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The problem of estimating the 2 parameters (“range” and “variance”) of a stationary isotropic Gaussian process whose
autocorrelation function belongs to the Matérn class, appears in many contexts (e.g. [9,11]). We propose two extensions of
the CGEM-EV method (cf. [5,6]) for the important case of unknown “nugget-variance” (3rd parameter), and compare
them to the classic maximum likelihood (ML) method, for the Matérn subclass v = 1/2, and “small image”-type observations

‘We mainly consider the following statistical model which arises e.g. in _ histograms of log;(¥x) (1000 image-type‘ replicates), observed pixels number n=2300 _

remote sensing image analysis: let Z(s), s € R?, be a zero mean sta-
tionary Gaussian stochastic process whose autocorrelation function is —_— ]
assumed to belong to the popular isotropic Matérn family. One real- w00 00 0
ization of this process is observed at n s Si, 1,--+,n, which are bo X=CGEM-EV ‘ O=0vez X=CGEM-EV-LE,
a subset of the ny x ny regularly spaced locations §j in [0,1] x [0, 1], 2 o
with an additive Gaussian white noise whose variance is o3 (this (: e ) - o
noise can model either suspected homoscedastic measurement errors =332
or a nugget effect added to Z, see e.g. Zhang and Zimmerman (2007) o 100
and references therein). Using a standard lexicographic ordering, the o] i | { 1 J— [dl b
observations thus form a vector y of size n whose law is Gaussian : o o o " ° e o o " "
y ~ N(0,72R(0)) + 021,.,) where R(0) = Ty ny B(O) T prcn,
with J,, , xn, denoting the ngular, “with coefficients € {0,1}”,
incidence matrix, I, the identity matrix, and R(b’) the autocorrela- 400 a00) soof
tign matrix of the gridded process i.e. the block Toeplitz matrix (with X_CGEM_EV|U=(;VEZ X=CGEM-EV-LE, 00} X=ML‘ oo
n? Toeplitz square blocks, each of size 1 X n2) whose coefficients are w N ’
. 0
given by b;)z 0] 200 ‘ =
- = 20}
[R(O)] = pua([|S; = Sel]), J.k=1,---,m x na, a
ik o . g m o
[+ || being the Euclidean norm and p,.4 the Matérn function i [l - i H_J ] oLecmncrtfhL L
(bz)” -05 00 05 10 5 o5 00 05 o 15 05 00 05 10 15
poo(x) = W[XV (Bz), x>0, 6>0,
where K, is the modified Bessel function of the second kind of order
v > 0. )
We here use the parameters b,6, 0, with by = % called the true histograms of ¢x/ ¢o (1000 image-type replicates), observed pixels number
5
signal-to-noise (SNR). The microergodic-parameter is ¢ = ba20*. I ot o o e e e
In all the alternatives to ML we consider, the signal-variance Tg X=CGEM-EV| . -
is g given a candidate value for the noise-variance N . .
, . . . @ GG 0 iz 14 as as 10 va 14 0 T4 oe os 10 12 14 oh s 15 iz 14 as a8 10 13
o2, by the naive “bias corrected” empirical variance : I Bt o a2 ot ot
v =1y y—o” (‘dud the “SNR estimate” is by, = ) @ X=CGEM-EV-LE; =
= s
L | > %5 o5 10 iz 14 CRETRETIET] & o8 10 1z 1 @ o8 10 1z T o iz 1 w08 10 12
5 — et e ot a2 it
When the true o2 is known, CGEM-EV/|o (which stands for "Conditional Gibbs-Energy Mean § X=ML =
and Empirical Variance") is quite efficient, both statistically and computationally (using a fast I ol il ___mil AL ol ot
randomized-trace), for many common problems (see [5,6]). Recall that CGEM-EV|o consists of - o mmommm mmm e e
solving (a fixed-point algorithm is used in [2,3,4,7]) the equation in 6 defined by S : - . ) ) :
N . _ X=CGEM-EVg.q,
LE(6[bev s, o) =0 with LE\@1b,0) = 2 {Ap.0y, RO Aboy)-bo® Luldps) (D, i ‘
- GeT10 iz 14 a6 a8 1o 12 14 05 08 10 1z [Tl Wi w os asro iz
where the “smoothing matrix” A, ¢ := b R(6) (b R(©6) + D! (aka. a Kalman smoother); let us - . e e - e
denote “the” root of (1) with o = oy (the smallest one in case of multiple roots) by fcGEMEY o - -
X=CGEM-EV, .
@ The first extension of CGEM-EV to the case of unknown o7 is a simple (and fast!) "plugin" N PR z T T PR 7708 to 1z 14 06 08 0
method: one computes a nonparametric estimator of o2, say 6%g;, by extrapolating at 0, the Y L o3 o6 Go12 Gor24 e
(classic or robust) i-variogram fu ion as a ion of the lag (proposed by [9]) and —_ LCGEM-EV-LE =
substitutes 37, for o2 in the CGEM-EV|o equation in 6, producing fcemev 1PVEZ * < - :
§ T 3 0 T g + o i wos T
st & s a2 o arets
@ The second possible extension consists of adding to (1) a well-known equation satisfied by E "
the ML estimate of o> when the signal-to-noise ratio b and @ are fixed; precisely, o is the root of 1 XML :
g d d .
LE3(0'|b,6):=l(y, (I—Ab,g))’)—ITz 2. n ‘ T 0 : CTRETRETY f 5o B
n - 603 6o=6 6o=12 8g=24. 8y=48
N.B.: Infact LE3(@ |b, o) (resp.LE(c |b, §)) is proportional to the partial derivative of the S X=CGEM-EV 4.,
log-likelihood w.r.t. the 3rd (resp. 1st) parameter. o |
A classic bisection-search of o, can be used to solve the concentrated CGEM-EV-LE3 equation o o : : B o '

LE; ((7' |En—;v o OcGEMEV “T) =0 in o, where an inner iteration is used to compute fcGemEY |- The

final é-iterate, thus root of (1) and (2), will be denoted by fcGEMEVLE; - e
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