
HAL Id: hal-02174649
https://hal.science/hal-02174649v1

Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain-Level Observation and Control for Compiled
Executable DSLs

Erwan Bousse, Manuel Wimmer

To cite this version:
Erwan Bousse, Manuel Wimmer. Domain-Level Observation and Control for Compiled Executable
DSLs. IEEE / ACM 22nd International Conference on Model Driven Engineering Languages and
Systems (MODELS), Sep 2019, Munich, Germany. �10.1109/models.2019.000-6�. �hal-02174649�

https://hal.science/hal-02174649v1
https://hal.archives-ouvertes.fr

Domain-Level Observation and Control for
Compiled Executable DSLs

Erwan Bousse
University of Nantes – LS2N, France

Email: erwan.bousse@ls2n.fr

Manuel Wimmer
CDL-MINT, Johannes Kepler University Linz, Austria

Email: manuel.wimmer@jku.at

Abstract—Executable Domain-Specific Languages (DSLs) are
commonly defined with either operational semantics (i.e., in-
terpretation) or translational semantics (i.e., compilation). An
interpreted DSL relies on domain concepts to specify the possible
execution states and steps, which enables the observation and
control of executions using the very same domain concepts.
In contrast, a compiled DSL relies on a transformation to an
arbitrarily different target language. This creates a conceptual
gap, where the execution can only be observed and controlled
through target domain concepts, to the detriment of experts
or tools that only understand the source domain. To address
this problem, we propose a language engineering architecture
for compiled DSLs that enables the observation and control
of executions using source domain concepts. The architecture
requires the definition of the source domain execution steps and
states, along with a feedback manager that translates steps and
states of the target domain back to the source domain. We
evaluate the architecture with two different compiled DSLs, and
show that it does enable domain-level observation and control
while increasing execution time by 2× in the worst observed case.

Index Terms—Software Language Engineering, Domain-
Specific Languages, Executable DSL, Compilation, Feedback

I. INTRODUCTION

A large number of Domain-Specific Languages (DSLs) can
be used to describe the dynamic aspects of systems (e.g., [1]–
[4]). In that context, early dynamic verification and validation
(V&V) techniques, such as omniscient debugging [5], test-
ing [6], or tracing [7] are necessary to ensure that models
conforming to such languages are correct. These techniques
require models to be executable, which can be achieved by
defining the execution semantics of the DSLs used to define
them. To that effect, a lot of efforts have been made to provide
facilities to design so-called executable DSLs (e.g., [8]–[12]),
which can be used to define executable models. More pre-
cisely, two different approaches are commonly used to define
the semantics of an executable DSL: operational semantics
(i.e., interpretation) and translational semantics (i.e., compila-
tion). In this paper we are interested in both approaches, and
we specifically focus our work on discrete-event semantics.

All previously mentioned V&V approaches rely on two
key tasks: the observation of the progress of the execution
(e.g., which execution steps are occurring), and the control
of the execution (e.g., pausing and resuming). With an in-
terpreter, the dynamic state of a model conforming to the
DSL is defined along with the possible execution steps that
modify such state over time. These definitions can directly

rely on domain-specific concepts, opening the possibility to
observe and control executions from a domain perspective
(e.g., visualizing the active state of a state machine). However,
with a compiler, a model conforming to the DSL is translated
into another executable language. By default, observing the
resulting execution yields information specific to the target
language instead of the considered DSL, i.e., there is no
feedback at the domain level. For instance, when code is
generated from a model, it is common to rely on an interactive
debugger of the target language, but without the possibility to
directly relate information back to the original model.

While ad-hoc solutions have been proposed for both com-
piled programming languages (e.g., jdb translates bytecode-
level information back to the Java-level) and compiled mod-
eling languages (e.g., several UML code generators provide
model-level feedback [13]), there is to our knowledge no
systematic approach to provide domain-level observation and
control for any compiled DSL. Having such an approach
would in addition enable the use and reuse of a wide range
of runtime services—i.e., tools that provide dynamic V&V—
at the domain-level of compiled DSLs. However, to obtain
such benefits, some important challenges must be considered:
(1) the same level of observation and control must be provided
for compiled DSLs as what is possible for interpreted DSLs;
(2) the use of a wide range of runtime services must be
possible with compiled DSLs, and, to reduce development
efforts, the reuse of the same runtime services must be possible
among both interpreted and compiled DSLs; (3) the overhead
on the execution time must be as small as possible.

To address these challenges, we propose a language engi-
neering architecture where a compiled DSL is supplemented
with a feedback manager, which relies on traceability links to
translate execution steps and states of the target language back
into the original domain. This feedback manager is connected
to the ongoing execution of the target model, and thus provides
domain-level feedback at execution time. Runtime services
(e.g., an interactive debugger or a tracer) may be attached to
the feedback manager in order to continuously observe and
control the execution at the domain-level. In addition, runtime
services can interchangeably be used both for interpreted and
compiled DSLs. To limit the overhead during the execution,
the state of the source model is only modified when changes
occur in the state of the target model.

We implemented our approach as part of the execution

framework of the GEMOC Studio, an Eclipse-based language
and modeling workbench. Our evaluation relies on the appli-
cation of the proposed architecture on two different compiled
DSLs: first a subset of fUML activity diagrams compiled
to Petri nets, and second, a subset of UML state machines
compiled to MiniJava. Results show that two existing runtime
services initially targeting interpreted DSLs can be used for
both DSLs, while increasing execution time by 2x in the fUML
case, and by 1,01x in the UML state machines case.

Section II defines the scope of considered executable DSLs.
Section III gives an overview of the architecture, which is then
presented in Section IV. Section V presents our evaluation.
Section VI compares the related work with our approach.
Finally, Section VII concludes with research directions.

II. EXECUTABLE DSLS

A. Abstract Syntax

We focus in this paper on metamodel-based DSLs,
i.e., DSLs whose abstract syntaxes are metamodels defined
using metamodeling languages (e.g., MOF [14] or Ecore [15]).

Definition 1. A metamodel is composed of a set of meta-
classes, each composed of a set of properties typed either by
another metaclass or by a primitive type.

Accordingly, a model conforming to a metamodel takes the
form of an object graph where each object is an instance of a
metaclass of the metamodel. An object is composed of fields,
each setting the value of a corresponding property.

The top-left corner of Figure 1 shows the abstract syntax
of a Petri nets DSL. It contains three metaclasses: Net, Place
and Transition. Each metaclass contains properties; for instance
Net contains a set of Place and Transition objects through the
places and transitions properties.

B. Interpreted DSL

An interpreted DSL is based on an operational semantics,
in which we distinguish three main constituents.

First, the possible execution states of models conforming
to an interpreted DSL must be defined. This is commonly
accomplished either by extending the abstract syntax with
dynamic properties and metaclasses [9], [16]—in which case
the state is part of the executed model—or by defining a
separate metamodel [17]—in which case the state is a separate
model. While our proposed architecture remains valid with
both approaches, our examples in this paper rely on the first
one, i.e., the possible states are defined by extending the
abstract syntax with new dynamic properties and metaclasses.

Second, we call interpretation rules what defines how the
state of an interpreted model changes over time. Such rules
can be defined using a wide range of model transformation
techniques (e.g., Java or Xtend with EMF [15], Kermeta [16],
xMOF [9], ATL [18], [19], etc.).

Third, the possible execution steps that may occur during
the interpretation of a model must be defined. We call an
execution step a set of observable changes applied on the
model state. Accordingly, the model state is considered to be

only observable either just before or just after the changes
embodied by a step were performed. A step also carries data
such as a name (e.g., “fire” step for when a transition is fired,
“call” step for when a method is called) and data on the
elements involved in a step (e.g., the transition that was fired,
the method that was called). A step can be composite, in which
case the only changes it carries are those of its children steps.
Execution steps are produced at runtime by the interpretation
rules of the DSL, and can be used as input data by runtime
services (e.g., monitoring, tracing, interactive debugging) to
observe the execution progress. The possible execution steps
of an interpreted DSL can be defined in various ways, e.g., by
considering that each interpretation rule produces a kind of
step, or by defining step types in a separate model.

To summarize, the interpreted DSLs considered in the scope
of this paper can be defined in the following way:

Definition 2. An interpreted DSL is defined by the following
elements: (1) An abstract syntax, that is a metamodel. (2) An
operational semantics (or interpreter), with: a) A model state
definition, b) A set of interpretation rules, c) A definition of
execution steps that are produced by the interpretation rules.

Figure 1 shows an example of a interpreted Petri nets
DSL. Next to the abstract syntax—described in Section II-A—
the model state definition is shown. It is a metamodel that
extends the metaclass Place using package merge with a new
dynamic property tokens. At the right, short descriptions of
the interpretation rules are depicted. When called, these rules
change the tokens fields of the different Place objects, with
run being the entry point of the execution. Each rule defines
a kind of step, e.g., an application of the fire rule produces
a step called “fire” pointing to the Transition that was fired.
When applied, the fire rule consumes tokens from all input
Place elements of a given Transition, and produces tokens in
all its output Place elements.

Lastly, executing a model conforming to an interpreted
DSL consists in creating an initial state, and in running the
interpretation rules that will both change this state over time
and produce steps. We call observation point an instant in the
execution reached just before or just after each step.

Figure 2 presents an execution trace of a Petri net conform-
ing to the Petri net interpreted DSL shown in Figure 1. The
trace is composed of four model states (from A to D), on top
of which the steps of the execution are depicted as arrows.
Three steps where produced by the applications of the fire
step rule. They are enclosed in a larger step that goes from
the first model state (A) to the last model state (D), which is
the application of the run rule. The possible observation points
(from 1 to 6) are depicted in diamond shapes.

C. Compiled DSL

A compiled DSL is based on a translational semantics,
i.e., a model transformation from the abstract syntax of the
considered DSL, to the abstract syntax of another executable
target language. As compared to an interpreted DSL, a com-
piled DSL does not explicitly define how the execution is

Abstract Syntax

input
1..*
output
1..*

Net

Place
name: String
initialTokens: Integer

Transition
name: String

places
* importsmerges

Model State Definition

Place
tokens: Integer

Interpretation rules (summarized)

run(Net)
fire(Transition)

: while there is an enabled transition, fires it.
: removes a token from each input Place
and adds one to each output Place.

*
transitions

Figure 1: Petri nets interpreted DSL

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

p1

p3

p2

p4

p5

t1

t2

t3

fire(t1) fire(t2) fire(t3)

run(net)

A B C D

1 2 3 4 5 6

p3

p1

p2

A model
state

step
foo()

1
observation
point

Figure 2: Example of execution trace of a Petri net model conforming to the Petri net DSL shown in Figure 1.

Petri nets
abstract
syntax

AD abstract syntax

Activity

Edge

Action ForkNode JoinNodeInitialNode FinalNode

<<abstract>>

NamedElement
+name: String

source
1

target
1

outgoing
*

incoming
*

nodes
*

edges
*

<<abstract>>

Node

transformActivity(Activity)
transformEdge(Edge)
transformAction(Action)
...

: Creates a Net
: Creates a Place
: Creates a Place and two Transitions

imports

Compiler (summarized)

imports

Figure 3: Activity Diagram compiled DSL, which uses the
Petri net DSL shown in Figure 1 as a target language

performed in terms of states and steps of the source domain,
and relies instead on the execution of target models obtained
after compilation. In summary, the compiled DSLs considered
in the scope of this paper are defined as follows:

Definition 3. A compiled DSL is composed of: (1) An abstract
syntax, that is a metamodel. (2) A translational semantics (or
compiler), that is a model transformation from the abstract
syntax of the compiled DSL, to the abstract syntax of another
executable language.

Figure 3 shows an example of an Activity Diagram com-
piled DSL which uses the Petri nets DSL from Figure 1 as a
target language. This example is a simplified version of the
part of fUML [1] related to the control flow of activities.
The proposed translational semantics is inspired from several
approaches aiming at translating UML activities and process
models to Petri nets [20], [21]. At the top, the abstract syntax
defines an Activity as a set of inter-connected Node and Edge
objects, with several types of nodes. InitialNode and FinalNode
mark the beginning and the end of the Activity. A ForkNode
starts concurrent execution branches, which can be joined back
in a JoinNode. An Action represents an opaque action realized

A

B

C

e1 e2
e3

e4

e5

e6

e7

Init End
JF

Figure 4: Example of an activity conforming to the compiled
DSL shown in Figure 3.

in the process. The semantics of activities are based on a token
flow, which we summarize below with an example.

Figure 4 shows an example of Activity. Init is an InitialNode,
which creates the initial token, and End is a FinalNode. Next,
e1–e7 are Edge elements, and receive tokens offered by their
source Node elements. If there are offered tokens on all its
incoming edges, a Node takes the tokens and offers new ones
to its outgoing edges. A,B and C are Action nodes, F is a
ForkNode, and J is a JoinNode. Figure 5 shows the Petri net
model obtained after compiling the activity shown in Figure 4.

Finally, executing a model conforming to a compiled DSL
is the compilation of this model into a model conforming to
the target language, and the execution of the obtained model.

III. OVERVIEW

This section shows an overview of the proposed architec-
ture. The idea is to observe the execution of the target model
obtained by compilation, and translate target states and steps
back to the source domain. Figure 6 depicts this architecture.

a) Assumptions: The compiled DSL follows the defini-
tion given in Section II-C, hence it is metamodel-based, with
a compiler defined as a model transformation. Second, the
target language is a metamodel-based interpreted language1

that follows the definition given in Section II-B. Thus, the
target language is able to produce execution steps that can then
be sent to runtime services (e.g., trace construction, interactive
debugging) attached to the execution. These steps are sent in a
synchronous fashion, which means that attached services may

1Note that the target language may also be compiled as long as it follows the
presented approach, i.e., it is possible to chain the application of our approach.
For clarity, we always describe the target language as an interpreted language.

Init_node Init_offer A_node A_offere1_edge A_take F_nodeF_takee2_edge

e3_edge

e4_edge

F_offer

B_node

C_node

B_take

C_take

B_offer

C_offer

e5_edge

e6_edge

J_take J_node J_offer e7_edge End_take

Figure 5: Petri net produced by the compilation of the activity from Figure 4, conforming to the interpreted DSL from Figure 1.

Compilation Results

Runtime services

Target LanguageSource Language

Source
Abstract
Syntax

Compiler

Source
Model

Compilation
Links

Target
Model

Target
Abstract
Syntax

Target
Model State

Definition

Source
Model State

Definition

Target
Execution Steps

Definition

Source
Execution Steps

Definition

Feedback
Manager

Interpretation
Rules

Source
State

Target
State Tracer

Debugger

Source
Steps Source
Steps

Source
Steps Target
Steps

...

Target EngineFeedback Engine

Target
runtime

data

Source
runtime
data

+ Compilation Links

Ta
rg

et
 in

te
rp

re
te

r
Model

Procedure

dependency

conforms to

input/output

a

b

c

d

e

Figure 6: Overview of the architecture.

safely observe (e.g., access the model state) and control the
execution (e.g., pause the thread) when informed of starting or
ending steps. Consequently, we only focus on single-threaded
executions. Note that while both source and target languages
are depicted here in the same metamodel-based technical
space, the presented architecture can be adapted for target
languages that are not metamodel-based, as long as target
execution steps can be observed synchronously and as long
as the target execution state is observable.

b) Compilation: At the top of Figure 6, the compilation
follows what was presented in Section II-C. On the left, the
considered source DSL is based on a compiler relying on the
DSL abstract syntax. The compiler produces a target model
conforming to the abstract syntax of the target language,
shown on the right. The architecture also requires the compiler
to produce a set of compilation links a© conforming to a
traceability metamodel. This part is described in Section IV-A.

c) Compiled DSL with Feedback Management: On the
left, to provide feedback to the source model, the considered
compiled DSL is supplemented with three additional parts.
First, a source model state definition b© is required to define
what are the possible states of the source domain. Second, a
source execution steps definition c© must define what are the
possible execution steps of the source domain. Third, the feed-
back manager d© is responsible for translating execution steps
occurring in the target model into execution steps occurring in
the source model, and for updating the source model’s state
accordingly. These three parts are at the core of the architecture
for defining compiled DSLs proposed in this work, and are
described in Sections IV-B, IV-C and IV-D.

Link

MM language

Object

links
*

source 1..*

target 1..* element 1

LinkEnd
+annotation: String

link
1

TraceabilityModel

Figure 7: Generic traceability metamodel

A
e1 e2

Init End

Init_node
Init_offer

e1_edge
A_take

A_node
A_offer

e2_edge
End_take

"offer"
"take" "offer"

"take"

Activity
diagram

Traceability
model

Petri net

"place"
"place"

"place"

"place"

"node""node" "node""edge" "edge"

Figure 8: Example of activity compiled to a Petri net, with a
traceability model. Each gray triangle represents a Link.

d) Execution with Feedback: On the right, the interpreter
of the target language is used to execute the target model,
which consists in modifying the target model state and in
producing target steps. These target steps must then be sent
to the feedback manager—or any other runtime service at-
tached to the execution of the target model—to be translated
into source execution steps and states. For this purpose, a
component called the target execution engine receives target
execution steps produced by the target interpreter, and transmit
them to all runtime services attached to the execution. The
feedback manager is considered to be a specific runtime
service attached to the target executing engine, and as such can
continuously receive all produced execution steps to perform
its tasks. Lastly, a second execution engine called the feedback
engine e© is responsible for listening to the feedback manager,
and for relaying notifications to runtime services attached at
the source compiled DSL level. Thereby, for instance, an
interactive debugger can be attached to the feedback engine
in order to debug the source model at the domain-level during
the execution. This part is described in Section IV-E.

IV. COMPILED DSL ARCHITECTURE

This section presents each part of the proposed architecture:
first the management of traceability, then the definition of
source states and steps, and lastly the feedback manager.

A. Compilation and Traceability Management

In Section II-C, we defined the main constituents of a
compiled DSL. However, our approach requires that a com-

AD execution metamodel

Token

<<abstract>>

Node

Edge
heldTokens
*

merges
Activity diagram
abstract syntax

<<abstract>>

TokenHolder

Figure 9: Activity diagram model state definition, added to the
DSL to define the states of conforming models.

piler not only produces a target model, but also produces
a set of compilation links (labeled a© in Figure 6), i.e., a
traceability model that relates produced target elements to
their originating source elements. This is required in later
stages to be able to relate execution states and steps of
the target model back to the source model. We require a
traceability metamodel allowing both many-to-many links and
annotations to uniquely identify the elements in a many-to-
many traceability link. Figure 7 shows one possible generic
traceability metamodel that satisfies this constraint, where each
Link element connects source objects of the source model and
target objects of the target model. Annotations can be used
to distinguish elements and links as necessary. Figure 8 shows
an example of traceability model produced by the compilation
of a simple activity diagram. The source Action A is connected
to two Transition elements: one annotated "take" since it
represents the incoming edge of an action used for taking
nodes from preceding nodes, and one annotated "offer" since
it represents the outgoing edge of an action used for offering
tokens to successive nodes.

B. Source Model State Definition

A compiled DSL is mostly defined by a compiler, while
everything related to execution is delegated to the target
language. Yet, observing the execution of a model requires
an access its state as it changes. It is therefore necessary to
define the possible states of models conforming to a compiled
DSL. For interpreted DSLs, possible states are defined by the
model state definition which extends the abstract syntax of the
DSL with dynamic properties and metaclasses. Following this
idea, our architecture extends a compiled DSL with a model
state definition of its own (labeled b© in Figure 6).

Figure 9 shows the model state definition for the activity di-
agram compiled DSL introduced in Figure 3. Using a package
merge, it extends the abstract syntax of the DSL with a new
dynamic metaclass Token, and extends the two metaclasses
Node and Edge with a dynamic property heldTokens using a
common super type TokenHolder. In other words, at a given
instant, the nodes of an activity may hold tokens, and edges
may contain tokens offered by their source nodes.

C. Source Execution Steps Definition

While adding a model state definition to a compiled DSL is
required for observing the state of a compiled model (e.g., to
know where tokens can be found in the model), observing and
controlling the execution of the model also requires knowing
about the execution steps that occur in the model (e.g., which

Runtime Step Metamodel

StepStart

<<abstract>>

Value

<<abstract>>

PrimitiveValue

ReferenceValue

parameterValues
*

Modeling Runtime

Object

referencedObject
1

StepEnd start
1

Step Definition Metamodel

StepDefinition
+name: String

definition
1

changedObjects
*

Metamodeling language

Metaclass

parameters
*

StepParameter
+name: String

type
1

<<abstract>>

Classifier
+name: String

PrimitiveType

StepParameterValue

value
1

parameter
*

Figure 10: Step definition metamodel, and runtime step meta-
model. The subtypes of PrimitiveValue are not shown.

nodes offered the tokens). In the case of interpreted DSLs,
such possible steps are defined by the execution steps definition
(see Section II-B) that lists what are the possible types of
execution steps, and what data and name they can carry.
Following this idea, our architecture extends a compiled DSL
with a steps definition of its own (labeled c© in Figure 6).

While the possible execution steps of an interpreted DSL
can notably be declared through dedicated interpretation rules,
a compiled DSL requires a formalism to explicitly declare its
possible source execution steps. For that purpose, the top right
corner of Figure 10 shows a simple step definition metamodel
that can be used to define the possible execution steps of a DSL
(note: the left and middle parts of Figure 10 are described in
Section IV-D). A StepDefinition defines one type of execution
steps through a name and a set of StepParameter elements.
A StepParameter also has a name and is typed either by a
Metaclass—from the abstract syntax or from the model state
definition—or by a PrimitiveType (e.g., Integer, String).

As an example, for the activity diagram compiled DSL
introduced in Figure 3, we consider the following source
StepDefinition elements, each with the type of its single Step-
Parameter shown between parentheses: offer(Node) for the
offering of tokens of a Node to the outgoing edges of the Node;
take(Node) for the taking of tokens by a Node from the incom-
ing edges of the Node; executeNode(Node) for the taking and
offering of tokens by a Node, i.e., a composite step containing
both an offer step and a take step; executeActivity(Activity) for
the execution of the Activity until no tokens can be offered or
taken, i.e., a composite step containing executeNode steps.

D. Feedback Manager

The feedback manager is responsible of translating states
and steps of the target model back to the source model.
Feedback management is specific to the compiled DSL: only
the language engineer knows how target steps and states
should be translated to source states and steps. This approach
offers to concentrate this knowledge in a manually defined
feedback manager (labeled d© in Figure 6) specific to the
considered compiled DSL.

The feedback manager must be informed of starting and
ending target steps, and it has to react to such steps by
changing the source model state and creating corresponding
source execution steps. Furthermore, it requires access to the
generated execution links. A feedback manager can be divided
into the following services that must be called at the start and
at the end of target execution steps:

• feedbackState: Update the source model state based on
the set of changes applied on the target model state in the
last target execution step. For efficiency reasons, change
notifications such as those provided by the Eclipse Mod-
eling Framework (EMF) [15] can be used for determining
target model changes.

• processTargetStepStart: Translate a target starting step
into source steps. Depending on the correspondences
between target steps and source steps, it may produce
zero, one or several source steps.

• processTargetStepEnd: Translate a target ending step into
source steps. Again, depending on the correspondences
between target steps and source steps, it may produce
zero, one or several source steps.

Based on the runtime step metamodel shown in the middle
of Figure 10, a StepStart element is produced when an ex-
ecution step starts, and references both a StepDefinition from
the execution steps definition of the DSL (e.g., the rule fire
from Figure 1), and a set of parameters (e.g., a reference to
the Transition that was fired). A StepEnd element is produced
when an execution step ends, and references both the StepStart
of the step that is ending, and the set of Object elements from
the model state that changed during this step.

We present in what follows a possible feedback manager
for the activity diagram compiled DSL shown in Figure 3.
Regarding the feedback of states, the tokens in each target
Petri net Place must be translated back into Tokens objects
in source TokenHolder elements. Regarding the feedback of
steps, we consider the following mapping: (1) executeActivity
is translated back from the corresponding run target step.
(2) offer is translated back from the corresponding fire target
step. (3) take is translated back from the corresponding fire
target step. (4) executeNode is translated back from one or
two fire target steps, based on the kind of Node.

For the pseudo-code we assume that the following op-
erations are available: (1) getLinkEnd retrieves from the
traceability model the LinkEnd corresponding to an object;
(2) createStepStart produces a source StepStart by retrieving
the required StepDefinition, and pushes this StepStart object
atop an internal stack; (3) createStepEnd produces a source
StepEnd object, then retrieves and remove the latest StepStart
pushed atop the internal stack and assigns it to the StepEnd,
then retrieves all objects that have changed in the model state
since the last call to createStepEnd and assign them to the
StepEnd. (4) stepStart and stepEnd transmit source steps to the
feedback engine, which itself relays source steps to attached
runtime services (e.g., an interactive debugger). The feedback
engine is explained in more details in Section IV-E.

Algorithm 1: Example of feedbackState definition for
the activity diagram compiled DSL

Input:
stepEndt : the target StepEnd object to process
links : the execution links

1 begin
2 changed← stepEndt.changedObjects
3 foreach place ∈ changed do
4 tokenHolder← getLinkEnd(place).link.source[0].object
5 diff← place.tokens− size(tokenHolder.heldTokens)
6 for i← 1; i≤ |diff |; i← i + 1 do
7 if diff > 0 then
8 tokenHolder.heldTokens.add(createObject(Token))

9 else
10 tokenHolder.heldTokens.remove(source.heldTokens[0])

Algorithm 2: Example of processTargetStepStart def-
inition for the activity diagram compiled DSL

Input:
stepStartt : the target StepStart object to process
links : the compilation links
enginef : the feedback engine
stepsDefs : the source execution steps definition

1 begin
2 if stepStartt.definition.name = "run" then
3 net ← stepStartt.params [0].object
4 act ← getLinkEnd (net,links).link.source [0].object
5 enginef .stepStart (createStepStart (stepsDefs,"executeActivity", [act]))

6 else if stepStartt.definition.name = "fire" then
7 transition ← stepStartt.params [0].object
8 linkEnd ← getLinkEnd (transition,links)
9 annotation ← linkEnd.annotation

10 node ← linkEnd.link.source [0].object
11 if annotation = "take" then
12 enginef .stepStart (createStepStart (stepsDefs,"executeNode", [node]))
13 enginef .stepStart (createStepStart (stepsDefs,"take", [node]))

14 else if annotation = "offer" then
15 if node is InitialNode then
16 enginef .stepStart (createStepStart (stepsDefs,"executeNode", [node]))

17 enginef .stepStart (createStepStart (stepsDefs,"offer", [node]))

First, Algorithm 1 shows the definition of the feedbackState
service, which creates or deletes Token elements in the source
model state, based on the amount of tokens in the changed
Place elements in the target model state.

Second, Algorithm 2 shows the definition of the processTar-
getStepStart service. If a target Petri net run step is starting for
a Net element, then an activity diagram executeActivity step is
sent as feedback. This feedback requires the Activity element
from which the Net was created, which is found using the
traceability links. In the case of a starting fire target step, the
feedback depends on which Petri net Transition is (or was)
fired, based on the annotations in the execution links. If the
annotation is "take" (i.e., a Transition is fired that was created
for the incoming edge of an activity Node), the feedback
consists in first starting an executeNode source step for the
corresponding Node. Then, a take source step for the same
Node is sent. If the annotation is "offer" (i.e., a Transition
is fired that was created for the outgoing edge of an activity
Node), we only start an executeNode in the case of a starting
InitialNode, and we always feedback an offer source step.

Algorithm 3: Example of processTargetStepEnd defi-
nition for the activity diagram compiled DSL

Input:
stepEndt : the target StepEnd object to process
links : the compilation links
enginef : the feedback engine

1 begin
2 if stepEndt.start.definition.name = "run" then
3 enginef .stepEnd(createStepEnd())

4 else if stepEndt.start.definition.name = "fire" then
5 transition ← stepEndt.params [0].object
6 linkEnd ← getLinkEnd (transition,links)
7 annotation ← linkEnd.annotation
8 if annotation = "take" then
9 enginef .stepEnd(createStepEnd())

10 if node is FinalNode then
11 enginef .stepEnd(createStepEnd())

12 else if annotation = "offer" then
13 enginef .stepEnd(createStepEnd())
14 enginef .stepEnd(createStepEnd())

Third, Algorithm 3 shows the definition of the processTar-
getStepEnd service. If a target Petri net run step is ending, then
we end the current source executeActivity step. In the case of
an ending fire target step, we must again handle two cases. If
the annotation is "take", we end the current source take step.
We also end the current source executeNode step if we are in
a FinalNode, as such a node will not offer tokens afterwards.
If the annotation is "offer", we first end the current source
offer step, then we end the current source executeNode step.

E. Feedback Management Integration

Lastly, the feedback manager must be integrated with the
interpreter of the target language, i.e., it must be notified when
execution steps start and end. In addition, it must be possible
to attach runtime services to the compiled DSLs, so that they
can benefit from the reconstructed source states and steps.

a) Engines and Runtime Services: For this integration,
our approach relies on our previous work [22] to ease the
sharing of runtime services among a wide range of executable
DSLs. The main principles can be summarized as follows:
• An execution engine is responsible for running the inter-

preter of the DSL. The engine is aware of executions step
produced by the interpreter, which may require instru-
menting the interpreter to realize callbacks to the engine.
An engine is specific to the approach used to define an
interpreter (e.g., an engine for Java interpreters can rely
on code instrumentation to be notified of occuring steps).

• A runtime service can be attached to an execution engine,
and receives notifications when execution steps start or
end. It also has access to the executed model. Notifica-
tions are sent in a synchronous way, hence the execution
is suspended while a notification is being processed by
a runtime service. These opportunities can be used to
safely control the execution (i.e., pause the thread) or
safely observe it (e.g., access the state) in between steps.

These roles make it simpler to define runtime services
independent of interpreted DSLs, and independent of the way

their interpreters are defined. For instance, we have previously
defined a complete omniscient debugger as a generic runtime
service that provides a complete set of debugging services
to any interpreted DSL. Without changing a single line of
its code, this runtime service can be used with different
interpreted DSLs defined using different metaprogramming
approaches (e.g., xMOF [9], Kermeta [16], Moccml [23]).

b) Integrating Feedback Management with Engines:
For the proposed compiled DSL architecture, we rely on
execution engines in two ways. First, the feedback manager is
defined as a runtime service attached to the target language’s
execution engine. Thereby, the feedback manager triggers the
processTargetStepStart service when notified by the target en-
gine with a StepStart, and triggers both the feedbackState and
processTargetStepEnd services when notified with a StepEnd.

Second, we define a so-called feedback engine (labeled e©
in Figure 6) as a generic execution engine responsible for
executing models conforming to compiled DSLs. Instead of
running an interpreter, this engine receives source execution
steps produced by the feedback manager of the compiled DSL,
and relays these source steps to runtime services attached to
the source model execution. Being an engine, it can directly
benefit from any runtime service, including services originally
meant for interpreted DSLs.

F. Example of Execution with Feedback

To illustrate how our architecture unfolds, we present the
execution of the activity introduced at the top of Figure 8,
which is compiled into the Petri net shown at the bottom.

Figure 11 shows the execution traces resulting from the
execution. At the top, the execution of the target Petri net
is shown. It directly results from the application of the inter-
pretation rules introduced in Figure 1, which means that the
execution is enclosed in a run(Net) step, which itself contains
a sequence of fire(Transition) steps for each Transition. Note that
this Petri net execution is completely hidden from the runtime
services connected to the feedback engine.

At the bottom, the execution of the source activity is shown,
which directly results from the use of the example feedback
manager presented in Section IV-D. This trace reflects the
execution that can be observed by runtime services connected
to the feedback engine. The step executeActivity(activity) cor-
responds to the target step run(net) according to the definition
of the processTargetStepStart and processTargetStepEnd oper-
ations (see Algorithm 2 lines 2–5, and Algorithm 3 lines 2–3).
Each offer(Node) step corresponds to a target fire(Transition) if
this target step concerns a Transition representing the outgoing
edge of an activity Node (see Algorithm 2 lines 14–17, and
Algorithm 3 lines 12–13). Similarly, each step take(Node)
corresponds to a target step fire(Transition) if it concerns a
Transition representing the incoming edge of an activity Node
(see Algorithm 2 lines 11–13, and Algorithm 3 lines 8–9). In
addition, an executeNode(Node) encloses the offer(Node) and
take(Node) steps of each Node (see Algorithm 2 lines 12 and
16, and Algorithm 3 lines 11 and 14).

fire(A_take)

1 2

run(net)

3

fire(Init_offer) fire(A_offer)

4

fire(End_take)

5 6 7

Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge
Init_node

Init_offer A_take A_offer End_take

e1_edge A_node e2_edge

(a) Target Petri net execution trace. This execution is hidden from runtime services connected to the activity diagram execution.

take(A)

executeNode(Init)

I II.1 II.2 V.1III.2 III.3

executeActivity(activity)

executeNode(A)

III.1

offer(Init) offer(A)

IV V.2 VI.1

executeNode(End)

take(End)

V.3 VI.2 VII

e1 e2

Init End

A
e1 e2

Init End

A
e1 e2

Init End

A
e1 e2

Init End

A
e1 e2

Init End

A

(b) Source activity diagram execution trace, obtained using the feedback manager, based on the Petri net execution shown above. This shows
what can be observed by runtime services connected to the activity diagram execution, i.e., at the source domain level.

Figure 11: Execution traces resulting from the execution of the models shown in Figure 8, after connecting the feedback
manager of the activity diagram DSL to the Petri net interpreter. Refer to Figure 2 for the legend.

G. Implementation

We have implemented common parts of the approach
(e.g., the feedback engine) for the GEMOC Studio [24], an
Eclipse package composed of a language workbench and a
modeling workbench. The language workbench relies on Ecore
for defining abstract syntaxes, and provides multiple languages
(e.g., Kermeta [16], xMOF [9], etc.) for defining operational
semantics. The modeling workbench is an environment for
creating, executing and debugging models, and provides one
execution engine per supported kind of operational semantics.

Originally, the GEMOC Studio focused on providing facil-
ities to design and implement interpreted DSLs. Hence, our
approach is the first attempt to support compiled DSLs in the
GEMOC Studio. The source code is available on Github2 and
consists in Eclipse plugins written in Xtend and Java.

V. EVALUATION

We considered the following research questions, each
matching one of the challenges stated in the introduction:
RQ#1: Given an interpreted DSL and a compiled DSL with
trace-equivalent semantics, does the approach make it possi-
ble to observe the same traces with both DSLs?

RQ#2: Does the approach enable the use of runtime ser-
vices at the domain-level of compiled DSLs? In particu-
lar, (2.1) Can different sorts of runtime services be used?
(2.2) Can the same runtime services be shared across both
interpreted and compiled DSLs?

RQ#3: What is the time overhead when executing compiled
models with feedback management? In particular, how does it
compare to: (3.1) executing without feedback management?
(3.2) executing with an interpreter?

2https://github.com/tetrabox/gemoc-compilation-engine

A. Setup

Using the implementation presented in Section IV-G, the
evaluation was made using the GEMOC Studio. We used this
environment both for implementing the required DSLs and for
executing the models. All material used for the evaluation can
be found in the repository2. We describe the artifacts below.

1) Languages: Our evaluation relies on two different com-
piled DSLs: the fUML subset presented throughout the paper
using Petri nets as a target language, and a subset of UML state
machines implemented as a standalone DSL using a subset
of Java as a target language. We reimplemented a subset of
Java as MiniJava in order to have a metamodel-based object-
oriented programming language that fits the requirements of
our approach, and that can be used for transforming UML
state machines into Java following the state design pattern.

Below we first describe common points between both stud-
ied DSLs. We then describe in more detail the UML state
machines DSL, while we do not describe the fUML activity
diagram DSL as it was already presented in the paper.

a) Common points: The fUML activity diagram DSL and
the UML state machine diagram DSL were both defined in
two flavors: one compiled version, and one interpreted version.
Both share the same abstract syntax defined using Ecore. For
the compiled versions, both the compiler and the feedback
manager were defined using Xtend. All interpreters were de-
fined using Kermeta [16]. The semantics of the interpreted and
of the compiled versions are designed to be trace-equivalent.

b) UML state machines compiled DSL: For the second
compiled DSL, we considered a subset of UML state machines
where a conforming model contains a single StateMachine
with a single Region, which contains one initial State, one
FinalState and arbitrary many regular State elements. All nodes
are connected using Transition elements, each with at least

s1
e1

init fin

e2

e1

interface State {
public State e1();
public State e2();

}
class init implements State {
public State e1() {

return new s1();
}
public State e2() {

return this;
}

}
class s1 implements State {
public State e1() {

return new s1();
}
public State e2() {

return new fin();
}

}
class fin implements State {

public State e1() {
return null;

}
public State e2() {

return null;
}}

class StateMachine {
public State current;
public StateMachine () {

this.current = new init();
}
public void handle(String eventName) {

if (this.current != null) {
if (eventName.equals("e1")) {
this.e1();

}
else {

if (eventName.equals("e2")) {
this.e2();

}
else {}}

}
}
void e1() {

this.current = this.current.e1();
}
void e2() {

this.current = this.current.e2();
}

}

class Main {
public static void main(String [] args) {

StateMachine m = new StateMachine();
for (int i=0; i < args.length; i=i+1) {
String eventName = args[i];
m.handle(eventName) ;

}
}

}

Figure 12: Example of a source UML state machine, and its
associated target MiniJava program obtained after compilation.

one Trigger referencing an Event, without any guards. The
target language is an interpreted DSL called MiniJava that
was inspired by an educational language of the same name3

that we made available on GitHub4. It supports a subset of
Java that includes classes, interfaces, methods, a subset of
primitive types, and a subset of expressions. The Xtext textual
concrete syntax is identical to Java, and a MiniJava program
is always a valid Java program that compiles and runs with
the same behavior. The UML state machine compiler we
developed is based on the well-known state design pattern
from Gamma et al. [25], which describes how to implement a
state machine as an object-oriented program. Figure 12 shows
an example of a source UML state machine model and the
target MiniJava program resulting from its compilation. We
applied our architecture and wrote a definition of states, a
definition of steps, and a feedback manager for MiniJava.

2) Runtime Services and Tracing: To answer RQ #2, we
considered two runtime services provided in the GEMOC
Studio: a trace constructor (described in [7]) and an omni-
scient debugger (described in [22]). While these services were
originally designed for interpreted DSLs, our approach makes
compiled DSLs seemingly indistinguishable from interpreted
DSLs. Hence, our experiment consists in reusing these services
with compiled DSLs without changing a line of their code.

3) Models: To answer RQ #1 and RQ #3, which require
executing models, we have implemented both a random activ-
ity diagram generator and a random state machine generator.
Both generators are parameterized by a fixed amount of nodes
to create, and always create valid models where the final node
of the model can be reached. We generated 30 UML state

3http://www.cambridge.org/resources/052182060X/
4https://github.com/tetrabox/minijava

machines with sizes ranging from 10 to 100 states, and 3
scenarios per state machine, thus for a total of 90 different
combinations of {UML state machine, scenario}.

B. Conducted Experiments and Results

a) RQ #1 (same observations): We have executed each
of the 130 generated models with both the interpreted and
the compiled versions of both executable DSLs, and captured
one domain-level trace per execution. For compiled DSLs, the
feedback manager was used for domain-level observation to
construct traces. We automatically compared each trace from
an interpreted execution with the corresponding trace from a
compiled execution, and did not find any differences.

To summarize and answer RQ #1, the approach makes
it possible to observe the exact same executions with both
interpreted and compiled versions of a DSL.

b) RQ #2 (runtime services): We were able to use both
the trace constructor and the omniscient debugger with both
the interpreted and compiled versions of each considered DSL,
without changing a single line of the services’ code. For
example, when the omniscient debugger is used with the
activity diagram DSL, it is able to pause on a breakpoint
defined in the activity, to show the active node, to display a
view of all domain-level variables (i.e., the held tokens), and
to display a stack of ongoing domain-level execution steps.
The underlying executed Petri net is invisible to the modeler.

To summarize and answer RQ #2, the approach does enable
the use of different sorts of runtime services, which can be
shared among both interpreted and compiled DSLs.

c) RQ #3 (overhead): Using Java’s System.nanotime,
we measured the duration when executing each of the models
of each of the DSLs using: (1) the compiled version of the
DSL with the feedback manager; (2) the compiled version
of the DSL without the feedback manager; (3) the interpreted
version of the DSL. Each execution was done 25 times, starting
with 14 warmups (i.e., without measuring). The retained value
is then the median of the remaining 11 measured durations.

Figure 13a shows the collected results for the fUML activity
diagram DSL. We observe that the fastest executions are
the ones from the compiled version of the DSL without the
feedback manager, i.e., from the Petri net interpreter alone.
When adding the feedback manager, the execution time is on
average multiplied by 2, i.e., the execution takes twice the
time. In both cases, the execution times seem to grow linearly
with the number of execution steps. The interpreted version
of the DSL is on average 1,6 times slower compared to the
compiled DSL without feedback management.

Figure 13b shows the results for the UML state machines
DSL. Here we observe that the interpreted version of the DSL
is the fastest, which is explained by lack of optimizations
within the MiniJava interpreter, which makes the compiled
version much slower. When using the feedback manager with
the compiled version, the execution time is on average only
multiplied by 1,01, i.e., the execution time is increased by 1%.

To summarize and answer RQ #3, we observe that when
using a feedback manager with a compiled DSL, execution

0 50 100 150 200 250 300 350

amount of execution steps

0

5

10

15

20

25

e
xe

cu
ti

o
n
 t

im
e
 (

m
s)

compiled, with feedback
compiled, without feedback
interpreted

(a) fUML activity diagram DSL, compiled to Petri nets.

0 200 400 600 800 1000 1200

amount of execution steps

0

100

200

300

400

500

600

700

e
xe

cu
ti

o
n
 t

im
e
 (

m
s)

compiled, with feedback
compiled, without feedback
interpreted

(b) UML state machines DSL, compiled to MiniJava.

Figure 13: Execution times in three cases: compiled with
feedback, compiled without feedback, and interpreted.

times are multiplied by 1,01 with UML state machines,
and by 2 with fUML activity diagrams. If we consider the
overhead categorizations proposed by Maplesden etal. [26],
these two numbers respectively match the “Very Low over-
head” category, and the lowest bound of the “High overhead”
category. While we consider these slowdowns acceptable—
only a few milliseconds of absolute overhead in average in
both cases—this discrepancy suggests that the overhead may
not be inherent to the architecture itself, and may instead be
dependent on how the feedback manager is implemented.

C. Threats to Validity

First, the evaluation was made using only two compiled
DSLs, thus it does not show whether similar results would be
obtained with yet another different compiled DSL. To mitigate
this problem, we chose cases with very different target DSLs,
hence with very different semantic gaps between source and
target languages. Applying the architecture on more cases is
one of the ongoing next steps of our work. Second, as we
already mentioned, the comparison of execution times between
the interpreted and compiled versions of the considered DSLs
may not be fair due to discrepancies in the optimizations of
the source or target interpreters. For this reason, we did not
include these results as part of the answer given to the research
question, and only provide them as an interesting observation.
Lastly, we considered generated models instead of models
from a real world source. This is partly compensated by the
considerable amount of models we generated.

VI. RELATED WORK

a) Back-tracing verification results: When the transla-
tional semantics of a DSL are defined to target a formal
language with model checking tool-support, counter-examples
produced by the model checker are not expressed with the
DSL concepts. Hence, many back-tracing approaches aim at
translating such counter-examples back to the source domain
[27]–[30]. However, these techniques focus on translating
back execution traces obtained after execution (e.g., counter-
examples given by analysis tools), while our approach provides
observation and control during the execution,

b) Monitoring and debugging for compiled DSLs: Sev-
eral approaches aim at supporting domain-level debugging or
monitoring for compiled DSLs, which always imply some
form of observation or control over the execution. Wu et
al. [31] propose a generative approach focusing on grammar-
based compiled DSLs, where the lines of the source program
are mapped to the lines of the target program, in order to map
domain-level debugging actions to the existing target debugger.
Still for grammar-based compiled DSLs, Lindeman et al. [32]
proposes a similar approach were the source DSL program
is instrumented with debug information. In the context of
extensible languages, Pavletic et al. [33] proposes a framework
to define and extend debuggers. Das et al. [34] describe a
framework to monitor at the domain-level the execution of
models that were compiled to code, with a strong focus on
UML-RT. Yet, all these approaches focus on specific runtime
services, while our approach aim to lay the foundations
for defining and using of any kind of runtime service for
metamodel-based compiled DSLs.

VII. CONCLUSION AND FUTURE WORK

Observing and controlling the execution of models con-
forming to a compiled DSL is a difficult task, due to the
semantic gap between the considered source and target lan-
guages. We addressed this problem through a generic approach
to provide feedback management for compiled DSLs. The
direct perspectives of this work include: studying how the
feedback manager materializes a weak bisimulation relation
[27], [35] between the source and target languages; handling
compiled DSLs defined through a code generator instead of a
model transformation; providing an easier way to define the
feedback manager (e.g., using a dedicated DSL, similarly to
[36]); managing the stimuli sent to the source model during
the execution, by translating them to stimuli for the target
model; and measuring the amount of effort required to define
a feedback manager as compared to defining an interpreter.

ACKNOWLEDGEMENT

This work is partially funded by the Austrian Science Fund
(FWF) under the grant numbers P 30525-N31 and P 28519, by
the Austrian Federal Ministry for Digital and Economic Affairs
and the National Foundation for Research, Technology and
Development, and by the French project ELOGE (Atlanstic
2020 Amorçage) financed by Région des Pays de la Loire.

REFERENCES

[1] Object Management Group, “Semantics of a Foundational Subset for
Executable UML Models, V 1.1,” August 2013.

[2] R. Bendraou, B. Combemale, X. Crégut, and M. P. Gervais, “Definition
of an executable SPEM 2.0,” in Proceedings of the 14th Asia-Pacific
Software Engineering Conference (APSEC’07). IEEE, 2007.

[3] D. Harel, H. Lachover, A. Naamad, A. Pnuelli, M. Politi, R. Sherman,
A. Shtull-trauring, and M. Trakhtenbrot, “STATEMATE: a working
environment for the development of complex reactive systems,” IEEE
Transactions on software engineering, vol. 16, no. 4, pp. 403–414, 1990.

[4] OASIS, “Web Services Business Process Execution Language Version
2.0,” 2007. [Online]. Available: https://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

[5] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry, “Sup-
porting Efficient and Advanced Omniscient Debugging for xDSMLs,”
in International Conference on Software Language Engineering (SLE).
ACM, 2015.

[6] B. Meyers, J. Denil, I. Dávid, and H. Vangheluwe, “Automated
testing support for reactive domain-specific modelling languages,” in
International Conference on Software Language Engineering (SLE),
2016, pp. 181–194. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2997364.2997367

[7] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry, “Advanced
and efficient execution trace management for executable domain-
specific modeling languages,” Software & Systems Modeling, May
2017. [Online]. Available: http://dx.doi.org/10.1007/s10270-017-0598-5

[8] B. Combemale, X. Crégut, and M. Pantel, “A Design Pattern to Build
Executable DSMLs and Associated V&V Tools,” in 19th Asia-Pacific
Soft. Eng. Conf. (APSEC), vol. 1. IEEE, 2012.

[9] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF: Exe-
cutable DSMLs based on fUML,” in 6th Int. Conf. on Soft. Lang. Eng.
(SLE), ser. LNCS, vol. 8225. Springer, 2013.

[10] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics of
Behavioral Diagrams in UML,” in Proceedings of the Third International
Conference on the Unified Modeling Language (UML’00), ser. LNCS,
vol. 1939. Springer Berlin Heidelberg, 2000, pp. 323–337.

[11] N. Bandener, C. Soltenborn, and G. Engels, “Extending DMM Behavior
Specifications for Visual Execution and Debugging,” in Proceedings of
the Third International Conference on Software Language Engineering
(SLE’10), vol. 6563 LNCS. Springer Berlin Heidelberg, 2010.

[12] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier, “Formalizing
Execution Semantics of UML Profiles with fUML Models,” in 17th Int.
Conf. on Model Driven Eng. Lang. and Sys. (MODELS), ser. LNCS,
vol. 8767. Springer, 2014.

[13] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML models:
a systematic review of research and practice,” Software & Systems
Modeling, Apr 2018. [Online]. Available: https://doi.org/10.1007/
s10270-018-0675-4

[14] Object Management Group, “Meta Object Facility (MOF) Core Specifi-
cation, V 2.5,” Object Management Group, June 2016, http://www.omg.
org/spec/MOF/2.5.

[15] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd Edition, ser. Eclipse Series. Addison-Wesley
Professional, 2008.

[16] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fou-
quet, “Mashup of metalanguages and its implementation in the Kermeta
language workbench,” Software & Systems Modeling (SoSyM), vol. 14,
no. 2, 2013.

[17] A. Hegedüs, I. Ráth, and D. Varró, “Replaying Execution Trace Models
for Dynamic Modeling Languages,” Periodica Polytechnica - Electrical
Engineering, vol. 56, no. 3, pp. 71–82, 2012.

[18] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Proceed-
ings of the Workshop on Model Transformations in Practice (MTiP’05),
ser. LNCS, vol. 3844. Springer Berlin Heidelberg, 2006, pp. 128–138.

[19] A. Yie and D. Wagelaar, “Advanced Traceability for ATL,” in 1st
International Workshop on Model Transformation with ATL (MtATL’09,
2009.

[20] E. Syriani and H. Ergin, “Operational semantics of UML activity
diagram: An application in project management,” in 2nd International
Workshop on Model-Driven Requirements Engineering (MoDRE), Sept
2012, pp. 1–8.

[21] T. S. Staines, “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets,” in 15th International Conference and Workshop on the Engineer-
ing of Computer Based Systems (ECBS), March 2008, pp. 191–200.

[22] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry,
“Omniscient debugging for executable DSLs,” Journal of Systems
and Software, vol. 137, pp. 261 – 288, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121217302765

[23] J. Deantoni, P. Issa Diallo, C. Teodorov, J. Champeau, and
B. Combemale, “Towards a Meta-Language for the Concurrency
Concern in DSLs,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), Grenoble, France, Mar. 2015.
[Online]. Available: https://hal.inria.fr/hal-01087442

[24] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution Framework of the GEMOC Studio (Tool
Demo),” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2016,
Amsterdam, Netherlands, Oct. 2016, p. 8. [Online]. Available:
https://hal.inria.fr/hal-01355391

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[26] D. Maplesden, E. D. Tempero, J. G. Hosking, and J. C. Grundy,
“Performance Analysis for Object-Oriented Software: A systematic
mapping,” IEEE Trans. Software Eng., vol. 41, no. 7, pp. 691–710,
2015. [Online]. Available: https://doi.org/10.1109/TSE.2015.2396514

[27] B. Combemale, L. Gonnord, and V. Rusu, “A Generic Tool for Tracing
Executions Back to a DSML’s Operational Semantics,” in 7th European
Conference on Modelling Foundations and Application (ECMFA), R. B.
France, J. M. Kuester, B. Bordbar, and R. F. Paige, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 35–51. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21470-7_4

[28] F. Zalila, X. Crégut, and M. Pantel, “Formal Verification Integration
Approach for DSML,” in 16th International Conference on Model-
Driven Engineering Languages and Systems (MODELS). Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 336–351. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41533-3_21

[29] Á. Hegedüs, G. Bergmann, I. Ráth, and D. Varró, “Back-annotation of
Simulation Traces with Change-Driven Model Transformations,” in Pro-
ceedings of the 8th International Conference on Software Engineering
and Formal Methods (SEFM’10). IEEE, 2010, pp. 145–155.

[30] W. Haberl, M. Herrmannsdoerfer, J. Birke, and U. Baumgarten, “Model-
Level Debugging of Embedded Real-Time Systems,” in 10th Interna-
tional Conference on Computer and Information Technology, June 2010.

[31] H. Wu, J. Gray, and M. Mernik, “Grammar-driven Generation
of Domain-specific Language Debuggers,” Software: Practice and
Experience, vol. 38, no. 10, pp. 1073–1103, Aug. 2008. [Online].
Available: http://dx.doi.org/10.1002/spe.v38:10

[32] R. T. Lindeman, L. C. Kats, and E. Visser, “Declaratively
Defining Domain-specific Language Debuggers,” in 10th International
Conference on Generative Programming and Component Engineering
(GPCE), ser. GPCE ’11. New York, NY, USA: ACM, 2011, pp. 127–
136. [Online]. Available: http://doi.acm.org/10.1145/2047862.2047885

[33] D. Pavletic, M. Voelter, S. A. Raza, B. Kolb, and T. Kehrer,
“Extensible Debugger Framework for Extensible Languages,” in
20th Ada-Europe International Conference on Reliable Software
Technologies, J. A. de la Puente and T. Vardanega, Eds. Cham:
Springer International Publishing, 2015, pp. 33–49. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-19584-1_3

[34] N. Das, S. Ganesan, L. Jweda, M. Bagherzadeh, N. Hili, and J. Dingel,
“Supporting the Model-driven Development of Real-time Embedded
Systems with Run-time Monitoring and Animation via Highly
Customizable Code Generation,” in 19th International Conference
on Model Driven Engineering Languages and Systems (MODELS).
New York, NY, USA: ACM, 2016, pp. 36–43. [Online]. Available:
http://doi.acm.org/10.1145/2976767.2976781

[35] B. Combemale, X. Crégut, P.-L. Garoche, and X. Thirioux, “Essay on
Semantics Definition in MDE - An Instrumented Approach for Model
Verification,” Journal of Soft., vol. 4, no. 9, pp. 943–958, 2009.

[36] F. Zalila, X. Crégut, and M. Pantel, “A DSL to Feedback Formal
Verification Results,” in 13th Workshop on Model-Driven Engineering,
Verification and Validation (MoDeVVa). CEUR-WS, 2016.

