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The present study aims to numerically predict the mechanical behaviour at the meso-scale of a multiaxial textile, 
named tetraxial. It has warp, weft, and two diagonal yarns oriented at symmetrical angles (typically ± 45�) 
interlaced in the same weaving process. The flexibility of the manufacturing technique could allow for hybrid 
distribution of the yarn materials and, as a consequence, a wide range of mechanical behaviour. For an accurate 
modelling, a hyperelastic con-stitutive model of the fibrous yarns was considered to account for the peculiar 
nonlinear behaviour of the textile. The modelling of the tetraxial representative volume allowed predicting the 
mechanical response for uniaxial and biaxial tensile tests. The comparison of FE analyses with the experimental 
measure-ments highlights the accuracy of the numerical model to predict the nonlinear behaviour of the 
tetraxial textiles.

Introduction

Numerical simulation is a powerful tool to predict

the mechanical behaviour of technical textiles, as

demonstrated in the last decade by several studies

[1–6]. Finite element (FE) analyses of technical fibrous

materials consisting of interlacements of fibre bun-

dles (yarns) can be performed at three scales (Fig. 1):

(1) microscopic scale, the scale for the interaction of

fibres in the bundle (& 10–30 lm); (2) mesoscopic

scale, the scale for the interaction of the yarns in the

interlacement (& 0.1–1 mm); and (3) macroscopic

scale, the size of the sample of an application

([ 0.1 m).

Woven technical textiles with special architecture

have received considerable attention in the literature

[7–10], due to their mechanical behaviour allowing

for peculiar tear resistance as well as improved

formability characteristics. Two-dimensional (2D)

and three-dimensional (3D) textile architectures can

be considered in the classification of technical fibrous

materials. For instance, triaxial braiding produces a

2D architecture with three interlaced yarns; such

textiles have axial yarns in the longitudinal direction

and the braided yarns tilted at an angle ranging from

30� to 60� with respect to the previous ones [11].

Advantages of triaxial braided textiles are geometry

flexibility and good tear resistance. Increasing the

number of weaving direction to four, a 2D multiaxial
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textile is obtained, named tetraxial. The textile

architecture combines a traditional orthogonal inter-

lacement with two additional threads (bias), which

can be oriented at different angles with respect to the

warp/weft direction (Fig. 1b). It has warp, weft, and

two diagonal yarns oriented at symmetrical angles

with respect to the warp direction. In the present

work, a novel loom [12] was used for manufacturing

tetraxial technical textiles.

Due to the large number of possible configurations

in manufacturing tetraxial hybrid technical textiles, a

numerical model is an alternative to time-consuming

experimental measurements to predict and assess the

mechanical behaviour upon variation of several

parameters, namely yarns material, spacing in the

four directions and orientation of diagonals. During

last decade, several meso-scale finite element (FE)

models to predict the mechanical performance of

technical fibrous materials have been developed

based on different constitutive models [13–17]. Some

mesoscopic analyses of the woven unit cell have been

set up based on a hypoelastic behaviour of the yarns

[18]. The hypoelastic models use an objective

derivative, i.e. a derivative in a frame as close as

possible of the fibre orientation, which is not easy to

introduce in standard finite element codes. Devel-

oping of hyperelastic constitutive models can avoid

such drawback. It was demonstrated by the hypere-

lastic model presented in [19–21].

The latter is adopted here for the numerical mod-

elling of the considered tetraxial technical textiles at

the meso-scale considering the representative volume

(RV) of the textile. To comply with the supposed

periodicity of the interlacement, periodic boundary

conditions have to be enforced, as well as the contact

between neighbouring yarns. The mesoscopic FE

model of the tetraxial RV allowed simulating the

mechanical response for in-plane uniaxial and biaxial

loadings.

Within this context, the aims of this contribution

are: (1) simulation of the mechanical behaviour of the

yarns and hybrid tetraxial technical textiles, (2)

assessment of the accuracy of the meso-scale FE

model to predict the nonlinear behaviour of the tex-

tile for any in-plane loading condition by available

experimental measurements, and (3) understanding

Figure 1 The three different

scales for technical textiles.

a Macroscopic scale,

b mesoscopic scale of a

tetraxial textile and its unit

cell, c microscopic scale.

Figure 2 Four deformation modes of a yarn: a elongation, b compaction of the cross section, c distortion and d longitudinal shear.
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the peculiarities of internal stress and strain

distribution.

The hyperelastic constitutive model 
for the yarns

The yarn is an assembly of fibres oriented in the same

direction. The textile manufacturing conditions (e.g.

yarns tensioning) and the interlacement considerably

limit the movement of the fibres in the yarn. Hence,

the yarn can be considered as a compact, homoge-

neous, and continuum material. The deformation of a

homogeneous yarn can be considered as combination

of four modes, namely elongation, compaction, dis-

tortion, and longitudinal shear (Fig. 2).

Constitutive equation for the yarn

The deformation of a homogeneous yarn can be

modelled by a hyperelastic material model [22, 23].

An elastic strain energy potential per unit volume w

must exist which only depends on the current strain

state. Besides, assuming (1) reversible behaviour of

materials, (2) no dissipate energy, and (3) fulfilment

of Clausius–Duhem inequality, the constitutive

equation of a hyperelastic material is written as:

S F
� �

¼ 2
ow F

� �

oC
ð1Þ

where F is the deformation gradient tensor and S is

the second Piola–Kirchhoff stress tensor. In addition,

the potential energy can be written as a function of

the right Cauchy–Green strain tensor C:

w ¼ w C
� �

with C ¼ FT � F ð2Þ

The tensor C has three invariants:

I1 ¼ TrðCÞ; I2 ¼
1

2
TrðCÞ2 � TrðC2Þ

� �

; I3 ¼ detC ð3Þ

The Jacobin J ¼
ffiffiffiffi

I3
p

¼ det F describes the local

volume change during the deformation.

The parallel fibres in a yarn can be considered as a

transversally isotropic material. A unit vector M in

the direction of the fibre makes possible the definition

of a structural tensor [24]:

M ¼ M�M ð4Þ

For transversal isotropic materials [25, 26], the

strain energy density function is a function of the

three invariants of C and of two mixed invariants

defined from the structural tensor M:

w ¼ wðI1; I2; I3; I4; I5Þ ð5Þ

I4 ¼ C : M I5 ¼ C2
: M ð6Þ

Strain energy function of the different 
deformation modes

Physically based invariants, i.e. invariants directly

related to the deformation modes of the yarns

(Fig. 2), are considered [19]. Ielong is the elongation

invariant in the direction of the fibres. Icomp is the

transverse compaction, Idist is the distortion (change

of angle) in the transverse section, and Ish is the shear

along the fibre direction.

Table 1 Geometric features of the tetraxial textiles PET/PET/PET

and PET/Aramid/PET RV in mm (average and standard deviation

of 5 measurements)

Length Width Thickness

Tetraxial 4 ± 0.05 3.66 ± 0.04 1.6 ± 0.05

Table 2 Some properties of the yarns

Material Count (tex) Nominal strength (cN/tex)

Polyester (PET) 63 20

Aramid 130 219

Figure 3 Representative volume (RV) of a tetraxial textile.
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These physically based invariants are function of

the invariants defined in Eqs. (3) and (6):

Ielong ¼
1

2
ln I4ð Þ; Icomp ¼

1

4
ln

I3
I4

� �

;

Idist ¼
1

2
ln

I1I4 � I5

2
ffiffiffiffiffiffiffiffi

I3I4
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1I4 � I5

2
ffiffiffiffiffiffiffiffi

I3I4
p

� �2

�1

s
0

@

1

A

; Ish ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

I5
I24
� 1

s

ð7Þ

They are used to define the strain energy potential

w C
� �

¼ w Ielong; Icomp; Idist; Ish
� �

ð8Þ

Elongation strain energy

The strain energy functions corresponding to the

linear (Ielong[ I0elong) and nonlinear (Ielong � I0elong) parts

of the elongation behaviour of the yarn are, respec-

tively, defined by:

w
lin
elong ¼

Kelong�K0
elong

6S0
I0elong

� �2
�
Kelong�K0

elong

2S0
I0elongIelong

� �

þKelong

2S0
I2elong

� �

ð9Þ

wnl
elong ¼

K0
elong

2S0
I2elong

� �

þ
Kelong � K0

elong

6S0I0elong
I3elong

� �

ð10Þ

The second tensile Piola–Kirchhoff tensor S
elong

is:

S
elong

¼ 1

4
M

K0
elong

S0
Ielong
� �

þ
Kelong � K0

elong

2S0I0elong
I2elong

� �

if Ielong� I0elong

�
Kelong � K0

elong

2S0
I0elong

� �

þ Kelong

S0
Ielong
� �

if Ielong[ I0elong

	

	

	

	

	

	

	

	

	

	

ð11Þ

The strain potential energy is defined by three

parameters: I0elong;K
0
elong;Kelong. They are identified by a

tensile test on a single yarn.

Compaction strain energy

A power-based strain energy function was proposed

[19]:

wcomp ¼ Kcomp Icomp

	

	

	

	

p
if Icomp � 0

0 if Icomp[ 0

	

	

	

	

ð12Þ

It is assumed that no energy is required for yarn

section expansion. Accordingly, the second Piola–

Kirchhoff stress tensor is:

S
comp

Icomp � 0
� �

¼ �P

2
Kcomp Icomp

	

	

	

	

p�1
C�1 � 1

I4
M

� �

ð13Þ

The parameters to be identified are then Kcompand

p. An inverse method was here adopted in the case of

an equi-biaxial tensile test on a woven fabric to

Table 3 Characteristics of the tetraxial textiles

Yarns (warp/weft/bias) Areal density (g/m2) Warp (ends/cm) Weft (picks/cm) Bias (threads/cm)

PET/PET/PET 136 6 7 5

PET/Aramid/PET 159 6 7 5

Figure 4 a Device for biaxial

tensile tests, b cross-shaped

specimen.
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identify Kcomp and p, and also the parameter Kdist (see

below).

Distortion strain energy

In the numerical investigation, the distortion stiffness

is assumed constant which leads to the following

strain energy function:

wdist ¼
1

2
KdistI

2
dist ð14Þ

The second Piola–Kirchhoff stress tensor associated

with this distortion strain energy is then:

S
dist

¼ 2KdistIdist

�
2I4I� I1I4� I5ð ÞC�1þ I1þ I5

I4

� �

M�2 C �MþM �C
� �

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1I4� I5ð Þ2�4I3I4

q

ð15Þ
The parameter Kdist is identified by the inverse

method in the case of an equi-biaxial tensile test, at

the same time as the compaction parameters.

Longitudinal shear strain energy

A linear elastic behaviour is assumed for this defor-

mation mode, which induces the following strain

energy potential:

Figure 5 Identification of the

model elongation parameters

for: a PET yarn, b Aramid

yarn.
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wsh ¼
1

2
KshI

2
sh ð16Þ

The second Piola–Kirchhoff stress tensor is then:

S
sh
¼ 1

2
Ksh

1

I24
C �MþM � C

� �

� 2I5
I34

M


 �

ð17Þ

The parameter Ksh is identified by an uniaxial

tensile test of the fabric whose elongation parameters

have been previously determined.

Combination of all deformation modes

Each contribution of deformation mode is considered

as independent from the others. Therefore,

S¼ 2
owelong

oIelong

oIelong
oC

þowcomp

oIcomp

oIcomp

oC
þowdist

oIdist

oIdist
oC

þowsh

oIsh

oIsh
oC

!

¼ S
elong

þS
comp

þS
dist

þS
sh

ð18Þ

The hyperplastic constitutive equation was imple-

mented in a user material subroutine VUMAT for the

finite element code ABAQUS/Explicit.

Figure 6 Identification of the

model compaction and

distortion parameters by equi-

biaxial tension test of: a PET/

PET/PET, b PET/Aramid/PET

tetraxial textile.
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Some features of the finite element model 
of the tetraxial textiles

The periodic structure of the considered textiles

allowed to reduce the investigation to the represen-

tative volume (RV) at meso-scale level (Fig. 3).

To reproduce the 3D geometry of the tetraxial

textile, a set of geometric features were measured by

optical microscope observations. In particular, yarn

cross section, yarn height, length, width, and thick-

ness of the RV are listed in Table 1. The assumptions

set to create the 3D solid model of the RV were cir-

cular cross section of the yarns with the proper

diameter to have the real measured section surface

and constant cross section along the yarn path. The

yarn was considered as a 3D continuous domain and

was meshed using eight-node hexahedral elements

[18, 27]. Two mesh sizes were considered and com-

pared to assess the accuracy of predictions in sec-

tion ‘‘Mesh sensitivity’’.

To insure periodicity, periodic boundary condi-

tions were enforced based on [28]. Besides, the con-

tact of the yarns in the dry textile was simulated by

the contact model implemented in ABAQUS/Explicit

[29]. The model considers a surface-based hard con-

tact between the connected surfaces in normal

direction and a frictional contact in the tangential

ones, assuming the friction coefficient as measured in

[30].

Materials and experimental 
characterization

Materials

Two of the tetraxial textiles studied in [30] were

considered: PET/PET/PET and PET/Aramid/PET

hybrid tetraxial textile (see, for example, Figure 1b).

Table 2 details the feature of the yarns (PET and

Aramid). Additionally, the construction of the two

tetraxial technical textiles is summarized in Table 3.

In the present investigation, yarn material was varied

only in weft direction.

Experimental characterization

The tensile behaviour was measured with yarns

extracted in warp, weft, and diagonal directions of

both textiles, by an Instron device with 500 N load

cell. The gauge length was 150 mm and testing speed

5 mm/min. Five tests were performed for each yarn

direction.

The biaxial and uniaxial tensile mechanical beha-

viours of the tetraxial textiles were obtained by a

home design biaxial device (see Fig. 4a, and [30]). The

displacement is generated in each direction of cross-

shaped specimen (Fig. 4b), which is set in the centre

of the machine. Arms of the specimens had width of

100 mm to create a biaxial loaded portion of

100 9 100 mm2 with an almost uniform distribution

of strain on centre. All tests were performed at room

temperature assuming different ratios R of the warp

Figure 7 a Two meshes for PET/PET/PET tetraxial RV, and

b effect of the mesh density on R11 biaxial tensile response, force

vs strain in warp direction.
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to the weft displacement rate (e.g. R21 means a dis-

placement rate in warp direction double than the

weft one). Besides, during test, a digital camera

recorded images at a frequency of 1 Hz for image

correlation analysis. The full field displacement and

strain were obtained by digital image correlation

(DIC) technique (VIC 2D [31]).

Figure 8 Map of the stress

distribution for equi-biaxial

loading (R11) at 1.6 N per

yarn of the PET/PET tetraxial

textile. Components in the

local coordinate system (1, 2,

3): a S11 and b S22.
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Results and comparisons

For each deformation mode (see Fig. 2), a strain

energy density function based on the experimental

behaviour of the tetraxial textile (i.e. experimental

results presented in [30]) was defined. Afterwards,

the strain energy density was used to identify the

model parameters.

Identification of parameters for different 
deformations of yarn

Tensile test of yarn must be performed on a woven

yarn extracted from the textile after the weaving

process, to have realistic mechanical behaviour. The

initial section of the yarn, S0, was measured by

optical microscope, while I0elong;K
0
elong;Kelongwere

Figure 9 Map of logarithmic

strain for equi-biaxial loading

(R11) at 1.6 N per yarn of the

PET/PET/PET tetraxial textile.

Components in the local

coordinate system (1, 2, 3):

a LE11, b transverse LE22.
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identified by means the sum of differences squared

algorithm (see Fig. 5).

The parametersKdist, Kcompand p were identified by

an inverse analysis based on equi-biaxial tension test

(R11) of the tetraxial textiles. In an equi-biaxial tensile

test, the yarn is compacted in the transverse direction

due to the biaxial tension and to the weaving. This

leads to changes of Icomp and Idist and consequently to

identify the parameters of the corresponding strain

potentials. The inverse analysis allowed to have the

equi-biaxial response very close to the measured one,

with few iterations (Fig. 6). Nevertheless, the exis-

tence of local minima of the error estimation induces

that the initial parameters must be close to the final

solution to have convergence. This imposes an initial

trial and error approach before starting the identifi-

cation procedure.

The main deformation modes of fabric under ten-

sile loading are the yarn elongation and longitudinal

shear. Hence, the parameter of Eqs. (16) and (17) is

identified once the parameters of the elongation

behaviour of the yarn have been determined. This is

justified being the strain energies associated to the

elongation and longitudinal shear much greater than

the compaction and distortion ones [19]. The proce-

dure allowed to estimate the parameter Ksh as 3 MPa.

Meso-scale FE modelling of PET/PET 
tetraxial technical textile

Mesh sensitivity

Two meshes (468 and 7912 hexahedral elements,

Fig. 7a) were adopted to check the mesh sensitivity

considering the force versus logarithmic strain in

warp direction for biaxial tensile loading. The com-

parison shows that one order increase in the number

of elements did not have any substantial effect on the

numerical prediction (Fig. 7b). The coarse mesh was

considered for the other loadings simulation.

Biaxial and uniaxial loading

The first assessment of the numerical model was

comparing the results of uni- and biaxial tensile

loadings.

As in section ‘‘Mesh sensitivity’’, equi-biaxial

loading of PET/PET/PET textile was used to assess

the mesh sensitivity of the hyperelastic constitutive

model, and numerical result had a good agreement

with experimental measurements (Fig. 7b).

Figure 8 illustrates the comparison of the longitu-

dinal and transverse stress components, in the local

reference frame of the yarns, distribution in PET/

PET/PET tetraxial textile during equi-biaxial loading.

Two zones A and B have been detailed. Due to the

Figure 10 Comparison of experimental and numerical results for

biaxial loading R12 and R21 of PET/PET/PET tetraxial technical

textile. Force versus strain in: a warp direction and b weft

direction.
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interlacement of the tetraxial technical textile, the

maximum stress concentration was estimated in the

zone B (see distribution of S11 and S22 in Fig. 8).

Different types of contact in tetraxial textile create

different stress concentrations at meso-scale level,

mainly of the longitudinal component S11 (axis 1),

while the transverse to the textile plane component

S22 (axis 2) did not highlight considerable variations.

On the other hand, the longitudinal and transverse

logarithmic strain components, in the local reference

frame of the yarns, show accordingly the maximum

deformation in zone B (Fig. 9).

Figure 11 Map of stress

distribution for biaxial loading

R21 at 1.6 N per yarn of the

PET/PET/PET tetraxial textile.

Components in the local

coordinate system (1, 2, 3):

a S11 and b S22.
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Figure 10 presents good agreement of the numeri-

cal and experimental results for the two considered

biaxial loading R12 and R21.

The distribution of stress components for the

biaxial loading R21, 1.6 N per yarn, at three different

locations highlights the main concentration in zone B

(Fig. 11), as for equi-biaxial loading.

Uniaxial behaviour of PET/PET/PET tetraxial

technical textile was simulated in warp, weft, and

diagonal directions, see Fig. 12. The good agreement

of experimental and numerical results is for both the

first and the second branch of the curves, which have

increasing stiffness. The numerical model predicts

accurately the uniaxial tensile mechanical behaviour

of the fabric, for both loading directions, up to a large

strain level (* 10%).

Figure 13 presents the logarithmic strain compo-

nents, in the local reference frame of the yarns, for

1.8 N per yarn during uniaxial loading in warp and

diagonal direction of PET/PET/PET tetraxial textile.

The diagonal yarns have a significant effect on bias

extension, while loading in warp direction; as

expected, the diagonal yarns do not provide a con-

tribution to the deformation of the tetraxial textile.

Meso-scale FE modelling of PET/Aramid/
PET hybrid tetraxial textile

The comparison of the numerical and experimental

results of biaxial loading R11 (Fig. 14) and R12 and

R21 (Fig. 15) for PET/Aramid/PET hybrid tetraxial

textile shows the accuracy of the model, as well as the

completely different tensile behaviours in warp and

weft directions.

The anisotropic behaviour of the PET/Aramid/

PET hybrid textile was accurately predicted for uni-

axial loading in the three yarns direction (warp, weft,

and diagonal), see Fig. 16. The accuracy of the model

allowed to predict the complete mechanical response

for weft and warp loading up to considerable strain

levels of the textile.

Conclusions

A hyperelastic constitutive model specific for fibrous

yarns was adopted to simulate the mechanical

behaviour of a novel tetraxial technical textile. The

numerical FE analyses allowed the prediction of dif-

ferent combinations of materials of the yarns (PET

and Aramid) and different in-plane loading condi-

tions (uniaxial and biaxial tensile loading). The meso-

scale simulations (representative volume scale) were

validated by the experimental measurements, and the

model showed accurate predictions of the mechanical

behaviour for any loading conditions and any con-

sidered tetraxial textile.

Figure 12 Comparison of experimental and numerical results for

uniaxial loading of PET/PET/PET tetraxial textile: (a) warp and

weft directions, (b) diagonal direction.
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The accuracy of the model in predicting the macro

response as well as the distribution of stress and

strain inside the yarns at meso-scale provides a

powerful numerical tool to investigate the mechani-

cal behaviour and to design such tetraxial textile

considering the variation of the wide range of

parameters (yarn material, spacing in the three yarns

direction, orientation of the diagonal to the warp and

weft yarns, etc.). In the design phase for any partic-

ular application, the numerical model could allow to

Figure 13 Map of

logarithmic strain components

(LE11, LE22. LE12) in the local

coordinate system (1, 2, 3) for

uniaxial loading at 1.8 N per

yarn, loading in: a warp,

b diagonal direction.
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Figure 14 Comparison of experimental and numerical results for

equi-biaxial loading R11 of PET/Aramid/PET hybrid textile.

Force vs strain in: a warp, b weft direction.

Figure 15 Comparison of experimental and numerical results for

biaxial loading R12 and R21 of PET/Aramid hybrid technical

textile. Force vs strain in: a warp, b weft direction.
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reduce the time for manufacturing trials, and time

and cost for experimental characterizations.

The future developments of the tetraxial loom will

provide tetraxial textiles suitable as reinforcement of

composite materials. Hence, the present numerical

model will be adopted to predict the performance of

the tetraxial reinforcements before the weaving

manufacturing and will be extended to predict the

mechanical properties of the tetraxial textile rein-

forced polymer composites.
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[18] Badel P, Vidal-Sallé E, Boisse P (2008) Large deformation

analysis of fibrous materials using rate constitutive equa-

tions. Comput Struct 86(11–12):1164–1175

[19] Charmetant A, Vidal-Sallé E, Boisse P (2011) Hyperelastic

modelling for mesoscopic analyses of composite reinforce-

ments. Compos Sci Technol 71(14):1623–1631

[20] Gong Y, Peng X, Yao Y, Guo Z (2016) An anisotropic

hyperelastic constitutive model for thermoplastic woven

composite prepregs. Compos Sci Technol 128:17–24

[21] Yao Y, Huang X, Peng X, Liu P, Youkun G (2017) An

anisotropic hyperelastic constitutive model for plain weave

fabric considering biaxial tension coupling. Text Res J.

https://doi.org/10.1177/0040517517748495

[22] Ciarlet PG (1988) Mathematical elasticity volume I: three-

dimensional elasticity. North Holland, Amsterdam

[23] Marsden JE, Hughes TJR (1993) Mathematical foundations

of elasticity. Dover Publications Inc, New York

[24] Boehler JP (1978) Lois de comportement anisotrope des

milieux continus. J de Mèc 17:153–190
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