
HAL Id: hal-02174374
https://hal.science/hal-02174374v1

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaboration patterns for networked embedded servers
Jean-Michel Douin, Jean-Marie Gilliot

To cite this version:
Jean-Michel Douin, Jean-Marie Gilliot. Collaboration patterns for networked embedded servers.
ETFA 2003 : 9th IEEE International Conference on Emerging Technologies and Factory Automa-
tion, Sep 2003, Lisbon, France. �hal-02174374�

https://hal.science/hal-02174374v1
https://hal.archives-ouvertes.fr


Collaboration patterns for networked embedded
servers

J-M. Douin
CEDRIC-CNAM
292 rue St Martin

75141 Paris cedex 03 France
email: douin@cnam.fr

J-M. Gilliot
GET - ENST Bretagne

Technopole Brest-Iroise - CS 83818
29238 BREST cedex 3 France

email: jm.gilliot@enst-bretagne.fr

Abstract— In this article, we propose the use of collaboration
design patterns to organize communications between numerous
embedded devices and cooperative services. The use of collabo-
ration patterns provide a good framework for both synchronous
and asynchronous communications with loose coupling. It also
allows to organize dynamically device in coherent sets. We also
describe a lightweight implementation on embedded web servers
with HTTP as protocol, based on a simple url interface.

I. INTRODUCTION

Embedded devices, such as controllers or smart sensors [1]
are disseminated in the environment. Because of the need
of remote consultation and management, many of them are
connected with a network. This is especially estimated for
telecontrol applications [2].

As web browser have become a standard interface to
communicate and manage embedded devices, and therefore
provide a small HTTP Server [3], the web technology will
be available on most new embedded devices. This means
that the minimal technologies will be TCP/IP, HTTP protocol
server and tools that including web servers will possibly be
developped in Java.

The question that arise is either to use these minimal
communication technologies to develop coherent cooperation
between those devices, or develop specific middleware. The
problem is then to be able to identify coherent protocol,
to enhance the collaboration between servers. We propose
the use of collaboration design patterns [4], well known
and widely used in Object Oriented Design as a basis for
cooperation between many micro-webservers. The idea is to
provide schemes of collaboration at design level and to provide
a direct and simple correspondence at implementation level.

In order to develop such systems, the communication pro-
tocol should be readable by human operator for easy interven-
tion, and should be implemented with a minimal additional
layer based on simplest web standards for potential widest use.
Special attention must be given to keep extension as small as
possible on the server side which is in fact embedded in small
devices.

Another communication reason is the cooperation between
those devices which enable distributed applications. Those
cooperations use mostly specific networks or fieldbuses, for
efficiency, cost and habit reasons. On one side, it ensures a

good safety level, but on another side, it limits the cooperation
to short range neighbours. One may look to the development
of distributed cooperation with no limits on distance.

In order to prove the feasability, we develop some of those
patterns on some embedded servers. For this, we use a modular
web server [5], written in Java, whose initial footprint is very
small.

The result of this approach provides a variety of dynamic
collaborations schemes between distributed embedded devices,
directly available to programmers and users as it respects the
standard Java APIs for those local collaborations. Moreover,
this is achieved with a minimal influence on current architec-
tures.

This paper is organized as follows. First we define the
elements of an architecture based on numerous embedded
devices, the nature of exchanges and underlying organization.
Then, we show that design patterns may organize the collabo-
ration between devices, and may be viewed as communication
components. In the next section, we describe the implemen-
tation of the protocol between devices. The last section is
devoted to examples of implementation showing the feasability
and the flexibility of the communication on one side and the
minimal impact on code due to distribution on another side.

II. MANAGING NUMEROUS DEVICES

Usual applications are based on a few servers delivering
datas or computation to many clients. When managing sensor
or embedded device networks, we face many data providers
for a possibly limited set of services/applications. More-
over, different schemes of communications must be handled,
Client/Server is one of them, but it is useful to provide
event-based communications, also known as pushed models
[6]. Additionally, flexibility, such as adding new services that
handle a set of sensor datas at run-time is possible.

In this part, we will define what kind of exchange are to be
provided for networked embedded devices and then underlying
communication styles.

A. Most devices produce datas

Embedded devices tasks are dedicated to their embedding
environment. This means they handle a state, corresponding to
the state of their environment. This state can be directly given



<<Device>>

<<Device>>

<<Device>>

<<Device>>

<<Device>>

<<Device>>

Service

Fig. 1. Embedded devices and services

by sensors, or can be derived from other information (such as
control, filtering or data fusion). Services are applications us-
ing datas collected for any purpose. This definition is recursive
as a service itself may be seen as a (virtual) device. Another
definition of device/ service couple is producer /consumer.

Embedded devices are servers able to deliver collected datas
at any time, to any service. This means that devices must be
known as servers on the network.

We can consider that interactions between device/ service
can be handled in one of the following ways:

Gathering datas A service may need to collect datas
from a specific set of devices. This may be done
periodically or not, but under the responsability of
the service. In this case services call each device,
that can be seen as clients. Different devices and dif-
ferent services may exit at the same time and evolve
(add/remove elements of sets, devices, services).
Asynchronous datas Services may need to be aware
of changes of a state of a device. An update of
the state of the device, must be send to the service.
Services may be added, at run-time, collecting datas.
This can be extended to be aware of a set of devices.
Services must be ready to accept a call at any
time, from any device. This means they must be
implemented as servers.
Managing alarms This case is a variant of the
preceeding one.

Asynchronously called devices or services must be ready
to receive information, i.e. to be called at any time. In our
approach, the devices will be declared as servers.

B. Communication styles

As just noticed, two different styles are needed : remote
call initiated by the service, or asynchronous calls initiated
by the devices. Those basic models of exchange are also
defined as pull or push models. Moreover, a lot of entities
interested in certain information may vary throughout the
time. Collaboration patterns allowing flexibility are therefore
a natural basis to manage the communications along the

system. Depending on the needs of the services, push or pull
models may be needed in the same application. The use of
collaboration patterns enables a flexible design, allowing to
translate application needs to available technology.

III. DESIGN PATTERNS AS COLLABORATION SCHEME

In order to design the collaboration, we propose to use
directly collaboration patterns as available schemes. Those
patterns, when properly used have some key advantages.

They provide loose coupling and dynamic update. Subjects
and observers don’t need to know each other directly. Further
objects can be added or discarded during the life time of the
application. Some objects may be temporaly down without
being noticed directly by other devices or services. It is pos-
sible to construct arbitrarly set of device for specific purpose,
according to their functionnalities then possibly share some
interesting informations.

The use of patterns can be made hierarchically. An observer
of a whole of devices may be itself observable in the same
application. Observer pattern enforces to be able to make
future remote calls to any of the collaboration participants.

To this point, we can conclude that collaboration patterns are
good candidates to define globally the collaborations between
the devices and the services of an embedded application.
The key implementation is now focused on the remote calls
to any directions. We will here only concentrate on four
classical patterns involving the push and pull communication
schemes, namely Iterator, Composite/Visitor, Observer and
Model-View-Controller.

The Publish/Suscribe pattern has been proposed as a key
pattern to organize the interactions in [7], however we propose
to extend this vision to a whole library of patterns.

We don’t develop the basic patterns schemes here. The
interested reader can consult on this subject many sources
of reference. We simply give the page where a pattern is
referenced in [4] also known as the Gang Of Four (GOF)
book.

A. Collection and Iterator

The first pattern we will consider is the Iterator Pattern
(GOF 257) on a collection. This provides a way to iterate
and group a set of devices and services. Depending on the
dynamic interest, new collections can be constructed, elements
may be added or removed, which enabling adaptation. A
service needs only to know the collection, asking for an
iterator and calling all the objects collected. Those objects
don’t any additional layer, and the caller don’t know them
a priori. If needed, an object can be referenced in different
collections. In this scheme, the caller iterates and makes
synchronous calls, like RPC in a distributed system, to get
needed processing and/or informations. Gathering datas and
polling is then straightforward with an iterator pattern, and
well suited. Notice that no specific function is needed on
device side except the datas formatting.



B. Composite and Visitor

The Iterator pattern provides a uniform way to acceed
through a non structural collection of objects. The Visitor
pattern (GOF 331) allows a hierarchical view of the embedded
devices. It extends the iterator by taking advantage of spe-
cialized objects and by adapting operations to those objects.
Hence, it is possible to visit composite objects such as previous
collections or other structures and final elements in an uniform
way. This also means a more systematic way to aggregate
different devices in an application. The specialization can be
carried out on three main directions, by taking into account
either the nature of the service (sensor reading, command, . . . )
or the specificity of the device or the selected architecture.

C. Observer

Also known as publish/suscribe pattern (GOF 293), this
scheme of communication avoids to poll the state of the
subject object, as the observers will be notified of the subject
change. As our goal is to manage a large number of devices,
in many cases the focus will be on a whole of devices/
information. Hence the subject of the observer pattern will be
a distributed collection as discussed in the previous subsection.
Neither observers nor objects of the collection need to know
directly each other, which enables a dynamic adaptation of
both sets. Here in this scheme of computation, devices must
handle a notify call to initialies the observers calls. This means
that our collection elements has been extended as some “ob-
servable like” elements of the Observable Manager in charge
of relaying the notification to all the observer’s suscribers.
Such implementation looks like a two level Observer pattern.

To minimize the exchanges on the network, we can add to
the update call the source and the state of the change in the
parameters. Notice this is compliant with the definition of the
Observer pattern in Java libraries, as value parameter.

D. Model/View/Controller

This pattern (GOF 4) is a generalization of the precedent one
and is transparent at the implementation level as the controller
just needs to know the model to act on.

E. Underlying Model of distributed collaboration pattern

Our basic patterns can be seen as interaction medium
components [8], [9]. In fact, it isolates the communication
mechanism in a specific component, describing the exchanges
between the classes involved in the collaboration. This com-
ponent is then itself distributed. In the section concerning the
implementation, the component consist in the dotted section
on different figures. The aim of communication components
is to define interactions between different source of datas and
users of those, independently of the different locations. This
is exactly what collaboration patterns provide.

F. Application example : temperature and pressure in a build-
ing

Let’s suppose that every office in a building provide a
temperature sensor device hosting a server. This could be

temp1 temp10

tempCollection
pressureCollection

pressure10pressure1

wholeCollection

airCondObserver

Fig. 2. Example of organisation of devices

easily done by installing a sensor to each computer in a
research lab (for example a DS1920 from Dallas/iButton [10]),
but be also regarded as connecting to building automation.
Different services can then be configured.

• Temperature and pressure knowing and logging of the
whole building by polling the whole collection of sensors.

• Supervision of specific areas (for example air-conditioned
areas) by creating a sub-collection observer.

• check up of valid and deconnected sensors.

The organisation of the devices used for managing all of
them could be as depicted in Fig. 2 where:

• tempCollection would reflect the set of temperature sen-
sors,

• pressureCollection would reflect the set of pressure sen-
sors,

• wholeCollection groups all the sensors as the union of
the precedent sets for global gathering or checking,

• airCondObserver groups the areas under specific atten-
tion.

WholeCollection can be visited enabling to make disjointed
logging in a single call or to check all sensors in a coherent
way. Notice that all sensors may be transparently distributed
on common or separated devices.

IV. PROTOCOL IMPLEMENTATION

In order to implement collaboration patterns, we are looking
for a minimal additional functionnalities on embedded device
side because of their limited ressources. Still any object, being
part of a collection, or observer, i.e. any receiver of a message,
has to provide a reference to itself. We present now a smallest
way to provide a reference and to exchange message in a web
context.

A. A device is a HTTP web server

A common trend is to provide on any “smart” device a small
HTTP web server, which enables easy reading of the state of
the device. This can be achieved with very low footprint [3],
i.e. a few kilobytes. This is sufficient to implement directly



Client

http://jfod.cnam.fr:8080/temp?mode=C

Server
 

<Name = "temp" Range = "celsius" value = "23">

Fig. 3. URL Function call

the iterator pattern, where the remote call to the object could
be simply a HTTP request.

If multiple objects are hosted by the same server on a
device, they can be referenced as subdirectories forming their
identifiers.

We can say that a message to an object is a HTTP request
or even a remote procedure call (RPC) to an object. When
parameters are parts of the message, they can be included in
the HTTP request as simple parameters.

B. A minimal protocol

1) URL based protocol : a lightweight communication
protocol: The web servers will be the objects of the collabo-
ration patterns and will be referenced according to their names
or their IP address.

A HTTP request can be handled in a same way as a remote
function call, or message passing, where the name will be
given as directory extension, in the parameters included in
the URL, and the result will be delivered as a simple HTML
page. An exemple is given in Fig. 3. It should be noticed that
such a call contains implicit parameters which are part of the
connexion properties, including the IP address of the caller.

Hence one provides a modular protocol, extensible which
doesn’t require any new functionality on the server, and is
universally supported [11]. SOAP [12] is an based on this basic
idea and is a good candidate as a well formalized protocol,
but this has not been seen as mandatory at this stage of our
work. Moreover, we also tried to avoid any additional software
layer, coming from such broader protocol.

2) Adapter as translator to the URL protocol: Using
URL based protocol to implement message exchange between
servers is an appealing solution. To be usable, we need to
define a systematic translation to implement the pattern in a
distributed implementation.

This is achieved by a simple translation of all elements of
the call in an URL.

The first step is to specify which relations are distributed.
The choice of the distribution is out of our scope. Let’s just say
that an object is located on a device hosting a HTTP webserver.
This means it has an IP adress.

The second step is to adapt the messages. Every message
exchanged according to the relation, has to be refined using
the following rule :

• the goal of the message is the server address hosting the
object.

• the name of the object and the method compose the url
name

• parameters are translated as couple of ¡name= value¿
• return value is translated as an HTML/XML page. IML,

for Instrument Markup Language [13], [14] is a perfectly
suitable format for this.

This provides a flexible, low footprint solution, based on
a basic service provider. This compares advantageously to
middleware like Jini [15].

As a side effect we can observe that such calls can even be
made with any web browser.

V. EXAMPLES OF IMPLEMENTATION

As we have seen, collaboration patterns are a powerful way
to manage devices as groups or sets. We have shown that
a definition allows the location and the call of any object
located on an embedded device. The last step is to consider the
implementation side on a device. For this, we have developped
following examples with a small but extensible server, Brazil.
Those pieces of code are just feasability examples.

We propose a java implementation, for its clarity and
because embedded java is more and more use with now real
time extensions. We also want to take advantage of the fact
that some pattern interfaces are proposed for single computer
implementations. This last point demonstrates the minimal
impact on the distributed code.

A. Brazil : a modular embedded server

Sunlabs proposes a modular, extensible HTTP server, called
Brazil [5], [16]. This architecture can run as well on large
computers, personnal computers or on embedded computers
such as TINIs [17], [18]. It is easy to develop new applications
and can be used freely.

The main features of Brazil are :

• Handlers which are modular objects, that implementing
specific abilities like file services, security services or
temperature readings . . . . Brazil provides a large set
of reusable handlers. Using this feature, we developped
additional handlers to provide our collaboration patterns.

• Properties enables to define and use attribute/value pairs.
This make information easily available.

• Support of script languages like TCL or Python, for
efficient parsing.

• Security is fully integrated allowing to access control
of specific URLs with passwords. We can also restrict
access to a server to specific client IP adress, and use the
Security Socket Layer (SSL) when needed.

• a server may easily be a portal of different servers,
thanks to a redirection handler. This allows combination
of servers through a common URL.

It should be noticed that only the used features are loaded.
Therefore, servers may be deployed to the needs of the
application versus the embedded processors power. This helps
to manage the memory footprint of the server, and fit to device
or appliances systems capacities.



HandlerObject

HandlerObject

HandlerCCollection

CProxyCollectionService

Fig. 4. Possible deployment diagram of iterator/collection pattern

A callback to an object can be handled by some feature
equivalent to a servlet named a handler in Brazil. This en-
ables to define protocols based on URLs, which allows loose
coupling in embedded technologies. For our scope, a server
just needs to be able to parse an URL request.

B. Collection and iterators

As a first example, we will consider the following structure:
• A service access to a collection through a local adapter

called CProxyCollection.
• The collection is handled by an instance of CCollection

on another processor
• Objects referenced by the collection are freely distributed

on brazil servers.
This is resumed on the deployment diagram Fig. 4.

1) Collection: To accede the collection, a service needs
a reference to it in order to create a local adapter. This
will enable direct access to any method of collected ob-
jects, in accordance with the standard method calls. Our
adapter implements the Collection interface and extends
the AbstractCollection API standard class, where the
only notable difference with a local implementation is the
specification of the web address of the actual URLs col-
lection. A call to this adapter will simply translate the call

Client

CProxyCollection
+ add, ...
+ iterator

Iterator

Handler Object

Handler
+ respond

CCollection
+ add, ...
+ iterator

Iterator

1..*

AbstractCollection

HttpObject
+ String callMethod

HttpObject
+ String callMethod

1

1

<<url>>

1

1

<<url>>

Collection

1

*

1

*

Fig. 5. Implementation of iterator/collection pattern

in a HTTP request like the following : http://server/
collection/call/?params

Notice that the collection may be reached directly with any
browser. For example, one can ask the full list of objects ref-
erenced with a request such as http://jfod.cnam.fr:
8080/tempCollection/toString/ which will reply
with a HTML page containing the full list. If the call is done
through the adapter, it will simply remove the HTML tags, in
order to deliver the answer.

On the collection side, the HTTP requests are managed by
a brazil handler in charge of the collection name. The requests
are parsed and corresponding calls with actual parameters are
delivered to the collection.

On each site, a remote object is locally represented by a
HttpObject for HTTP Collaboration Object, containing the
object URL and a method to remotelly call a method of the
object. Notice that the Collection may itself represented as a
HttpObject on the client side.

Fig. 5 resumes the final implementation of the itera-
tor/collaboration pattern.



2) Iterator located on Collection site: Asking an iterator
of such collection will create a reference for access through
the adapter. As a first implementation, we can create the
iterator instance on the collection site. Any further access to
the iterator will consist in calling an adapter, translating it to a
HTTP request, and processing of the response, finally allowing
to accede all the objects in the collection. The lifetime of the
iterator can be easily ensured with the cookies mechanism,
or a unique delivered index value. Should the server fail in a
safe way, the persistance of the collection could be also easily
guaranteed. This implementation is correct but any access to an
object is done thanks three request which is clearly excessive.
The only advantage is the minimal resources used on the
service side.

3) Iterator located on service site: Another implementa-
tion is to make a copy of the list of the objects URLs in the
HTML page of the response, allowing to create the iterator
near the service. If the collection is constant in regard to the
time to traverse the collection, this is clearly a better solution,
as long as the memory on the service side is sufficient. In
that case the iterator and its state are located on the service
site. If one wishes to maintain the iterator coherent with
the collection, it could be implemented as observer of the
collection.

C. Composite/Visitor

As we have seen the Composite/Visitor pattern is a powerful
way to specialize the use according to specific classes. The
composite Pattern enables the description of a hierarchical
architecture of embedded systems, essential for a complex
system. This pattern proposes architectures with a natural view
as a list, a group, etc. of embedded systems. In addition, in our
context, the composite pattern describes a grammar of embed-
ded systems installed in an environment. This description is
proved to be essential with most of systems. As remote objects
are represented as HttpObject, this class has to be specialized
to provide a hierarchy of elements to visit. This hierarchy
provides on one side specialized elements which are specific
web servers in our example implementation, and on another
side, a hierarchy of collections to provide different ways to
group objects. The Composite pattern describes a grammar of
the systems used, our example in Fig. 6 defines this grammar
in EBNF:

HttpObject ::= CCollection | Device

CCollection ::= HttpList | HttpRing

HttpList ::= {HttpObject}

HttpRing ::= {HttpObject}

Device ::= IButton | Tini | JavaCard

an expression of the language defined by this grammar is a
particular configuration of embedded systems

Device

Visitor

CCollection

IButton JavaCardTini HttpList HttpRing

+ Object accept(Visitor)

CollectVisitor CheckerVisitor

0..*HttpObject

Fig. 6. Example of Visitor

In Fig. 6, we show this example of hierarchy, and two
different visitors, one being able to collect the list of the
elements in a console, the other checking up status datas.
Services can then easily be extended by adding new Visitor
classes. For example, we have implemented a new checking
visitor for inaccessible devices.

D. Observer pattern

In the Observer pattern, the subject or Observable must be
called to add, remove or notify Observers. This means that
a HttpObservableManager extending the Observable class and
the different methods has to be created on the site managing
the observers of the Observable instances.

As a ConcreteObserver (implementing the Observer inter-
face) will be notified by a remote Observable Object, it has to
be part of a web server. In the Brazil server, this corresponds
to a handler able to receive the URL call and to call update
method of the Observer.

As we noticed in section III-C, in order to make numer-
ous device observable, a good implementation is to define
the subject as a distributed collection, each element of this
collection will simply have to notify the change to broadcast
it to all Observers. Fig. 7 resumes the final implementation
of the observer pattern. The flexibility, such as adding new
services at run-time is possible with our implementation of
theses collaboration patterns.

A View in a browser As our implementation is web compli-
ant, it is natural to define browsers as observers. Our current
solution is to load an applet from the distant site hosting the
Observable. This applet includes a small web server, possibly
a Brazil web server or other.

E. Configuration/Initialization of the system

As the different servers involved in the collaborations are
passed as parameters in our message, the configuration can be
achieved by any external agent. This means that any external
broker can initalize the system, or even an operator through
any browser.



CProxyObserver 

CObservable

ObserverHandler

HttpObject

+ String callMethod

HttpObject

+ String callMethod

CCollection

ConcreteObserver

ObservableHandler

CProxyObservable

+ add(CObserver)
+ remove(CObserver)
+ notifyObservers()

Configurator

<<url>>

1
1

*

<<url>>

Fig. 7. Implementation of observer pattern

A configuration by default can be achieved with the help
of static datas in a configuration file, viewed by the server
as initial properties. The Brazil redirection mechanism allows
to use its security mechanisms and decouple the deployment
and URL signatures. This also ensures a loose coupling with
harwdare.

F. Implementation of the application example : temperature
and pressure in a building

Let’s see now how to implement the example we have
described in section III-F. The different collections and the
observable collection will be attainable through handlers of
Brazil servers.

Let’s suppose that temperature sensors deliver their datas on
URL http://www.temp"i".fr/getTemp/where ”i” is
an indice variable, and something similar for pressure sensors.
A code to initialize the system would look like :

CCollection localTempCollection =
new CCollection(

"http://www.dispatch.fr/tempCollection"));
for (int i = 0 ;

i < NB_TEMP_SENSORS ; i++) {
localTempCollection.add(
new Temp(

"http://www.temp"+i+".fr/getTemp"));
}

CCollection localWholeCollection =
new CCollection(new
Gatherer(

"http://www.dispatch.fr/wholeColl");
localWholeCollection.add(
new Gatherer(

"http://www.dispatch.fr/tempColl"));
localWholeCollection.add(
new Gatherer(

"http://www.dispatch.fr/pressureColl"));

A code trying to collect temperatures on a different site
would be almost like a code acceding to local sensors :

CCollection localTempCollection =
new CCollection(new
HttpObject(

"http://www.dispatch.fr/tempColl"));

for (Iterator
it = localTempCollection.iterator();
it.hasNext();)

float t = Float.parseFloat(it.next());

If additional subclasses of HttpObject is defined as proposed
in Fig. 8 and if a CollectVisitor class implements the
”accept” method, access to all the sensors could simply done
following way :

String Result =
localWholeCollection.accept(

new CollectVisitor());

This provide a good insight of the potential use.

VI. CONCLUSION

In this work, we proposed to model interactions between
distributed objects on embedded device as collaboration pat-
terns. We have shown that it provides a good framework to
organize pull and push models with loose coupling between
participants, at logical and hardware levels. The substitution
of embedded systems is easy with this approach. The HTTP
protocol, broadly used is a de facto standard for automation.
No additional layer is needed, neither on the device side, nor
on the service side where a browser is sufficient in most cases.
Flexibility, such as adding new services at run-time is possible
with such a scheme.



Temp Pressure

Device

Visitor

CCollection

Gatherer Checker

+ Object accept(Visitor)

0..*
HttpObject

Fig. 8. Implementation example for Composite/Visitor pattern

In section II, we have presented useful collaboration needed
for networked embedded devices, then in section III we have
seen that standard collaboration patterns fullfill those needs.
In section IV, we considered a minimal protocol, when we
assumed that HTTP servers are provided on devices. The
section V gave details on implementation, showing that our
implementation is very close to non distributed API proposed
in Java. As examples, we detailed four of the most used,
namely Iterator, Composite, Visitor, Observer and its variant
Model-View-Controller. The same process has been applied to
other patterns such as Chain of Responsibility or Proxy.

The result of this approach provides a variety of dynamic
collaborations schemes between distributed embedded devices,
directly available to programmers and users as it respects the
standard Java APIs for those local collaborations. Moreover,
this is achieved with a minimal influence on current architec-
tures.

We believe this may be of great help to manage a system
composed of numerous and various embedded devices such as
smart sensors.

In the last part we detailed possible implementation where
all the devices are simple HTTP servers. Different implementa-
tions were proposed, depending of design choices, without any
change on the side of the devices. Hence a future work could
be to study the specification and implementation of variants
depending on non functional needs.

REFERENCES

[1] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of sensor
network,” Mobile Computing and Communication Review, vol. 6, no. 2,
04 2002.

[2] L. Reveilleau, E. Becquet, L. Bacon, J.-M. Douin, E. Gressier-Soudan,
and F. Horn, “Towards a rt-java based embedded remote monitoring
tool for small and medium power plant units.” Proceedings Emerging
Technologies and Factory Automation (ETFA’2001), 10 2001.

[3] M. T. Jones, “An embeddable http server,” Dr. Dobb’s Journal, 10 2001.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns :

Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.
[5] R. D. Giorgio, “Serve clients’ specific protocol requirements with

brazil, part 1-4,” JavaWorld, 08 2000. [Online]. Available: www.
javaworld.com/javaworld/jw-08-2000/jw-0811-javadev˙p.html

[6] M. Hauswirth and M. Jazayeri, “A component and communication model
for push systems,” in ESEC/FSE 99 - Joint 7th European Software
Engineering Conference (ESEC) and 7th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE-7), 1999,
pp. 20–38.

[7] P. T. Eugster, R. Guerraoui, and J. Sventek, “Distributed asynchronous
collections: Abstractions for publish/subscribe interaction,” in 14th Eu-
ropean Conference on Object Oriented Programming (ECOOP 2000),
06 2000, pp. 252–276.

[8] E. Cariou, A. Beugnard, and J. Jezequel, “An architecture and a process
for implementing distributed collaborations, 6th international enterprise
distributed object computing conference (edoc 2002), 17-20 september
2002, lausanne, switzerland, proceedings,” in EDOC. IEEE Computer
Society, 2002.

[9] A. Beugnard. Communication components. [Online]. Available: http:
//www-info.enst-bretagne.fr/medium/index.html

[10] ibutton temperature sensor. [Online]. Available: http://www.ibutton.
com/products/ibuttons.html#temperature

[11] R. D. Giorgio, “An introduction to the url programming interface,”
JavaWorld, 08 1999. [Online]. Available: www.javaworld.com/
javaworld/jw-08-1999/jw-09-javadev.html

[12] R. Englander, Java and SOAP. O’Reilly, 2002.
[13] D. Cox, “Xml for instrument control and monitoring,” Dr.

Dobb’s Embedded Systems, 11 2001. [Online]. Available:
http://www.ddjembedded.com/resources/articles/2001/0111i/0111i.htm

[14] J. Breed. (2000, 08) Instrument markup language website. [Online].
Available: http://pioneer.gsfc.nasa.gov/public/iml/

[15] J. Waldo and K. Arnold, The Jini Specifications, 2nd ed. Addison-
Wesley, 11 2002.

[16] Brazil documentation and api. [Online]. Available: www.sun.com/
research/brazil/

[17] D. Loomis, The TINI specification and developer’s guide. Addison
Wesley, 2001. [Online]. Available: http://www.ibutton.com/TINI/book.
html

[18] J. Elosua and J. Burgillo, “Www-based remote cotrol using tini cards
and brazil.” IFAC 15th Triennal World Congress, Barcelona, Spain,
2002.


