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Abstract

Estimating and forecasting photovoltaic (PV) power generation in regions–—e.g. the area controlled by the

transmission system operator (TSO)—–is a requirement for the operation of the electricity supply system.

An accurate calculation of this quantity requires detailed information of the installed PV systems within the

considered region; however, this information is not publicly available making forecasting difficult. Therefore,

approximating the undefined PV systems information for use in a PV power model (parameterization) is of

critical interest. In this paper, we propose a methodological approach for parameterization using time series

of aggregated PV power generation. A Bayesian approach is used to overcome the significant number of

unknown parameters in the problem. It regularizes the linear system by imposing constraints on deviations

from an initial-guess and covariance matrices; the initial guess uses available statistical distributions of PV

system metadata. The performance of the proposed forecasting approach is evaluated using estimates of

the regional PV power generation from three TSOs and meteorological data from the IFS forecast model

(ECMWF). The proposed forecasting approach without the Bayesian parameterization has RMSE of 3.90%,

4.25% and 4.64%, respectively; including the Bayesian approach gives RMSE of 3.82%, 4.23% and 4.51%.

For comparison, we also deployed a multiple linear regression which gave RMSE of 3.89%, 4.12% and 4.54%;

however, there are considerable downsides to such an approach. Our approach is competitive with TSO

forecasting systems despite using far fewer input data and simpler implementation of NWP prediction. This

is particularly promising as there are many avenues for future development.
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1. Introduction1

1.1. Background and motivation2

With more than 400 GWp of installed photovoltaic (PV) capacity globally (IEA, 2018), the integration3

of the large amounts of solar energy in the electricity supply system is fundamental for modernization and4

maintaining grid reliability. The accurate estimation of power generated by a fleet of decentralized PV5

systems (hereafter referred to as regional PV power generation) is crucial at several stages of energy supply6

and network operations.7

The objective of regional PV power estimates is to replicate the actual behaviour of the aggregated8

power production from all unknown PV systems installed in a given area; this can take advantage of all9

available information (power production measurements and/or PV system meta-data). Such systems have10

been described by Lorenz et al. (2011) or Schierenbeck and Graeber (2010). Estimation is made difficult11

because only a minority of systems continuously report their generation and few PV systems make their12

measurements publicly available—a serious issue that is the core subject of numerous studies (Bright et al.,13

2017; Lorenz et al., 2011; Shaker et al., 2015; Schierenbeck and Graeber, 2010).14

A prominent application requiring regional PV power generation estimates is in the online and ex-post15

PV power analysis for grid monitoring and balancing-group settlement (Amprion, 2019). Grid operators are16

responsible for the estimation of aggregated PV power produced in their control area, as well as for publicly17

releasing the estimates as is often mandatory by law. An example of time series of the PV power generation18

estimated by most European transmission system operators (TSOs) are found on the ENTSO-E website1.19

Another important application group is providing the day-ahead or short-term forecasts of regional PV20

power generation. Forecasts are essential for energy trading (or scheduling thermal power plants), planning21

needs for reserve power or mitigating possible network congestion, etc. Improving the accuracy of regional22

PV power forecast is key because it has a positive impact on the integration costs of RES as well as23

on the security of supply (Killinger, 2017). Since the actual value of the regional PV power generation24

remains unknown, forecasting error is typically evaluated against the aforementioned regional estimates as25

a reference. Hence, the true goal of regional PV forecasts is to accurately predict the estimates made by26

the grid operators. It would be logical if forecasting methodologies used identical information as is used for27

the estimates; unfortunately, the data and processes involved in the estimation of the regional PV power28

generation are typically confidential so forecast providers must evaluate the regional forecast without it.29

Within these two critical applications, two sources of uncertainty must be addressed in order to improve30

regional PV power generation estimates that are applied to forecasts: (i) the uncertainty resulting from the31

weather prediction error, and (ii) the uncertainty due to a lack of information on the installed PV systems.32

1https://transparency.entsoe.eu
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Each source of uncertainty represents a considerable field of research. The goal of this paper is to address33

the second source of uncertainty by proposing a method to infer the parameters of a regional PV model34

from times series of the aggregated PV power generation. Achieving this goal would enable the forecasts35

access to otherwise absent data, which, as will be demonstrated, can significantly improve the estimation.36

1.2. Related work37

Regional PV power forecasting research is maturing; it has particularly gained increasing interest in38

recent years. The approaches in literature are distinguishable principally by the strategies used to overcome39

uncertainty arising from a lack of information about the installed PV systems. In this literature review,40

research on regional estimates and forecast have intentionally been considered in tandem as the same algo-41

rithms are conventionally used in both; for absolute clarity, our methodology produces an estimate of PV42

power generation, we then assess improvements when the new estimate is used in a solar forecast.43

A first approach is to assume that the PV power measurements of all systems installed in a region are44

known a-priori. Thus, the regional PV power forecast can simply be obtained by summing the forecasts from45

each PV system. This method is detailed by Da Silva Fonseca et al. (2014) where it is evaluated together46

with other methods in a benchmark analysis. Though this approach can be very insightful, it is difficult to47

make operational for two key reasons: poor access to PV power measurements, and linear computational48

scaling with increasing number of installations.49

Lorenz et al. (2008, 2011) and Schierenbeck and Graeber (2010) proposed a pragmatic solution to the50

two aforementioned issues. The aggregated regional PV power generation is estimated from only a subset of51

the PV installations, limited to the most representative systems. The regional estimate is then reconstructed52

from the subset by means of an upscaling method. In Da Silva Fonseca Junior et al. (2014) and Shaker53

et al. (2015), the optimal subset of reference PV systems are determined mathematically using data-reduction54

techniques. A prerequisite of this method is access to an archive of all PV power measurements—a condition55

rarely satisfied. In Lorenz et al. (2008) and Lorenz et al. (2011), the choice of the most representative56

reference PV systems is based on a-priori knowledge on the fleet of PV system installed in the region as well57

as on spatial considerations. Whilst this latter technique is better suited for an operational implementation,58

it requires access to PV power measurements from a large number of installations, as well as a good knowledge59

of the metadata of installed PV systems in the considered region.60

None of the approaches described previously can be implemented when too few PV power measurement61

data is available. Another kind of model can be used when lack of data is the barrier. As described by62

Saint-Drenan et al. (2017), the principle of this alternative method is to simulate the PV power generation of63

a limited number of commonly occurring PV system metadata configurations (in regard to capacity, tilt and64

azimuth) using meteorological data. The regional PV power estimate is then obtained by a weighted sum65

of the simulated power values, the weights corresponding to the frequency of occurrence of the considered66
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configurations. The unknown weights can whether be evaluated on the basis of authors’ experience Schubert67

(2012); Fonseca Junior et al. (2015) or on the basis of a statistical analysis of PV system metadata Saint-68

Drenan et al. (2017); Killinger et al. (2018). A drawback of this approach is that possible differences between69

the linear coefficients chosen for the regional forecast and those corresponding to the regional estimates may70

penalize the forecast accuracy. This error can be minimized using model output statistics (MOS) techniques,71

which correct model outputs based on the information gathered from previous forecasts (Wilks, 2011). It is72

preferable, however, to directly use coefficients avoiding systematic errors; this is analyzed later.73

Systematic differences between regional forecast and estimates can be avoided through use of supervised74

statistical methods, whereby the parameters of the model are trained using estimates of the regional PV75

power generation. A first example of this kind of approach can be found in the benchmark analysis by Da76

Silva Fonseca et al. (2014), where a support vector regression is realized using weather data as the input and a77

time series of the aggregated PV power generation is the output. In their work, the high-dimensionality of the78

input data penalizes the efficiency of the approach. Da Silva Fonseca et al. (2014) proved this by observing79

a noticeable improvement by using principal component analysis (PCA) of the entire weather information80

and accounting for 90% of the explained variance. A drawback of these types of method is that it requires81

important amounts of training data to learn the dependency between the input weather information and82

time series of aggregated power. Furthermore, whilst certain weather variables may account for significant83

variance in the aggregated power, that same variable may not have the same impact in different climates;84

hence, training data would always be required. The efficiency of the learning phase can be improved by85

using hybrid models, whereby known physical dependencies are considered and unknown model parameters86

trained from historical data. This possibility is shortly described in the “aggregated power curve” method87

proposed by Nuno Martinez et al. (2018) for the generation of stochastic solar area power forecast scenarios.88

Unfortunately, insufficient implementation and model performance information is provided by the authors.89

To the best of our knowledge, no other research investigating the potential of hybrid regional PV model for90

forecasting applications exists. This presents a significant opening for further research.91

1.3. Contribution92

Considering the lessons and outcomes identified in the literature review, we present a clear need for93

further investigation on the use of hybrid models for regional PV power forecasting applications. The94

objective of this paper is, therefore, to propose a physical regional PV power model whose parameters can95

be robustly inferred from estimates of the aggregate PV power production and to provide first results on its96

performance for forecasting the regional PV power generation.97

The major benefit of achieving this goal is that regional PV power can be theoretically forecast without98

the uncertainties from a lack of reported metadata on the installed PV systems. Thus, regional PV power99

forecasts would be more accurate.100
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section 2 is dedicated to the description of the regional PV power model that has been used for this work.101

We have chosen the same formulation as previously used in Schubert (2012), Saint-Drenan et al. (2017) and102

Nuno Martinez et al. (2018). This modelling approach is linear so that unknown parameters can be obtained103

using regression techniques as in Nuno Martinez et al. (2018). We have paid a particular attention to the104

implementation details of this method (choice of the reference configuration, spatial constraints) in order to105

limit the number of unknowns without impacting the modelling accuracy.106

section 3 focuses on the estimation of the model parameters. While the unknown parameters can easily107

be found by a simple regression, preliminary experiments have shown that a regression yields very high108

or negative parameters, which are physically meaningless and very sensitive to small variations in the109

training data set. These first observations, that contradict physical expectations, result from the “ill-110

conditioned nature” of the problem, which will penalize the power estimation accuracy and ultimately the111

forecast accuracy in application. To address this, we instead infer the parameters with a Bayesian method,112

which is a standard approach in inverse modelling. An additional benefit from a Bayesian approach is the113

integrating of an initial parametrization state such that previously defined iterations can be exploited to114

improve robustness.115

section 4 contains the results obtained from the proposed methodology in application to forecasting. One116

year of regional PV power generation of three German TSOs is improved using Bayesian parameterisation117

before being applied to day-ahead forecasting using corresponding weather forecasts taken from the IFS118

numerical weather forecast model. The benefit resulting from a Bayesian approach are quantified and the119

performances of the obtained forecast are compared to alternative forecasting approaches.120

Finally, a discussion on the potential of the proposed method and concluding remarks are given in121

section 5.122

A flow chart summarizing our approach is given in Figure 1. This figure is referred to throughout this123

work to guide the reader on the different calculation steps of our method. Figure 1 is composed of two parts.124

The first part illustrates how the parameters of the regional model are inferred from the time series of the125

aggregated PV power production. The second part illustrates how the estimated parameters can be used to126

calculate regional PV power production using NWP data.127

2. Regional PV power model128

In this section, the regional PV power model used in this work is described in section 2.1. It is a129

linear model that calculates regional PV power generation from meteorological data. A set of reference PV130

system configurations is needed; the selection process is described in section 2.2. The loss of model accuracy131

resulting from our chosen set of configurations is then analyzed in section 2.3. In section 2.4, we describe132

the spatial constraints used to limit the number of unknowns due to the size of the regions. Finally, the133
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(a) Parameter estimation

(b) Calculation of the regional PV power forecast using the estimated parameters

Figure 1: Flowcharts summarizing (a) the calculation steps for the estimation of the parameters of the regional model, and,

(b) calculation of the regional Pv power from NWP data using the estimated parameters.

modelling approach is summarized and matrix notation is introduced in section 2.5.134
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2.1. Description of the regional model135

The regional PV model used in this work is the same as in Saint-Drenan et al. (2017); it is very similar136

to the approaches of Schubert (2012), Fonseca Junior et al. (2015) and Nuno Martinez et al. (2018). The137

model is based on the idea that, instead of simulating each PV system individually, power production from138

only those PV systems representing common PV system metadata configurations within a given region are139

simulated. They are then scaled up to the total capacity within the region. This approach represents a140

significant improvement in computational efficiency.141

The regional power generated by a fleet of PV systems installed at location x can be expressed as the142

sum of the power values calculated with characteristics Vi multiplied by the share wi of the total capacity of143

systems having the characteristics Vi. The simulated power is normalized by the corresponding peak power144

and the weighted sum scaled to the actual value of the installed capacity at location x. The regional PV145

power generation can then be expressed as:146

PPV,t,region =
∑

x∈region
Pinstalled,x︸ ︷︷ ︸

installed PV power

×
nref∑
i=1

( wi,x︸︷︷︸
weight

× fPV (x, t,Gx,t, T2m,x,t, Vi)︸ ︷︷ ︸
power gen. of a ref. PV system

),

︸ ︷︷ ︸
aggregated PV power at location x (PPV,t,x)︸ ︷︷ ︸

aggregated PV power for the region

(1)

where:147

• t is the time148

• x represents the different locations within the considered region149

• PPV,t,region is an estimate of the aggregated power produced by all PV systems in the considered150

region at time t [W ]151

• Pinstalled,x is the installed PV power at location x [Wp]152

• PPV,t,x is an estimate of the aggregated power produced by all PV systems at location x at time t153

[W/Wp]154

• wi,x is the weight of the ith reference configuration at location x [-]155

• fpv(...) is a function representing the single PV system model used to calculate the normalized PV156

power [W/Wp]157

• Vi is a vector with the configuration parameters of the ith reference PV system158

• Gx,t is the global horizontal irradiation at location x and time t [W/m2]159

• T2m,x,t is the air temperature at x and t [◦C]160

The function fPV in Eq. 1 represents a single PV system model that needs to be chosen beforehand.161

This function corresponds to the step (1) in the flow chart displayed in Figure 1. Saint-Drenan et al. (2017)162

demonstrated that a simple model with a limited number of input parameters performs well in regional163
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applications; thus, we select the same model for the present work. The calculation steps of this model are164

illustrated in Figure 2 and a detailed description can be found in (Saint-Drenan, 2015).165

With the chosen model, the set of characteristics Vi is only composed of the azimuth angle αM,i and166

module tilt angle γM,i. Another important model parameter that is not explicitly considered here is the167

total efficiency of the PV system. Though large variations of the efficiency may be observed among PV168

systems (Killinger et al., 2018), we decided to use a constant. That said, variations of the system total169

efficiency are implicitly considered in our regional model through the weights wi. Therefore, these weights170

not only reflect the distribution of capacity across all orientations, but also account for the efficiency of the171

PV systems.172

Figure 2: Flowchart of the single PV system power model.

2.2. Choice of the reference orientation combinations173

In the single PV system model (see section 2.1), orientation of a PV system is defined by two param-174

eters: azimuth and tilt angles. It is obvious that the power production simulated for two close module175

orientations are highly correlated, and so we do not necessarily need every combination of tilt and azimuth,176

only a representative set. Therefore, a smaller subset of orientation combinations that allows an accurate177

calculation of the aggregated PV power generation is needed. We call this subset the ‘reference orientation178

combinations’. Selecting too many combinations could lead to numerical issues during the search of the179

model parameters due to the high number of unknowns and their co-linearity. Therefore, we use a regular180
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grid of tilt and azimuth angles with a coarse resolution of 15◦ in both dimensions to define the reference181

orientation combinations.182

To further limit the number of unknown parameter of our model, we exclude uncommon combinations.183

Based on Saint-Drenan (2015) and Killinger et al. (2018), we limit the azimuth angles values between -45184

and 45◦, and tilt angles between 0 and 45◦. Ultimately, we represent all systems by 22 reference orientation185

combinations.186

2.3. Uncertainty arising from the reference orientation configurations187

In the previous section, we opted for a coarse grid of reference orientation combinations. Though moti-188

vated by numerical considerations, the question arises of ‘how much loss of accuracy results from from this189

choice?’ To answer this question, we calculate the error when Eq. 1 is used to calculate the power produc-190

tion of a single PV system with arbitrary orientation. As errors within the regional model are expected to191

balance out with a increasing number of PV systems, the consideration of a single PV system should provide192

a worst-case indication of the error. To demonstrate, we attempted to rebuild the power production of an193

arbitrary orientation using our set of 22 reference orientation combinations. For this purpose, the power194

production was calculated using single PV power model for the 22 reference orientation combinations as195

well as for the single arbitrary test orientation. We used one year of 15-min global horizontal irradiation196

measurements and air temperature measurements from Fraunhofer IWES in Kassel. The weights of the197

linear model were then calculated by a multiple linear regression between the time series of the calculated198

power for the test orientation and the time series from the reference orientations.199

The underlying assumption of Eq. (1) that the output of a PV system with an arbitrary orientation200

can be assessed by a linear combination of the outputs of different PV systems corresponding to reference201

orientations is illustrated in the left panel of Figure 3: the squares represent each reference orientation;202

the circle represents the arbitrary test orientation; the numbers in boxes and the lines show the regression203

coefficients. In the right panel of Figure 3, the power values calculated with the physical model are displayed204

against the linear combination of reference power values. The difference between the two power values are205

negligible.206

This procedure is repeated for all integer value combinations of the azimuth angle (between -45 and 45◦)207

and the tilt angle (between 0 and 45◦). The resulting root mean square difference (RMSD) of the residual208

of the regression are represented by colored squares in Figure 4.209

All RMSD values are less than 2.10−4 W/Wp; this analysis shows that the power values calculated210

with the 22 reference orientation combinations is coarse enough to reconstruct the power for an arbitrary211

orientation (as long as this orientation lies in the domain covered by the reference orientations). We observe212

peaks in RMSD (though still small) at around 40◦ tilt and between 45◦ to 30◦ east and west. Since such213

orientations are infrequent in Germany, we consider these greater RMSD values to be of insignificant impact.214
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Figure 3: Left panel) Illustration of the approach used to estimate the PV power at a given orientation as derived from the

PV power value estimated with the reference orientations using a linear approach. The reference and the test orientations

are represented by grey squares and a circle, respectively. Weighted coefficients are indicated in each box. Small coefficients

(≤ 0.01) are not displayed. Right panel) Scatter plot of power values evaluated with the physical model against power values

evaluated with the linear approach.

Control area
or region

Number of
PV systems

Size of
the region

TenneT 646 968 140 500 km2

50Hertz 125 696 109 000 km2

Amprion 437 622 73 100 km2

TransNetBW 281 420 34 600 km2

Germany 1 491 706 357 168 km2

Table 1: Number of installed PV systems in the four German control areas in August 2014.

2.4. Spatial constraints215

At this stage, there is a total of nref ×nloc unknowns in our regional model, where nref is the number of216

reference orientation combinations (22 orientations selected in the previous section) and nloc is the number217

of locations considered in the regions. Considering the size of a control area and the great number of PV218

systems installed in a control area (Table 1), it is necessary to add spatial constraints to the problem in219

order to limit the number of unknowns.220

Given that the unknowns are inferred from regionally averaged PV power generation, it is unrealistic221

to expect that local information can be retrieved from the method. In addition, the possible impact from222

errors at the local scale are balanced when upscaled to a regional level; thus, they are deemed insignificant.223

Therefore, we are mainly interested in large scale spatial trends that may have a significant impact on the224

aggregated regional PV power generation estimate. It is possible to add spatial constraints by considering225
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Figure 4: Root mean square difference (RMSD) between the PV model output and the corresponding value obtained with the

22 reference orientation combinations using a multilinear regression.

large scale regional trends; approaches exist such as spatial regularization techniques or the use of spatial226

parametric model. We selected the simplest and most pragmatic method—dividing a region into a reasonable227

number of sub-regions and assuming that unknown parameters are constant in each sub-region.228

Regions are divided into sub-regions using a k-mean clustering algorithm on the coordinates of PV229

systems installed in the greater region. Two examples are illustrated in Figure 5, where the control area of230

TenneT is divided into 3 and 5 sub-regions, respectively. In this figure, light grey dots represent the known231

installed PV systems and dark squares are centroids of the clusters (sub-regions). The borders between232

different sub-regions are displayed by blue lines.233

If nSbRg is the number of sub-regions, the number of unknown of the linear system is now equal to234

nref × nSbRg, for example nref = 22 and nSbRg = 2...5 tractable.235

2.5. Summary236

The weights wi,x are assumed constant within each sub-region Rj . Thus, the model formulation in Eq. 1237

can be simplified by introducing the smaller set of wi,Rj
for each configuration i and region Rj . The weights238

wi,x are related to the weights wi,Rj
by the relationship wi,x = wi,Rj

∀x ∈ Rj . With this new variable, Eq. 1239

is written:240

PPV,t,region︸ ︷︷ ︸
Y[t,1]

=
∑
Rj

∑
i︸ ︷︷ ︸∑

k

(
wi,Rj

)︸ ︷︷ ︸
W[k,1]

×

∑
x∈Rj

Pinstalled,x × fPV (x, t,Gx,t, T2m,x,t, Vi).


︸ ︷︷ ︸

H[t,k]

(2)
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Figure 5: Illustration of the split of the TenneT control region into 3 sub-regions (left map) and 5 sub-regions (right map)

using k-mean clustering. The centroids of each sub-regions are marked by a black square and the limits are indicated with blue

lines.

For the implementation of Eq. 2, PV system installed capacity Pinstalled,x and meteorological information241

(Gx,t, T2m,x,t) are needed for each location x of the considered region. With this information, the right-side242

of Eq. 2 (H[t, k]) can be calculated for each sub-region Rj . This quantity corresponds to the weighted sum of243

the simulated power values for a configuration Vi, the weights being the installed capacities. The unknown244

of the problem are the weights wi,Rj for each reference configuration Vi and sub-region Rj .245

It is convenient to express Eq. 2 in matrix notation Y = HW . The column vector Y contains aggregated246

PV power generation in a given region at different time steps t. The vector W contains the unknowns of247

the problem wi,Rj
, and H is a matrix containing the sum of the simulated PV power values for each248

combination of sub-region and reference orientations (column) and time steps (row). For the sake of clarity,249

the relationship between the summation and matrix notations are indicated by underbraces in Eq. 2. In250

this illustration, k is an index that screens all combinations of reference orientations i and sub-regions j.251

The above described summation of the simulated PV power weighted by the installed capacity to evaluate252

the matrix X corresponds to the step (2) of the flow chart given in Figure 1.253
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3. Estimation of the model parameters254

3.1. Approach255

The problem described in section 2.5 is inverse: we start with results (aggregate PV power generated256

within the region) then calculate the cause (weights for all PV systems with the reference orientation257

combinations). This is the opposite to previous methodologies (Nuno Martinez et al., 2018; Saint-Drenan258

et al., 2017) where the authors start with the cause (the distribution of the PV systems according to the259

region and reference orientation combinations) and then calculate the result. Inverse problems feature260

heavily in literature (Nakamura and Potthast, 2015; Colton and Kress, 1997; Engl et al., 2000). They are261

common in many research fields, especially in meteorology: the retrieval of cloud optical characteristic, the262

assimilation of measurements in numerical weather prediction models, to name a few.263

Solving inverse problems is non-trivial as they are typically ill-posed. Among the three Hadamard264

conditions for a well-posed problem (Hadamard, 1902)—existence, uniqueness, and stability of the solution—265

the conditions of uniqueness and stability are often violated. Particularly with a great number of unknown266

parameters, an observation can be explained by several causes (violation of the uniqueness condition). In267

our application, multicollinearity of the input data poses an issue (see section 2.3). The linear dependency268

among regressors is reflected in the solution space, where many possible combinations of the solution vector269

components lie within a narrow valley (in high dimension) all positioned very close to the minimal residual270

sum of squares. In such cases, changes in the model output can instead be obtained by changes in the model271

input parameters.272

Small perturbations in the input data can bring about noticeable changes in the solution (violation of273

the stability condition). Such problems can be addressed by using regularization techniques; for example,274

the generalized Tikhonov regularization, whereby the deviation of the solution from the initial guess is275

penalized (Tikhonov, 1963). This approach requires the choice of regularization parameters that balance276

the respective effects of the error and regularization terms (Nakamura and Potthast (2015), Chapter 3.1.6).277

There are many techniques for motivating the choice of the regularization parameter; however, selection278

remains a non-trivial and delicate issue. Alternatively, regularization parameter selection can be entirely279

avoided with a Bayesian approach.280

In the Bayesian framework (see for example Nakamura and Potthast (2015) chapters 4.2 and 5.6, Crisan281

and Bain (2009) or Crisan et al. (2014)) our goal is to find the set of parameters W giving the highest282

posterior probability P (W | Y ) given W . To this end, we use the well known Bayes law:283

P (W | Y )︸ ︷︷ ︸
posterior

∝ P (W )︸ ︷︷ ︸
prior

P (Y |W )︸ ︷︷ ︸
likelihood

(3)

We assume that the prior P (W ) can be approximated by a Gaussian distribution with mean value Wfg284

and covariance matrix B. Similarly for the likelihood P (Y | W ), we take a Gaussian distribution with285
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zero mean and covariance matrix R. The covariance matrix B can be interpreted as a quantification of286

the possible variations of the resultant vector around the first guess; the second covariance matrix R, a287

quantification of the uncertainty of the observations Y .288

With these notations, the posterior probability can be written:289

P (W | Y ) ∝ exp

(
1

2
(W −Wfg)TB−1(W −Wfg)

)
× exp

(
1

2
(HW − Y )TR−1(HW − Y )

)
. (4)

Given than maximizing the likelihood is equivalent to minimizing the logarithm of the above expression290

(Freitag and Potthast, 2013), the desired solution Wopt is to minimize the following functional:291

J(W ) =
1

2
(W −Wfg)TB−1(W −Wfg) +

1

2
(HW − Y )TR−1(HW − Y ). (5)

The solution that minimizes the above cost function J has zero gradient (∇WJ = 0). This condition292

allows the explicit determination of the solution to Eq. 5:293

Wopt = Wfg +
[
B−1 +HTR−1H

]−1 × (HTR−1
)

(Y −HWfg) (6)

This relationship, which corresponds to the expression of the generalized Tikhonov regularization, can294

now be used for estimating the weights that correspond to the different reference orientation combinations.295

To this end, the estimation of the initial guess and covariance matrices (R and B) is achievable—detailed296

in the following subsections. It is illustrated by the step (5) in Figure 1.297

3.2. Determination of the initial guess298

As mentioned previously mentioned, the unknown parameters W can be interpreted as the distribution299

of PV systems according to the different possible orientations and to each sub-region Rj . This interpretation300

can be exploited to evaluate the initial guess Wfg.301

The same approach to evaluate our initial guess was presented by Saint-Drenan et al. (2017). A database302

including module orientation angles for more than 20,000 systems is used to evaluate the share of the total303

capacity corresponding to each of the reference orientation combinations. When evaluating the initial guess,304

we neglected the potential geographical dependence of the parameters of our regional model. The distribu-305

tions were thus evaluated using all PV systems in the database regardless of their location in Germany. If306

sub-regions are later considered, we assume that the same distribution can be used as an initial guess for307

each sub-region. Regions can and do present distinct differences in orientation; when considering a larger308

aggregate statistic, these nuances can be ignored—Killinger et al. (2018) (fig. 3) visually demonstrates a309

distinct north-south division in PV system orientation for France. In Figure 6, the components of the first310

guess vector are represented by squares that are coloured as a function of the module azimuth and tilt311

angles. The statistical analysis aiming at the estimation of the first guess is represented by the step (3) in312

Figure 1.313
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Figure 6: Values used for the initial guess (colour of the squares) as a function of the module azimuth and tilt angles.

3.3. Estimation of the background covariance matrix314

The background covariance matrix B quantifies the expected dispersion of the parameter vector around315

the initial guess Wfg. In order to evaluate this distribution, we generate a set of perturbed first guess vectors316

using the approach described in section 3.2:317 {[
w̃

(p)
1 ...w̃

(p)
j ...w̃(p)

nref

]T
.p = 1...10000

}
(7)

The perturbation uses only 1000 randomly chosen PV systems instead of the total dataset. Indeed, a random318

sub-sampling of the set of PV systems brings about variations of the original distribution of PV systems319

according to the reference orientation combinations. However, we assume that with a sufficiently small320

number of samples and a sufficiently large number of iterations, the range of possible values taken by the321

resulting distribution is accounted for. This approach is re-iterated 10,000 times to populate a set of possible322

solutions that are subsequently used for the estimation of the background matrix B.323

The set of randomly evaluated parameter sets is then used to calculate each component bi,j of the matrix324

B using the following relationship:325

bi,j = Cov

([
w̃

(i)
1 ...w̃

(i)
k ...w̃(i)

nref

]T
,
[
w̃

(j)
1 ...w̃

(j)
l ...w̃(j)

nref

]T)
. (8)

All PV systems are considered in the covariance estimation so that the resulting matrix reflects the true326

covariance of the model parameters for Germany (note that, when applying this methodology to a different327

country/region, a representative covariance matrix is required). We assume that the same covariance holds328

true for each sub-region and that the covariance of two parameters in different regions is null.329

The estimation of the background covariance matrix using a dataset of PV system metadata corresponds330

to the step (3) in Figure 1.331
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3.4. Estimation of the observation error covariance matrix332

The observation error covariance matrix quantifies the uncertainty of the observation vector R. We333

assumes that this error is time-independent so that R can be expressed as the product of an identity matrix334

with a scalar. We further assume that the variance of the error obtained with the initial guess Wfg evaluated335

over a training time period can be used as an approximation of that of the error variance. As a result, R336

can be evaluated as follows:337

R = V ar (HWfg − Y ) · I (9)

The estimation of the R is subjected to several assumptions that can have a non negligible impact on the338

results. By choosing this simple and rough approach to gain insight on the benefit of the Bayesian approach339

applied to our problem, future work is needed to improve the estimation of this matrix. It is represented by340

the step (4) in Figure 1.341

4. Results342

This section is separated into four parts. The data are firstly introduced in section 4.1. The training343

period and validation procedure is described in section 4.2. Model performance looking particularly impacts344

from regularization and changing number of sub-regions is presented in section 4.3. Comparisons of the345

newly proposed forecasting approaches are compared to persistence, initial guess, and the TSO forecast in346

section 4.4.347

4.1. Data348

The first type of information needed for implementing our method is an estimation of the aggregated PV349

power produced in the considered area. In this work, we use TSO estimates of the aggregated PV power350

generation for three German control areas: TenneT, Amprion and 50Hertz. For each control area, time series351

of the estimated aggregated PV power generation as well as the installed PV system metadata (location,352

peak power and time of installation) are available. The time series of the regional PV power estimates have353

a temporal resolution of 15 min and are available for the years 2014 and 2015. A short description of these354

data provided by the German TSOs can be found in Saint-Drenan et al. (2017).355

The second input required by our model is meteorological data and more precisely the global horizontal356

irradiation and air temperature. The most natural choice is to select the most accurate gridded data, as for357

example reanalysis and/or satellite data. As reported by Ineichen (2014) or Boilley and Wald (2015), these358

data have their own sources of error that can add to forecast error of the NWP data used for the predic-359

tion. We therefore chose the pragmatic option of using directly the NWP forecast data for the parameter360

estimation in a way to avoid double penalty error described above. Forecasts from the Integrated Forecast361
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System (IFS) model run by the European Center for Medium-Range Weather Forecast (ECMWF) are there-362

fore used for the calculation of the PV power generation for each region and for each reference orientation363

(matrix H). Hourly gridded 2m ambient temperature (2T) and solar surface radiation downwards (SSRD)364

are available at 0.125× 0.125◦ spatial resolution; they are collected, prepared and linearly interpolated to a365

15 min temporal resolution corresponding to the PV power. Only forecast data with a lead time between366

24 and 48h for the run starting at 00:00 (GMT) are used to evaluate day-ahead forecast.367

Finally, we used the operational forecast published by the three TSOs on their website to benchmark368

the output of our model. These forecast are calculated by the TSOs using several forecasts of the regional369

PV power generation from private forecast providers. These individual forecasts are optimally mixed and370

calibrated using the reference PV production value.371

In this work, we decided to show the potential of our approach using real-world operational data: the372

parameters of the regional model are estimated using TSO estimates of the PV power production and the373

model output is compared to TSO day-ahead forecasts. If this approach allows demonstrating the practical374

relevancy of our work, it has also some drawbacks: uncertainties in the TSO data 2 used for training375

and validation can bring about errors, that are impossible to differ from the actual error of our method.376

An alternative to avoid these undesired effects would have consisted in generating synthetic data. Yet, we377

preferred evaluating the performances of our method in real conditions because the motivation of the present378

work is strongly linked to the targeted application. As a consequence, it is important to bear the real-world379

settings of the validation in mind to properly interpret the results presented in this chapter.380

4.2. Training and validation setup381

An adaptive approach has been chosen to train the model (see Figure 7). The model parameters are382

evaluated and tested for the year 2015 on a monthly basis using 12 months of training data preceding383

each test time-period. This restrains various issues that could lead to differences in characteristics between384

training and testing data, such as regular improvement of NWP models, change of the TSO estimates (e.g.385

extension of the set of reference systems with time), or, new installed PV systems over time.386

The presence of snow on PV systems results in negligible PV power generation that would not be387

appropriately represented in our proposed system without additional complexity. Since this effect is not388

considered, days marked by the presence of snow in Germany must be excluded from the training and testing389

data (see Figure 7). To do this, days with snow have been identified using snow height data at 200 German390

SYNOP stations collected from the OGIMET website (www.ogimet.com). The network of SYNOP station391

is coarse; we decided to exclude each day when snow is reported at more than one meteorological station as392

2The major sources of uncertainty are the uncertainty of the regional estimates and the information on the installed PV

capacity.
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Figure 7: Graphical representation of the training and testing setup (upper plot) and number of days available for training and

testing (lower plot).

a conservative measure. Should large NWP forecast errors be present at the training phase of the model, the393

whole approach will be unjustly penalized. To avoid this, all days were excluded from the training dataset394

only if at least one value of the first guess forecast error exceed 0.2W/Wp. This latter criterion is not applied395

to the testing data set.396

Finally, training and testing routines were conducted at three control areas with a varying number of397

sub-regions (1 to 5).398

For each forecast considered in this work, all standard error metrics were evaluated using only daytime399

values; these results are presented in Table 2. In the two next sections, the performances of the forecast400

methods will be discussed with a focus on the RMSE values. Indeed, this metric is widely used by TSOs and401

forecast providers to assess the forecast accuracy as it well reflects the expectations on the performances of402

the forecasting methods for grid integration mechanism.403
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Figure 8: Effect of the number of sub-regions on the model performances for the three considered control areas (the limits of

the y-axis have been scaled to illustrate best the differences between models).

4.3. Model performance impact from regularization and varying number of sub-regions404

In Figure 8, RMSE values obtained with an ordinary least square regression (OLS) and the Bayesian405

method are displayed for 1 to 5 sub-regions. Considering Figure 8, it is remarkable that the two approaches406

yield very different results based on the data of the three transmission system operators. Disregarding407

the influence of regions and focusing only on the average differences between the OLS regression and the408

Bayesian method, we confirm that the added value of the regularization is not systematic. A beneficial409

and a moderate improvement of regularization can be observed for TenneT and 50 Hertz, respectively, as410

indicated by smaller RMSE values from the Bayes method; regularization brings about an increase of the411

RMSE values for Amprion. There are likely many causes for the observed differences; however, the most412

probable explanation is that the initial guess—and to a lower extent the covariance matrix B—computed413

for the whole Germany is not representative for the three control areas. The initial guess and the covariance414

matrix approach was motivated by the limited number of information about the PV systems installed in415

Germany. A calculation with a initial guess and covariance matrix B specific to each region would be416
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Figure 9: Comparison of the weights evaluated with the ordinary least-square regression (OLS) and those obtained with the

Bayesian method with one sub-region for the Amprion control area.

of interest at a later data as soon as more information is available on the installed PV systems in the417

respective regions. Even though RMSE from the Bayes method is worse than that of the OLS regression in418

Amprion, the resulting parameters are still more robust due to the nature of a Bayes methodology. This is419

observed in Figure 9 where the parameters obtained from the OLS regression are compared to the regularized420

counterpart. While the Bayes method parameters closely resemble the actual values, those obtained through421

OLS regression can be very high and even negative—physically impossible. Under these circumstances, if422

testing data were to exist outside the parameterized domain from the training data, it must be accepted423

that a forecast trained with OLS regression may yield meaningless results due to the collinearity of the input424

features —this will not happen with the Bayesian method. Physically meaningful parameters are preferable425

–even at the cost of a lower performance– in operational context, where a reliable forecast system is needed.426

The evolution of the RMSE with increasing number of sub-regions is also very different across the three427

main regions. While increasing the number of sub-regions results in a small but steady RMSE decrease with428

the Bayes method for the three control areas, the effect of the number of regions on the performances of the429

OLS method is very different from one control area to another. In the TenneT and Amprion control areas,430

it is observed that the RMSE decrease for OLS regression is relatively more consistent and pronounced. By431

contrast in the 50 Hertz control area, RMSE from OLS regression decrease from 1 to 3 sub-regions, but432

increase again thereafter; this is presumably the result of a lack of generalization from too many degrees433

of freedom with more sub-regions (overtraining). With too many parameters, the model has a tendency to434

learn information that corresponds too closely to the training data set (such as rare events or even noise);435

therefore, it fails to generalize the trained dependencies to testing data. If inferring model parameters for436

1 to 3 sub-regions can appear less considering the numerous PV systems installed in the different regions,437

it should be pinpointed that the spatial differentiation is made using only one time series of the aggregated438
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PV power production. It can therefore be expected that modifying the approach to integrate more data439

(DSO aggregated power, time series of single PV systems, dataset of PV metadata...) would enable a better440

spatial characterization of the unknown fleet of PV systems.441

4.4. Benchmarking model performance against alternative forecasts442

In this section, the forecasting performances from the Bayesian method is compared to alternative fore-443

casts methods in order to evaluate any added value. We evaluated the performance of 5 different forecasting444

approaches at each of the three control areas. RMSE results are displayed in Figure 10.445

The first comparison is against smart persistence, whereby the current day’s TSO estimate is used446

as the forecast for the following day. The second comparison is from the initial guess (without training447

phase), which corresponds to the approach described in Saint-Drenan et al. (2017). The performances of448

the Bayesian method and OLS regression with 1 to 5 sub-regions are also considered in this evaluation449

for additional insight. The final comparison is against the publicly available day-ahead forecasts from the450

German TSOs.451

It is generally considered good practice to include persistence forecast in a benchmark as it shows452

the added value of more advanced method (Yang et al., 2017). Persistence can yield remarkable results453

with stable weather conditions over several days, however leads to significant errors under variability. For454

day-ahead prediction, it is well established that NWP-based forecasts outperform persistence forecasting—455

Figure 10 corroborates this.456

The exceptional performance of the initial guess, Bayesian method and OLS regression forecasting at457

Amprion is not representative and is now a subject of discussion with the German TSO; clearly the published458

forecast not the best forecasting approach, even though it has been made public by Amprion. Similar459

observations were already made by Saint-Drenan et al. (2017) in a previous work. We believe it would be460

a poor representation of the described approach to consider Amprion in our analysis as there are evidently461

issues with the published Amprion data; as such, Amprion data are not considered in the present discussion.462

Comparing the Bayesian method performance against the initial guess quantifies the benefits of train-463

ing the parameters on historical data. We clearly demonstrate that including the training stage reduces464

the RMSE by 0.08 and 0.12 10−2 W/Wp for TenneT and 50 Hertz, respectively, representing relative im-465

provements of 2.05 and 2.59%—a small but clear improvement. Ultimately, training the model parameters466

offers real added value to the forecasting skill. We also note that the initial guess is already a reasonable467

approximation of the true model parameters.468

Comparing to the RMSE from the initial guess, the Bayesian method and OLS regression corroborates469

our initial assumption that the parameters of the regional model can be inferred from the aggregated PV470

power generation. For TenneT, OLS regression RMSE is greater the Bayesian method and initial guess471

RMSE results. This indicates that Bayesian regularization avoids issues from overtraining. For 50 Hertz,472
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Figure 10: Comparison of the RMSE obtained with the different forecasts for TenneT (upper plot), Amprion (middle plot) and

50Hertz (lower plot)
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OLS regression RMSE is better than initial guess RMSE. Thus, it is possible than the initial guess is sub-473

optimal but is balanced by the Bayesian inference, which ultimately yields a smaller RMSE than simple474

regression.475

Our Bayesian method model output is finally compared to the TSO day-ahead forecast. TSO forecast476

RMSE values (excl. Amprion) are noticeably smaller than the alternative forecasts. TSO forecasts are the477

output of an optimized ensemble from several weather models; the ensemble is optimized daily by means478

of an adaptive method accounting for the actual value of the power production. In contrast, our simpler479

forecast only uses a single weather model that is optimized on a 12 month period. Given the substantial480

differences in required input data and adjustment techniques between the TSO and Bayesian forecasts, it481

is unsurprising that TSO forecasts have a better skill. Outperforming the TSO forecast is an unrealistic482

expectation with the proposed methodology. Instead, TSO forecasts are indicative expected performance483

from highly optimized forecasting approaches; this makes them a useful benchmark for the present evaluation.484

Figure 10 and Table 2 show that the difference between RMSE values obtained with the Bayesian method485

and TSO data decrease from 0.18 % (3.90 % - 3.72 %) with the initial guess to 0.10 % (3.82 % - 3.72 %) with486

the Bayesian method for Tennet; and from 0.26% (4.64 % - 4.38 %) to 0.14% (4.52 % - 4.38 %) at 50 Hertz.487

This result clearly demonstrates the potential of the proposed methodology with respect to the previous488

versions (Saint-Drenan et al., 2017). As the Bayesian method has performance close to TSO forecasting,489

we expect significant rewards from further methodological development. Potential improvement avenues490

are–but not limited to—consideration of an ensemble of NWP models, and incorporation of advanced MOS491

technique, such as exponential smoothing, Kalman Filter to track change of the fleet of PV systems, and492

mitigate NWP forecast error.493

5. Discussion and conclusions494

In this paper, a Bayesian method to parameterize a regional PV power forecasting model is proposed495

using only time series of regional PV power generation. This work addresses a need of forecast providers who496

must compete with transmission system operators (TSOs) estimates of the regional PV power generation497

without having access to critical information about the PV installations within the region.498

The proposed approach is based on a linear regional PV model previously defined in literature (e.g.499

Saint-Drenan et al. (2017)). We made considerable effort to minimize the number of unknowns, especially500

when calibrating the reference orientation combinations and the selecting spatial constraints. Restricting501

of the number of predictors—or regularization by discretization—is interpreted as a projection method.502

We proposed a regularization that is based on a Bayesian problem formulation and describe a method to503

approximate the initial parameters as well as the covariance matrices required.504

There is the possibility to consider different number of sub-regions in our model, whereby a larger region505
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is considered as the sum of all sub-regions. We found out that the sensitivity of the forecast performance on506

the number of sub-regions is very different for the 3 TSOs considered; while better performance was obtained507

from using more sub-regions for Amprion and TenneT, it is moderate to negative for 50 Hertz. This finding508

is probably a result of the actual PV system characteristics in the wider region as well as from the quality509

of the first guess and covariance matrices. Finally, it is clear that the model is prone to overtraining with an510

increasing number of degrees of freedom. Overtraining issues can be efficiently addressed by the proposed511

regularization technique. We illustrated this by exposing the coefficients as obtained by the OLS regression;512

they were frequently unrealistically high or even negative values. In parallel, coefficients from the Bayesian513

method were reasonable, positive and physically likely, resulting in a more robust parameterization.514

Data from three German TSOs was used to evaluate forecasting performance. We find that, as long as the515

initial guess and covariance matrices are well-defined, the proposed approach offers significant added value516

with respect to persistence, an OLS regression, or to using only the initial guess. Interestingly, we identified517

that the Amprion TSO forecast was operating at significantly sub-optimal performance; for representation518

of our methodology, we excluded Amprion from our overall conclusions. A comparison of forecasts within519

TenneT and 50 Hertz regions showed that all approaches were better than persistence. The initial guess from520

our method was better than OLS regression with only < 4 sub-regions; however, OLS regression was better521

than the initial guess forecast at 50 Hertz. The Bayesian method was better than OLS regression and the522

initial guess. This is indicative of added value from Bayesian parametrization and from a parametrization523

approach.524

With our method, the initial parameters and covariance matrices are inferred from a dataset containing525

metadata of numerous PV systems, however, information on installed PV systems in terms of installed526

capacity and spatial distribution are still required. Although our method has a reduced dependency on data527

availability than alternative methods, this initial parametrization is compensated by Bayesian parameter528

estimation; regardless, this overarching PV data is still needed. An interesting solution arises from the529

impressive work of collection, analysis and synthesis of PV system metadata statistics presented by Killinger530

et al. (2018), which constitutes exemplary research that can potentially improve the performances of regional531

forecasts in the future by removing the data dependency.532

We trained the model parameters on a NWP weather forecast, selected because the targeted application533

is day-ahead regional PV power forecasting. It would be interesting to train the model parameters on alter-534

native datasets, such as reanalysis or satellite data, to minimize the input error influence on the parameter535

estimation. Furthermore, integrate robust regression methods in the proposed approach to limit sensitivity536

to large input data errors is of interest.537

In this work, we focused on the prediction of the regional PV power generation for the TSO but our538

approach can be used in any application where a regionally distributed fleet of PV systems needs to be539

modeled and information on the aggregated PV power production is available.540
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Finally, our approach could be extended to evaluate model parameters using different sources of informa-541

tion of different natures. The proposed framework indeed offers the possibility - with a minimal adaptation542

- to assimilate, in addition to aggregated power estimates, power measurements of individual PV systems543

or even aggregated power estimation of sub-regions (DSO estimates) to better assess the model parame-544

ters. This would allow getting more reliable information on the fleet of installed PV system but also better545

characterizing the PV systems by using more sub-regions.546
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Appendix A. Description of the control area of the German TSOs635

Description of the control area of TenneT

636

Description of the control area of Amprion

637
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Description of the control area of 50 Hertz

638
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a) TenneT control area

Number of values: 12 473

Average power: 0,2091 W/Wp

Persistence First guess Bayesian method OLS regression TSO forecast

min / max min / max

correlation [-] 0,8815 0,9724 0.9737 / 0.9738 0.9723 / 0.9729 0,9806

bias [W/Wp] -0,0008 -0,0038 -0.0059 / -0.0057 -0.006 / -0.0053 0,0131

std [W/Wp] 0,0808 0,0388 0.0378 / 0.0379 0.0384 / 0.0388 0,0348

MAE [W/Wp] 0,0538 0,0263 0.0258 / 0.0259 0.0264 / 0.0266 0,0249

RMSE [W/Wp] 0,0808 0,0390 0.0382 / 0.0383 0.0389 / 0.0392 0,0372

b) Amprion control area

Number of values: 12 451

Average power: 0,2307 W/Wp

Persistence First guess Bayesian method OLS regression TSO forecast

min / max min / max

correlation [-] 0,8601 0,9731 0,9730 / 0,9732 0,9735 / 0,9746 0,9638

bias [W/Wp] 0,0001 -0,0034 -0,0015 / -0,0013 -0,0032 / -0,0028 0,0013

std[W/Wp] 0,0972 0,0423 0,0422 / 0,0424 0,0411 / 0,0420 0,0527

MAE [W/Wp] 0,0637 0,0286 0,0284 / 0,0285 0,0280 / 0,0287 0,0360

RMSE [W/Wp] 0,0972 0,0425 0,0423 / 0,0424 0,0412 / 0,0421 0,0527

c) 50 Hertz control area

Number of values: 12 111

Average power: 0,2380 W/Wp

Persistence First guess Bayesian method OLS regression TSO forecast

min / max min / max

correlation [-] 0,8710 0,9712 0,9720 / 0,9722 0,9716 / 0,9720 0,9736

bias [W/Wp] 0,0022 0,0018 -0,0046 / -0,0045 -0,0048 / -0,0043 -0,0011

std [W/Wp] 0,0973 0,0464 0,0449 / 0,0451 0,0451 / 0,0454 0,0438

MAE [W/Wp] 0,0646 0,0302 0,0299 / 0,0300 0,0299 / 0,0302 0,0285

RMSE [W/Wp] 0,0973 0,0464 0,0451 / 0,0453 0,0454 / 0,0457 0,0438

Table 2: Different error metrics obtained with the various forecast approaches for the control areas of a) TenneT, b) Amprion

and c) 50 Hertz
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