Choose c > λ2||Rq||22||Lq||22 O (A logA+B)
8: D← Siq − 1

cλL
T
q

(
λLqS

i
qRq −U

)
RT
q O (AB logA)

9: S
(i+1)
q ← PEq (D) O

(
A2 logA

)
or O (AB logB)

10: end for
11: Û :=

∏Q
j=1 S

(i+1)
q O

(
A2 logA+AB

)
12: λ← Trace(UT Û)

Trace(ÛT Û)
O (AB)

13: end for
14: S1 ← λS1 O (B)
Ensure: {Sq : Sq ∈ Eq}q∈JQK such that

∏
q∈JQK Sq ≈ U

The complexity analysis is proposed under the following assumptions, which are satisfied in the mentioned applications and
experiments: the number of factors is Q = O (logA); all but one sparse factors are of shape A×A and have O (A) non-zero
entries while one of them is of shape A×B or B ×A with O (B) non-zero entries. In such conditions, the complexity of each
line is:

Lines 1-2 Computing these normalization steps is linear in the number of non-zeros coefficients in S1.

Lines 5-6 Fast operators L and R are defined for subsequent use without computing explicitly the product.

Line 7 The spectral norm of L and R is obtained via a power method by iteratively applying each operator, benefiting from the fast
transform.

Line 8 The cost of the gradient step is dominated by the product of sparse matrices.

Line 9 The projection onto a sparse-constraint set takesO
(
A2 logA

)
for all theA×Amatrices andO (AB logB) for the rectangular

matrix at the leftmost or the rightmost position.

Line 11 The reconstructed matrix Û is computed using O (logA) products between A × A sparse matrices, in O
(
A2
)

operations
each, and one product with a sparse matrix in O (AB).

Line 12 The numerator and denominator can be computed using a Hadamard product between the matrices followed by a sum over all
the entries.

Line 14 Computing renormalization step is linear in the number of non-zeros coefficients in S1.

Hence, the overal time complexity of palm4MSA is in O
(
AB

(
log2A+ logB

))
, due to Lines 8 and 9.

Figure 2: Decomposition of hadamard matrix by sparse factors. Bottom line show the initialization of the factors while middle
line shows their final form at the end of the algorithm.

B Datasets

Table 3 provides some statistics about the used datasets.

Dataset Data dim. D # classes Training set size N Test set size N ′
MNIST 784 10 60 000 10 000

Fashion-MNIST 784 10 60 000 10 000
Blobs (clusters std: 12) 2000 1000 29000 1000

Caltech256 2352 256 19952 9828

Table 3: Datasets statistics

C Sparse-factorization speed

While more efficient implementations may be beneficial for larger deployment, our implementation is sufficient as a proof of
concept for assessing the performance of the proposed approach. In particular, the running times of fast operators of the form∏
q∈JQK Sq have been measured when applying to random vectors, for several sparsity levels: as shown in Figure 3, they are

significantly faster than dense operators – implemented as a numpy.ndarray matrix –, especially when the data size is larger
than 103.

We have noted a difference of efficiency when applying our fast-transform operator to single vector or complete matrices
(concatenated vectors) as shown in Figure 4. The fast-transform operator is more efficient compared to a numpy dense operator
when applied to one single vector.

D QK-means proof

We propose in Equation 11 a step by step re-writting of Equation (8).

Figure 3: Running times, averaged over 30 runs, when applying dense or fast D ×D operators to a set of 100 random vectors.
The number of factors in fast operators equals log2 (D) and the sparsity level denotes the number of non-zero coefficients per
row and per column in each factor.

Figure 4: Running times,when applying dense or fast D ×D operators to a set of 500 random vectors or a single vector. The
number of factors in fast operators equals log2 (D) and the sparsity level denotes the number of non-zero coefficients per row
and per column in each factor.

∑
n:tn=k

‖xn − vk‖2 =
∑
n

tn=k

‖xn − uk + uk − vk‖2

=
∑
n

tn=k

(
‖xn − uk‖2 + ‖uk − vk‖2 − 2〈xn − uk,uk − vk〉

)

=
∑
n

tn=k

‖xn − uk‖2 + nk ‖uk − vk‖2 − 2

〈∑
n

tn=k

(xn − uk)

︸ ︷︷ ︸
=0

,uk − vk

〉

=
∑
n

tn=k

‖xn − uk‖2 + ‖
√
nk (uk − vk)‖2 (11)

=
∑

n:tn=k

‖xn − uk‖2 + nk ‖uk − vk‖2 , (12)

E Hierarchical-Palm4MSA
The Hierarchical-palm4MSA algorithm has been used only for initialization of centroid sparse factors because it didn’t improve
that much the results when used on all iterations of QK-means while it was very time consuming. Figure 5 shows the evolution
of the objective function and the final centroids images when using the hierarchical version in all iteration.

(a) MNIST, K = 30: objective function. (b) Fashion-MNIST, K = 30: objective function.

(c) Hierarchical-palm4MSA QK-means centers. (d) Hierarchical-palm4MSA QK-means centers.

Figure 5: Clustering results on MNIST (left) and Fashion-MNIST (right) for K = 30 clusters. Results marked as “hierarchical”
refers to the one obtained with hierarchical-palm4MSA usage inside of the QK-means algorithm

F Nyström approximation
Nyström approximation results: approximation accuracy (left) and running times (right). The uniform sampling based Nyström
approximation running times are not displayed because they are the same as for the Nyström approximation based on K-means
centers. Every experiment results are averaged over 5 runs. The vertical black lines are the standard deviation w.r.t. the runs.
Numbers on top of each bar shows the number of parameter. Results are shown in an histogram form rather than table for
clearer interpretation. The QK-means approach gives better reconstruction error than the Nyström method based on uniform
sampling although it is slightly worse than the one obtained with the regular K-means centers. We see that that the difference
in approximation error between K-means and QK-means is almost negligible when compared to the approximation error
obtained with the uniform sampling scheme.

We show the approximation error of the Nyström approximation based on different sampling schemes w.r.t. the real kernel
matrix. This error is computed by the Froebenius norm of the difference between the matrices and then normalized:

error =
||K− K̃||F
||K||F

. (13)

F.1 Blobs

(a) Blobs: Nyström reconstruction error. (b) Blobs: Nyström inference time.

F.2 Mnist

(a) MNIST: Nyström reconstruction error. (b) MNIST: Nyström inference time.

F.3 Fashion-MNIST

(a) Fashion-MNIST: Nyström reconstruction error. (b) Fashion-MNIST: Nyström inference time.

F.4 Caltech256

(a) Caltech256: Nyström reconstruction error. (b) Caltech256: Nyström inference time.

	Introduction
	Preliminaries
	K-means
	Learning Fast-Transform Structures

	QuicK-means
	QK-means: Encoding Centers as Products of Sparse Matrices
	Convergence of QK-means
	Complexity analysis

	Experiments and applications
	Experimental setting
	Clustering
	Nearest-neighbor search in a large dataset
	Nyström approximation

	Conclusion
	palm4MSA algorithm
	Datasets
	Sparse-factorization speed
	QK-means proof
	Hierarchical-Palm4MSA
	Nyström approximation
	Blobs
	Mnist
	Fashion-MNIST
	Caltech256

