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ABSTRACT

Deep neural networks have established as a powerful tool for large scale supervised classifi-
cation tasks. The state-of-the-art performances of deep neural networks are conditioned to
the availability of large number of accurately labeled samples. In practice, collecting large
scale accurately labeled datasets is a challenging and tedious task in most scenarios of remote
sensing image analysis, thus cheap surrogate procedures are employed to label the dataset.
Training deep neural networks on such datasets with inaccurate labels easily overfits to the
noisy training labels and degrades the performance of the classification tasks drastically. To
mitigate this effect, we propose an original solution with entropic optimal transportation. It
allows to learn in an end-to-end fashion deep neural networks that are, to some extent, ro-
bust to inaccurately labeled samples. We empirically demonstrate on several remote sensing
datasets, where both scene and pixel-based hyperspectral images are considered for classifi-
cation. Our method proves to be highly tolerant to significant amounts of label noise and
achieves favorable results against state-of-the-art methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Deep learning has been applied with tremendous success
on a variety of tasks in remote sensing image analysis. For
instance, achievement of state-of-the-art performance in
scene classification (Cheng et al., 2018; Anwer et al., 2018),
pixel-wise labeling of both multispectral (Huang et al.,
2018; Audebert et al., 2018; Maggiori et al., 2017) and
hyperspectral datasets (Zhong et al., 2018; Wang et al.,
2017), object detection (Kellenberger et al., 2018) and im-
age retrieval (Zhou et al.; 2018; Ye et al., 2017; Li et al.,
2018), highlights the recent success of deep learning mod-
els in remote sensing. But these phenomenal performances
is highly dependant on the availability of large collection
of datasets with accurate annotations (labels). If either
the size of the dataset or the accuracy of the labels is not
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sufficient (i.e, small scale datasets or inaccurate labels),
the performance of the deep learning methods could suf-
fer drastically. The former one can be addressed to some
degree by data augmentation strategies, however solving
the later case of inaccurate labeling is more difficult.

To address the large scale data requirements of deep
learning methods, new datasets have been proposed re-
cently in the remote sensing community (Zhou et al., 2018;
Huang et al., 2018; Cheng et al., 2017; Kemker et al.,
2017; Wang et al., 2016; Xia et al., 2017). This trend will
grow continuously in the coming years, due for instance
to the large constellation of the Earth observation satel-
lites. Omne of the major challenge in collecting this new
large scale data is accurate labeling of the samples. Man-
ual expert labeling of such large collection of samples is
often not feasible and not cost-effective. Thus, labeling is
usually performed by non-experts through crowd sourcing
(Snow et al., 2008; Haklay, 2010), keyword query through
search engine in the case of images, open street maps, and
out-dated classification maps (Kaiser et al., 2017). These



cheap surrogate procedures allows scaling the size of la-
beled datasets, but at the cost of introducing label noise
(i.e. inaccurately labeled samples).

Fig. 1: Examples of images from classes medium residential area (top
row) and tennis ground (bottom row).

Even when manual experts are involved in labeling the
data samples, they must be provided with sufficient infor-
mation; otherwise inaccurate labeling may still occur (for
instance, during the field survey) (Hickey, 1996). Note
that in the some applications, labeling is a subjective task
(Smyth et al., 1995) that can again introduce label noise.
For instance, figure 1 shows images that have close similar-
ities between two classes Medium residential and Tennis
ground. It is easy for a human annotator to miss the Ten-
nis ground and to label it as Medium residential leading
to label noise in the dataset. Furthermore, the label noise
could occur due to the misregistration of satellite images.
Hence in general, large scale datasets might mostly contain
inaccurately labeled samples or affected by label noise. In
this case, when deep learning methods are employed with
conventional loss functions (for instance, categorical cross
entropy, mean square error), they will not be robust to
label noise, and as a result the classification accuracy de-
creases significantly (Zhang et al., 2017). This calls for
robust approaches to mitigate the impact of label noise
on the deep learning methods. This paper exactly lies in
this direction, to increase the generalization ability of deep
learning models under the label noise scenario.

Recently, it was shown that while training deeper neu-
ral networks, models tend to memorize the training data,
and this phenomena is more severe when the dataset is
affected by the label noise (Zhang et al., 2017). The im-
pact of the label noise in the deep learning models can be
partly circumvented by regularization techniques such as
drop out layers, and weight regularization. These stan-
dard procedures make neural networks robust to some ex-
tend, but they are still prone to memorize noisy labels
for medium-to-large noise levels. The problem of learning
with noisy labels has been long studied in machine learning
(Frenay and Verleysen, 2014; Brooks, 2011; Zhu and Wu,
2004; Séez et al., 2014; Hickey, 1996; Smyth et al., 1995;
Natarajan et al., 2013), but still only few works have fo-
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cused on neural networks. Recently, new approaches have
been proposed in the computer vision and machine learn-
ing fields to tackle the label noise by cleaning the noisy
labels or designing robust loss functions within the deep
learning framework (Jiang et al., 2018; Vahdat, 2017; Pa-
trini et al., 2017).

To mitigate the impact of label noise, one category of
method relies on estimating the noise transition probabil-
ity that describes the probability of i” class label being
mislabeled to the j” class label, and use it to be robust
to label noise (Vahdat, 2017; Natarajan et al., 2013; Pa-
trini et al., 2017). Among those, some of them require a
small set of clean labels to estimate the noise transition
probability (Vahdat, 2017). The other category of meth-
ods proposes to use loss functions which are inherently
tolerant to the label noise (Natarajan et al., 2013; van
Rooyen et al., 2015; Masnadi-Shirazi, Hamed and Vascon-
celos, 2008; Ghosh et al., 2015; Aritra et al., 2017). Though
these methods provided satisfactory results, all of them
treat the noisy samples independently in their loss func-
tions, discarding potential information about the relation-
ship between the samples in the feature space. Contrary
to those methods, our proposal is to consider the local
geometric information among the samples in the joint la-
bel/feature space through the form of similarity measure
between the samples to overcome the impact of noisy la-
bels in deep neural networks.

The primary objective of this paper is to develop a ro-
bust approach to tackle the label noise for remote sensing
image analysis. The sensitiveness of deep neural networks
to label noise has not been well studied in remote sens-
ing image analysis so far as per our knowledge. Hence
the first contribution of this article lies in studying the ro-
bustness of deep neural networks to label noise, and also
to analyse the efficiency of existing robust loss functions
for remote sensing classification tasks. The second contri-
bution of this paper is to propose a novel robust solution
to tackle the label noise based on optimal transportation
theory (Villani, 2009). Indeed we propose to learn a deep
learning model which is robust to label noise by fitting the
model to the label-features joint distribution of the dataset
with respect to the entropy-regularized optimal transport
distance. We coin this method as CLEOT for Classifica-
tion Loss with Entropic Optimal Transport. One major
advantage of our approach compared to existing methods
is that our method inherently exploits the geometric struc-
ture of the underlying data, by considering the similarity
between the sample points through the ground cost in op-
timal transport. A stochastic approximation schemes is
proposed to solve the learning problem, and allows the use
of our approach within deep learning frameworks. Exper-
iments are conducted on several remote sensing aerial and
hyperspectral benchmark datasets, and the results demon-
strate that our approach is more robust (tolerant) to high
level label noise than current state-of-the-art methods.

The remaining of the paper is organized as follows. Sec-
tion 2 discusses related works, section 3 defines the label



noise and describes the problem formulation, and section
4 introduces optimal transport. The proposed method is
then presented in section 4.2 while experimental datasets
and results are explained in section 5. We finally draw
some conclusions in section 6.

2. Related works

2.1. Learning with noisy labels

Label noise, and attribute (feature) noise are two types
of noise commonly found in machine learning datasets.
The label noise is considered as more harmful and diffi-
cult to tackle compared to the attribute noise, and can
decrease the classification performance significantly (Zhu
and Wu, 2004). Learning with noisy labels with shallow
learning methods have been widely investigated in the lit-
erature (Frenay and Verleysen, 2014; Brooks, 2011; Zhu
and Wu, 2004; Séez et al., 2014; Hickey, 1996; Smyth et al.,
1995; Natarajan et al., 2013), but studies in the context
of deep learning still remain scarse (but growing recently)
(Mnih and Hinton, 2012; Reed et al., 2015; Vahdat, 2017;
Hendrycks et al., 2018; Patrini et al., 2017). Among the
several methods which have been proposed to robustly
train deep neural networks on the datasets with noisy
labels, one set of methods approaches the problem from
the perspective of cleaning the noisy labels, and use the
clean estimated labels for training deep neural networks, or
they smoothly reduce the impact of noisy labels by putting
smaller weights on noisy label samples, either through di-
rected graphical models (Xiao et al., 2015), conditional
random field (Vahdat, 2017), knowledge graph distillation
(Li et al., 2017), meta-learning (Ren et al., 2018) or noise-
transition matrix estimation (Hendrycks et al., 2018). But
those methods require an additional small subset of data
with clean labels, or require ground truth of pre-identified
noisy labels in order to model the noise in the dataset.

A second kind of methods tries to detect clean instances
out of the noisy instances, and use them to update the pa-
rameters of the trained neural network (Jiang et al., 2018;
Ding et al., 2018). In this category, two deep networks
or two stage framework are employed to remove noisy la-
bel instances. The last kind of methods design a robust
loss function and loss correction approach. The robust
loss functions unhinged (van Rooyen et al., 2015), savage
(Masnadi-Shirazi, Hamed and Vasconcelos, 2008), sigmoid
and ramp (Ghosh et al., 2015) are inherently robust to
the label noise with associated theoretical bounds. Most
of these method rely on an assumption of symmetric loss
function. The loss correction approaches employ the cor-
rectness procedure to adjust the loss function to eliminate
the influence of the noisy labels by forward and backward
correction approach (Patrini et al., 2017) using the esti-
mated noise transition model from the noisy labeled data,
adding linear layer on top of a softmax layer (Sukhbaatar
et al., 2014; Jacob and Ehud, 2017), using bootstrap ap-
proach (Reed et al., 2015) that replaces the noisy labels
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with a soft or hard combination of noisy labels and their
predicted labels.

In remote sensing image analysis, the adverse effect of
the label noise is not much studied in literature. The im-
pact of label noise has been recently studied in (Frank
et al., 2017; Pelletier et al., 2017a) with shallow classifiers.
The feasibility of using online open street map (outdated
or mislabeled ground truth) to obtain classification map
with deep neural network was studied in (Kaiser et al.,
2017), however they didn’t consider directly addressing la-
bel noise as a specificity of the problem. Some other stud-
ies tackle the label noise in the context of shallow classifier
(random forest, logistic regression) by selecting clean la-
beled instances via outlier detection (Pelletier et al., 2017b;
Maas et al., 2019), or by using existing noise tolerant lo-
gistic regression method (Maas et al., 2016, 2017).

2.2. Optimal transport

Optimal transport theory provide the Wasserstein dis-
tance, that measures the discrepancy between probabil-
ity distribution in a geometrically sound manner. More
recently, optimal transport has found applications in do-
main adaptation (Courty et al., 2017b,a; Damodaran et al.,
2018), generative models (Seguy et al., 2018; Genevay
et al., 2017; Arjovsky et al., 2017), data mining (Courty
et al., 2018) and image processing (Solomon et al., 2015;
Papadakis, 2015).

Among those applications, domain adaptation is the one
that is the most related to the problem of noisy labels. It
indeed aim at adapting a classifier to better predict on
new data whose distribution is different from the training
data. In the case of label noise in the training dataset,
we want to adapt the classifier to perform well on data
using a different noisy dataset for training. One recent ap-
proach coined JDOT for joint distribution optimal trans-
port (Courty et al., 2017a) propose to estimate a classi-
fier that minimize the Wasserstein distance between the
joint feature/labels distribution and a predicted (with the
model) joint distribution on the new data. The approach
has been recently extended to the deep learning framework
in (Damodaran et al., 2018) and will be described more in
detail in section 4.2.

Our proposed method CLEOT is different from
Damodaran et. al (DeepJDOT) in several aspects. Both
DeepJDOT and CLEOT are extensions of joint distri-
bution optimal transport. In the former, the optimal
transport coupling is computed between the samples from
source and a different target distribution using a classi-
cal optimal transport formulation. In CLEOT we use the
JDOT loss on the noisy distribution itself together with
entropic regularization to promote connections between
the neighboring samples, leading to more smoothness in
the estimated model. This corresponds to the estima-
tion of new soft labels through the weighted combination
given by the optimal transport coupling. Furthermore,
the objective function of the DeepJDOT minimizes the
Wasserstein distance that is known to be non-differentiable



whereas CLEOT minimizes a smooth entropic formulation
for which we can recover the unique gradients with auto-
matic differentiation.

3. Problem formulation and noise model

3.1. Traditional supervised learning

Let X = {x1,....,xy5} € XV be the training fea-
tures/images and ¥ = {yi,...,yn} € YV be their asso-
ciated one-hot encoded class labels (y; € {0,1}1%¢, ¢ is
the number of classes) sampled from the joint distribution
p(x,y). Let f: X — Y be a neural network model with
model parameters 6, which maps the input features into
class conditional probabilities f(x); = p(y = jlx). The
loss function L(f(x),y) measures the discrepancy (error)
between the true label y and the predicted label distribu-
tion f(x) by the neural network. In the standard super-
vised learning stting, one estimates the parameters 0 of f
by minimizing the empirical risk on the training set

min < L)) (1)

i=1

In this paper we use the cross-entropy defined as :

L(f(xi).yi) = Xi=1 —vijlog(f(x;);), thus eq. (1) can be
re-expressed as

N ¢
mfin ;Z_yUlOg f(xi);), (2)

The neural network model f is estimated by minimizing
the objective above with respect to its parameters through
stochastic optimization procedures. However, minimizing
the loss function eq. (2) in certain scenarios can lead to
over-fitting. When the dataset is affected by label noise,
minimizing the empirical risk can degrade the performance
of the neural network. Hence suitable modification of the
loss function is necessary to learn a robust neural network
model, which is the direction of our proposed method.

In the following subsection, we describe the label noise
in the datasets, and how to artificially simulate this noise
in two different settings.

3.2. Label noise

Large scale datasets are commonly subjected to label
noise (mislabeled samples), especially when using one of
the surrogate labeling strategy discussed in the introduc-
tion. The occurrence of the label noise in the dataset can
be of two types: asymmetric and symmetric label noise.

In the asymmetric label noise, each label y in the train-
ing set is flipped to y with probability p(¥ly), defining the
noise transition matrix, E;; = p(y = jly = i) Vi, j, indi-
cating the probability of i class label being flipped to j*
class label. Thus, the training samples {x;, y;} are observed
from the joint distribution

Zp (Fly)p(yix)p ZE,,p (yx)p(x). (3)
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This noise model is realistic and can occur in real world
scenario, where non-expert finds difficult to distinguish be-
tween the similar fine grained classes. However, the matrix
E is generally unknown in real-world scenarios.

In the symmetric label noise, the label is flipped uni-
formly across all the classes with probability p., irrespec-
tive of similarity between the classes. In this case, matrix
E has the entries 1 — p, in the diagonal, and 1ij in the
off-diagonal elements. This noise model is much simpler
and has a unique parameter.

For both the noise types, learning the classifier f with
the loss function mentioned in eq. (1) is not robust and
can lead to overfitting to the noisy training labels.

4. Classification Loss
Transport (CLEOT)

with Entropic Optimal

In this section we first provide an introduction to opti-
mal transport (OT) by discussing unregularized and reg-
ularized OT. Next we introduce the joint distribution OT
which is starting point of our method. Then we formulate
our approach and discuss the numerical resolution of the
proposed learning problem.

4.1. Introduction to optimal transport

Optimal transport (see for instance the two monographs
by Villani (Villani, 2003; Villani, 2009)) is a theory that
allows to compare probability distributions in a geometri-
cally sound manner even when their respective supports do
not overlap. OT is hence well-suited to work on empirical
distributions and allows to take into account the geome-
try of the data set in its embedding space. Formally, OT
searches for a probabilistic coupling T € TI(u1, u2) between
two distributions p; and uo which yields a minimal total
displacement cost wrt. a given cost function ¢(x1, x2) mea-
suring the dissimilarity between samples x; and x2 on the
support of each distribution u; and us respectively. Here,
II(uy, u2) describes the space of joint probability distribu-
tions with marginals yy and ps. In a discrete setting (both
distributions are empirical) the OT problem becomes:

We(ui,u2) = min < T,C >p, 4)

Tell (k1 .u2)

where {-,-)r is the Frobenius dot product, C > 0 is a
ground cost matrix € R"*"2 representing the pairwise costs
c(x,-,xj)7 T is a matrix of size n; X ny with prescribed
marginals, and ny, ny the sizes of the supports of the dis-
tributions gy and pe respectively. The minimum of this
optimization problem can be used as a measure of dis-
crepency between distributions, and, whenever the cost ¢
is a metric, OT is also a metric and is called the Wasser-
stein distance.

OT solvers have a super-cubic complexity in the size of
the support of the input distributions n = max(ny,ns),
which makes OT approaches untractable when dealing
with medium to large-scale datasets. In order to speed
up OT computation, Cuturi (2013) proposed instead of



the above linear program to solve a regularized version of
OT. Regularization is achieved by adding the negative en-
tropy regularization term to the coupling T. Thus, the
so-called entropy-regularized Wasserstein distance can be
defined as eq. (4) is becomes

Wealui, pz) =< T, C >p, (5)
with
T = argmin <T,C >r +4AR(T) (6)
Tell (1 u2)
where R(T) = 3, ; T jlog T, is the negative entropy of T,

and A is the trade-off between the two terms. When 4 =0
eq. (5) recovers the original optimal transport problem
from eq. (4), and when 2 — oo the resulting divergence has
strong links with maximum mean discrepancy as discussed
in (Genevay et al., 2017). Efficient computational schemes
were proposed with entropic regularization (Cuturi, 2013)
as well as stochastic versions using the dual formulation of
the problem (Genevay et al., 2016; Arjovsky et al., 2017;
Seguy et al., 2018), allowing to tackle middle to large sized
problems.

Note that the regularized Wassersein distance is defined
in eq. (5) only with the linear term whereas the OT matrix
T* is optimized with an additional regularization term in
eq. (6). This allows for a better approximation of the
Wasserstein distance as discussed in Luise et al. (2018), but
comes with a slightly more complex problem to minimize
when used as objective value as discussed in the following.

4.2. Joint distribution optimal transport

In the context of wunsupervised domain adapta-
tion, Courty et al. (2017a) proposed the joint distribution
optimal transport (JDOT) method. The idea is to consider
the optimal transport problem between distributions on
the algebraic product space of features and labels spaces,
instead of only considering the feature space distributions.

In this setting, the source measure u; and the target
measures y, are measures on the product space X X Y,
and we note (x*,y*), (x',y") the samples of y; and y, re-
spectively. The generalized ground cost associated to this
space can be naturally expressed as a weighted combina-
tion of costs in the input and label spaces, reading

x}) +BL(y},¥) (7)

for the i-th element of the support of u; and j-th element
of the support of y,. c(-,-) is chosen as a €3 distance and
L(-,-) is a classification loss (e.g. hinge or cross-entropy).
Parameters @ and 8 are two scalar values weighting the
relative contributions of features and label discrepancies.
In the unsupervised domain adaptation setting, the labels
y’j are unknown and we seek to learn a classifier f: X —» Y
to estimate the label f (Xt]) of each target sample. Hence,
with (x', f(x!)) the samples from the target distribution,
we define the ground loss,

s S, t t _ N
d(xi,yi,xj,yj) = ac(x],

dy (x}.y5;x5) = ac(x).x}) + BL(y;. f(x}))  (8)
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Accounting for the classification loss, JDOT leads to the
following minimization problem:

m}n Wp, (45, p;) = min < T,Dy >p, (9)

J Tl (s par)

where D depends on f and gathers all the pairwise costs
ds(-,-). As aby-product of this optimization problem, sam-
ples that share a similar representation and a common la-
bel (through classification) are matched, yielding better
discrimination. JDOT has been recently extended to deep
learning strategies (Damodaran et al., 2018) by comput-
ing the optimal transport w.r.t. deep embeddings of the
data rather than the original feature space, and also by
proposing a large-scale variant of the regularized OT op-
timization problem.

4.3. Learning with noisy labels using entropy-regularized
or
The main idea of our proposed method is to learn a
neural network model f efficiently in the presence of noisy
labels. The intuition of proposed method is to leverage the
information from the nearby samples to estimate accurate
labels. Let {x;,¥i}, i, j = 1,...,N be the samples and
their associated noisy one-hot labels observed from p(x,y).
We note p the discrete distribution corresponding to these
samples. Our proposal is to learn f that yields a discrete
distribution py = 3; 0, f(x,) Which minimizes the following
problem:
min W, () (10)

which can be reformulated to the following bi-level opti-
mization problem:

mm ZT (¥i, f )) (11)
s.t. TF = argmrlln <T,D; >F +4R(T), (12)

with .
DY = alix; = /1P + BL (5, £(x,) (13)

As we can see from the objective function eq. (11), f will be
learned such that each sample classification f(x;) needs to
be close to every labels y; for which T;; is non-zero. This
highlights the role of the optimal coupling T in helping
learn a classifier f which is smoother thanks to this aver-
aging process since the OT regularization A will promote a
spread of mass in T. Here the geometry of the dataset is
taken into account through the ground metric on the joint
feature-label space. This averaging process is even more
clear when the classification loss L is linear, which is the
case for the cross-entropy loss. Indeed, we have in that
case

ZTLy,, f(x;)) Z [ZTUSIH ] (14)

where Y; Tj]&i is as an average of the labels with weights
in T, hence a denoised estimate for y;. Our approach cor-
responds to learning from labels that have been smoothed



by substituting the each noisy label by a weighted com-
bination of labels where the weights are provided by the
optimal couplings estimated w.r.t. the ground cost matrix
D;. We name this approach CLEOT for Classification
Loss with Entropic Optimal Transport. This approach is
notably motivated by the denoising capacity of the entropy
regularized optimal problem, as explored in (Rigollet and
Weed, 2018), and where the denoising is conducted directly
on the joint distributions.

In order to better interpret our approach, we can look
at the limit cases. When 8 — 0 and A = 0 the label loss
disappears in the OT metric and the OT matrix is the
solution between p and itself. In this case the solution is
obviously the identity matrix and the optimization prob-
lem wrt f boils down to the classical empirical risk mini-
mization of eq. (1) without cross-terms. When 1 = 0 and
a > 0,8 >0, the OT is performed in the joint distribution
sense and will include label information through cost (13),
but the solution will be very sparse (a permutation) at the
risk of overfitting the sample assignment in T". However,
when the entropy regularization is included (1* > 0), the
probability in T* mass is spread-out, as a result the op-
timal coupling (T*) will share mass between the samples
which have similar features and label representations and
perform label smoothing.

This averaging is of particular interest when the labels
are corrupted by the noise since we always suppose that
the good labels are wining locally in average (or else noth-
ing can be learned anyways). Thus, learning the neural
network model (f) with CLEOT (eq. (11)) naturally mit-
igate the impact of the label noise, and obtains the robust
classifier.

Finally we discuss how to solve the optimization prob-
lem (10). The authors of JDOT originally proposed to per-
form alternative optimization on T and f. This approach
works for un-regularized OT and converges to a stationary
point. However this does not hold true for regularized OT.
When using regularized OT as proposed here, the problem
is a bi-level optimization problem (Colson et al., 2007). Bi-
level optimization problem that are notoriously difficult to
solve. Since the inner problem is a regularized OT prob-
lem that is strongly convex, one could solve the problem by
using the implicit function theorem as discussed in Luise
et al. (2018) on a different application. However, solving
the full coupling T* is computationally infeasible both in
terms of time and memory, because T* is a dense matrix
and scales quadratically in size to the number of samples.
Even if modern solvers have been proposed for regularized
OT in the dual (Seguy et al., 2018; Arjovsky et al., 2017;
Genevay et al., 2016) or primal (Genevay et al., 2017),
they are still computationally intensive and cannot be used
properly with alternate optimization. This problem is even
aggravated by the necessity to solve the OT problem at
each iteration. In order to circumvent these problems, we
use a the stochastic optimization scheme by solving the
problem on mini-batches, enabling to learn complex deep
neural networks on large datasets.

Algorithm 1 Label-noise robust learning

Require: Training features (images) x, noisy labels §; hy-

perparameters «a, 3, 4

1: for each batch ((x1,¥1),..., (Xp,¥5)) do

2: Compute the mneural network
f(x1),..., f(xs)

3: Compute the OT ground loss as in eq. (13)

4: Solve the OT problem (T*) in eq. (16) by Sinkhorn
iterations

5: Update the neural network parameters by back-
propagation

6: end for

predictions

4.4. Stochastic approzimation of proposed method

We propose to approximate the objective function
eq. (11) of our proposed method by sampling mini-batches
of size m, and minimizing optimization problem:

min B\ Y TL (5, f(x»)}, (15)
L]
s.t. T" = arg mrf;n <T,Dy > +AR(T). (16)

where the expectation [ is taken over the randomly sam-
pled mini-batches and eq. (16) is solved only on the mini-
batches. As the size m increases, the optimization problem
will converge to eq. (11). Still as discussed in Genevay
et al. (2017), the expected value over the mini-batches if
OT is not equivalent to the full OT and may lead to a dif-
ferent minimum. In practice it has the effect of densifying
the equivalent full OT matrix and adding an additional
regularization.

In order to optimize the problem above on mini-batches
we use the sinkhorn-autodiff introduced in (Genevay
et al., 2017) that relies on automatic differentiation of the
Sinkhorn algorithm that quickly estimates the solution of
entropic regularized OT and its gradients (see the psuedo
code in algorithm 1). Note that we could have used the
approach of Luise et al. (2018) for computing the gradients
instead of sinkhorn-autodiff but their approach rely on the
implicit function theorem which supposes that the inner
problem is solved exactly. Since it is difficult to ensure
exact convergence of the Sinkhorn, we prefer to perform
autodiff on the algorithm with a finite number of itera-
tions which will provide a reasonable gradients even when
Sinkhorn has not converged. This stochastic approach has
two major advantages: it scales to large datasets, and can
be easily integrated into the modern deep learning frame-
work in an end-to-end fashion.

4.5. Illustration on a toy example

For the sake of clarity, we propose an illustration (Fig-
ure 2) of the behavior of the method on a simple toy exam-
ple. It consists in the classical two moons problem, which
is a binary classification problem. From a clean version
of the dataset (Figure 2.a), containing 400 data samples,
labels are randomly flipped with a probability p = 0.2



(Figure 2.b). The classifier is a fully connected neural
networks that consists in two hidden layers of size 256,
with Relu activations. The model is adjusted along 500
epochs. A graphical representation of the decision bound-
ary is given in (Figure 2.c), where one can clearly see
that the model is not capable of separating properly the
two classes, resulting in a complex boundary that encloses
mislabeled samples. Then, three iterations of the proposed
approach are represented (one per line). Column (d) shows
the coupling T* as a graph, i.e. links between samples cor-
responds to entries of T* that are above a given threshold
(as T* is dense). The width of the connection is propor-
tional to the magnitude of the entry. As expected, most
of the connections highlight a geometrical and class la-
bel proximity. Labels are then propagated (Column (e))
following eq. (14). The classifier is fine tuned over this
new set of fuzzy labels. Column (f) shows the new deci-
sion boundary, as well as the corresponding accuracy score
(in red). As performances increase, it is worth noting the
relative lower complexity of the classifier, that almost cor-
rectly classifies clean samples (0.99 of accuracy) after three
iterations of CLEOT.

5. Experiments and Results

We evaluate our proposed CLEOT method and state-of-
the-art (SoA) methods on two remote sensing tasks: Re-
mote sensing (aerial image) scene classification, and pixel-
wise labeling of hyperspectral image. The effectiveness of
our proposed method is compared with several SoAs which
modifies the loss function similar to ours. The considered
SoA methods are Backward and Forward loss correction
(Patrini et al., 2017), Unhinged (van Rooyen et al., 2015),
Sigmoid and Ramp (Ghosh et al., 2015), Savage (Masnadi-
Shirazi, Hamed and Vasconcelos, 2008), and Bootstrap
soft (Reed et al., 2015). The Unhinged, Sigmoid, Ramp,
Savage loss correction methods did not perform well in
their original form. Preliminary experiments show that
these methods either do not converge or converge to poor
solutions, and sometimes result in premature saturation.
In order to make these methods comparable, we stacked
the batch-normalization and softmax pooling right before
the loss function. This procedure increased the perfor-
mance of the state-of-the-art methods, compared to the
implementation mentioned in (Patrini et al., 2017) and in
their respective articles. Thus the performance of the SoA
methods can be considered as the strong baseline for our
proposed method. A similar procedure is also used for the
rest of the methods (including ours) to have uniformity.

The source code of our proposed method and SoA meth-
ods will be published here once upon acceptance.

In the next subsections, for each dataset, we first present
the data, then detail the label noise simulations and im-
plementation details, and finally present and discuss the
results.

5.1. Aerial Image Labeling

We have considered four diverse publicly available re-
mote sensing aerial scene classification datasets: NWPU-
RESIS}5 (Cheng et al., 2017), NWPU-19 (Cheng et al.,
2017), PatternNet (Zhou et al., 2018), AID (Xia et al.,
2017). The description of each dataset is provided below
followed by a description of the label noise applied to them.

5.1.1. Datasets

NWPU-RESIS45. This dataset consists of 31’500 remote
sensing images covering 45 scene classes. Fach class con-
tains 700 images with a size of 256 X 256 in the red green
blue (RGB) color space. The spatial resolution of this
dataset varies from about 30 m to 0.2 m per pixel. This
dataset was extracted by the experts in the field of remote
sensing image interpretation, from Google Earth (Google
Inc.). Additional details of this dataset can be found in
(Cheng et al., 2017).

NWPU-19. This dataset is a subset of NWPU-RESIS45
dateset, which consists of 13’300 remote sensing images
divided into 19 scene classes. The number of samples per

class, and its size and spatial configuration are similar to
NWPU-RESIS45.

PatternNet. This is a large-scale high resolution remote
sensing dataset collected for remote sensing image re-
trieval. Here, we have used it for classification task. It
contains 38 classes, and each class consists of 800 images
of size 256 x 256 pixels, totals to 30’400 image scenes. The
images in PatternNet are collected from Google Earth im-
agery or via the Google Map API for US cities. The images
are of higher spatial resolution than the NWPU-RESIS45
dataset, the highest spatial resolution is around 0.062 m
and lowest is around 4.69 m. For further information,
please see (Zhou et al., 2018).

AID. This dataset is made up of 10’000 images covering
30 scene classes. Unlike the above datasets, the number
of images in this dataset varies a lot with different aerial
scene types, from 220 to 420 sample images. The spatial
resolution is varied from 0.5 m to 8 m, and the size of each
aerial image is fixed to 600 x 600 pixels. Similar to above
datasets, this dataset is also collected from Google Earth
at different time and seasons, over different countries and
regions around the world. For more details, please see (Xia
et al., 2017).

5.1.2. Label noise simulation

In order to evaluate our proposed method, we artifi-
cially simulate the (asymmetric) label noise in the above
datasets, to meet the requirements of real world scenar-
ios. We carefully inspected the samples, and flipped labels
according to the noise probability to the visually similar
classes. The class permutations that were selected are re-
ported in Table 1.
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Table 1: Table of the selected label noise on the Aerial Image Labeling datasets. The classes which are flipped according to the label noise is
described below. a — b indicates the label a is flipped into class label b, and a < b indicates that the labels are flipped in both direction.

Dataset

| Label noise

NWPU-RESIS45
14/45 classes impacted

baseball diamond — medium residential, beach — river, dense residential < medium residential, in-
tersection — freeway, mobile home park < dense residential, overpass < intersection, tennis court —
medium residential, runway — freeway, thermal power station — cloud, wetland — lake, rectangular
farm land — meadow, church — palace, commercial area — dense residential

NWPU-19
7/19 classes impacted

baseball diamond — medium residential, beach — river, dense residential — medium residential,
intersection — freeway, mobile home park — dense residential, overpass — intersection, tennis court
— medium residential.

PatternNet
11/38 classes impacted

cemetery — christmas tree farm, harbor < ferry terminal, dense residential — coastal home, overpass
< intersection, parking space — parking lot, runway mark — parking space, coastal home < sparse
residential, swimming pool — coastal home

AID
12/30 classes impacted

bareland — desert, centre — storage tank, church — centre, storage tank; dense residential - medium
residential, desert — bareland, industrial — medium residential, meadow — farm land, medium
residential — dense residential, play ground — meadow, school; resort — medium residential, school

— medium residential, play ground; stadium — play ground

5.1.3. Model

We employed pre-trained VGG16 architecture, replac-
ing the last layer with two MLPs that map to 512 hidden
neurons before predicting the classes with I = le™ reg-
ularization, respectively. The dropout layer with p = 0.5
is inserted before the last MLP and the batch normal-
ization is applied before the softmax operator. To have
uniformity, all the methods follow similar architecture de-
sign. During the training, the network is fine-tuned by
freezing the weights of the VGG16 layers. We optimized
the SoA methods for 300 epochs using the SGD optimizer
(Ir = 0.01) with momentum (m = 0.9) using the mini-
batch size of 128. The proposed CLEOT method is also opti-
mized as above, but with different learning rate (Ir = 0.1)
and mini-batch size (50 samples per class). The hyper-
parameters of CLEOT method are set as @ = 1, 8 = 0.005,
and A = 0.005 experimentally for all the datasets. Addi-
tionally, we have used early stopping criterion to terminate
the training process, if the validation loss did not decrease
for 25 epochs. This allows to prevent over-fitting to the
noisy labels for all the methods. Furthermore, we retained
the model weights with best validation loss. For our pro-
posed method, x in (11), and (13) refers to the VGG16
features extracted before the two MLPs.

For all the datasets, from the available number of sam-
ples we partitioned 80% of samples for training, 10% sam-
ples for validation and the remaining 10% samples for
evaluating the performance. All the methods are trained
with the noisy labeled training and validation samples, and
evaluated with the clean testing label instances.

5.1.4. Results

Table 2 presents the classification performance of our
proposed and SoA methods on the four aerial scene classi-
fication datasets with different noise levels. We have also
included Cross entropy loss function, which is the base-
line for all the approaches. The noise level 0 indicates
that the methods are trained with the clean labeled train-
ing and validation samples, and it can be considered as the

gold standard. The impact of label noise is varied and ana-
lyzed in the range of p, = {0,0.2,0.4,0.6,0.8}. The amount
of actual noise depends on the number of the classes af-
fected by the label noise in the dataset.

When the conventional Cross entropy loss function is
considered, the classification accuracy drops to few per-
centage of points (3-5%) initially and decreases drastically
(above 15%) as the magnitude of label noise increases with
all the four datasets. This shows that regularization tech-
niques such as weight regualizers, dropout and early stop-
ping criteria can circumvents label noise only up to some
degree and is inefficient in high level label noise. This
emphasizes need for the inclusion of robust loss functions
while training the deep neural networks in remote sensing
image analysis. Next, when the performance of existing
SoA methods are considered, they showed robust perfor-
mance and did not degrade the performance compared to
the clean training set under the noise level 0.2 but de-
creases about 4% on the mid noise level, however they
outperformed the conventional Cross entropy loss func-
tion. Further, it is noted that under the high level label
noise, the SoA methods are similar or less than the Cross
entropy loss function. Thus, SoA methods are still limited
to tackle the complex noise scenarios.

Lastly, when the performance of the proposed CLEQT
method is analyzed, one could see that CLEOT achieves bet-
ter or similar performance to the SoA methods in the low-
level noise, and achieves impressive performance on the
higher noise levels. For instance, on average our method
decreases only 2.6%, 10.6% compared to clean training
set with 0.4, and 0.6 noise level, where as the best SoA
decreases about 4%, and 22.5% respectively. Further,
Forward and Backward methods are inferior to the the
robust loss functions (Unhinged, Sigmoid, etc), which is
contrary w.r.t to the observation in Patrini et al. (2017).
This reveals that methods that perform well on machine
learning datasets not necessarily achieve better perfor-
mance in remote sensing datasets, thus new methods has
to be designed specific to remote sensing datasets. Lastly,
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Table 2: The average classification accuracies and standard deviation of SoA methods and proposed CLEOT method on remote sensing aerial
scene classification datasets. The accuracy measures are averaged over 5 runs. and the best accuracies are reported in bold.

Method NWPU-45 NWPU-19

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Cross entropy | 82.93+0.09  80.53+0.30  75.63+1.04  67.80+0.40  62.05+0.04 89.75+0.30  84.95+0.49  78.19+2.08  68.45+0.95  62.25+0.17
Unhinged 82.81+0.21 82.13+0.14  78.38+0.57  63.07+0.26  61.01+0.01 90.07+£0.20  87.36+0.46 79.22+0.77  66.65+0.85  61.22+0.41
Sigmoid 71.74£0.40  68.08+0.18  65.76+0.50  57.10£0.06  56.61+0.31 89.69+0.06  88.73x0.19  84.37+0.09  66.19+0.29  59.62+0.11
Ramp 82.99+0.10  82.26+0.20 78.81+0.26  62.97+0.16  60.91+0.32 90.77+0.28 86.69+0.18 78.62+0.77  67.25£0.60  60.70+0.44
Savage 76.85+0.15 75.13+0.11 69.96+0.14 59.56+0.03 58.08+0.07 90.20+0.18 89.01+2.80 81.13+0.41 67.21+0.20 60.62+0.12
Bootstrap soft | 82.98+0.17 80.65+0.47 75.82+0.88 67.39+0.86 62.22+0.21 89.74+0.18 85.19+0.56 79.64+0.95 69.20+1.50 62.03+0.05
Backward E 82.79+0.14 80.65+0.51 75.96+0.72 68.67+0.75 62.45+0.52 89.73+0.43 85.20+0.37 78.17+1.01 68.72+1.60 62.06+0.08
Forward E 83.06+0.11 80.87+0.53 74.97+1.02 68.12+1.16 62.56+0.16 89.97+0.32 85.37+1.04 78.89+1.28 69.07+0.95 62.31+0.24
CLEOT 82.41+0.27 81.54+0.18 80.84+0.45 76.07+0.35 70.14+0.33 89.98+0.38 89.17+0.30 86.26+0.63 78.04+0.42 68.08 + 0.53

PatternNet AID

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Cross entropy | 97.68+0.15  94.82+0.30  89.11+0.55 79.76x1.36  73.68+0.34 86.94+0.51 82.92+0.33 73.80£1.03  65.56+1.18  57.80+0.84
Unhinged 97.76+£0.16 97.55+0.05  95.31+0.19 73.62+0.59  71.23+0.14 87.64+0.19  86.33+0.19 78.67+0.29  65.93+0.52  57.20+0.16
Sigmoid 96.63+£0.03  96.31+0.31 94.63+0.24  73.17+£0.39  70.58+0.04 85.41+0.26  84.71+0.25  82.05 +0.17  60.96+0.44  56.18+0.08
Ramp 97.73+0.07 97.56+0.02 95.44+0.16 72.94+0.47 71.37+0.16 87.74+0.22 86.24+0.23 78.37+0.56 66.04+0.59 57.21+0.27
Savage 96.82+0.05  96.41+0.03  93.94+0.11 73.16+0.13 70.72+0.01 83.65+0.10  85.73+0.21 82.28+0.27 62.88+0.50  56.55+0.48
Bootstrap soft | 97.62+0.13  94.45+0.39  88.88+0.79 79.13+0.73 73.39+0.48 87.03+£0.40  82.54%0.78 73.75+0.82  65.24+1.09  58.00+0.45
Backward E 97.60£0.10  94.76+0.31 89.07+0.70  79.89+0.36 73.47+0.32 86.87+0.52  82.63+0.59 74.03+0.56  65.71+1.16  57.90+0.22
Forward E 97.67+£0.06  94.43+0.78  89.16+1.01 79.44+0.51 73.21+0.62 86.91+0.41 82.30+£1.08  73.59+0.76  64.91+0.74  58.43+0.59
CLEOT 97.29+0.04  96.77+£0.09  94.51+0.15  83.75+0.20 79.84 + 0.22 | 87.02+0.63  85.39+1.12  79.19+0.94  71.76+0.66 63.23+0.42

it is noted from table 2 that, among the SoA methods
there is no single best method which consistently performs
better across the datasets, and noise levels. Thus, there
exists dilemma in choice of method among the existing
SoA for the underlying real world task. On contrary, our
method consistently outperforms across different datasets,
and noise levels.

5.2. Hyperspectral image classification

Next, we evaluate our proposed method on the pixel-
wise labeling task of hyperspectral datasets. For this, we
have chosen three hyperspectral datasets from three differ-
ent type of sensors covering agricultural and urban cover
settings.

5.2.1. Datasets

Pavia University. The first hyperspectral data considered
here was collected over the University of Pavia, Italy by
the ROSIS airborne hyperspectral sensor in the framework
of the HySens project managed by DLR, (German national
aerospace agency). The ROSIS sensor collects images in
115 spectral bands in the spectral range from 0.43 to 0.86
nm with a spatial resolution of 1.3 m/pixel. After the
removal of noisy bands, 103 bands were selected for ex-
periments. This data contains 610x340 pixels with nine
classes of interest, which covers the urban materials. The
total number of available labeled ground truth samples is
42°776.

Chikusei. The airborne hyperspectral dataset was taken
by Headwall Hyperspec-VNIR-C imaging sensor over agri-
cultural and urban areas in Chikusei, Ibaraki, Japan.
The hyperspectral dataset has 128 bands in the spectral
range from 363 nm to 1018 nm. The scene consists of
2517%x2335 pixels and the ground sampling distance was
2.5 m. Ground truth of 19 classes was collected via a
field survey and visual inspection using high-resolution

color images obtained by Canon EOS 5D Mark II together
with the hyperspectral data. The number of labeled ref-
erence samples is 77'592. For additional details, please
refer (Yokoya and Iwasaki, 2016).

GRSS_DFC _2018. The last hyperspectral dataset used
were acquired over the University of Houston campus and
its neighborhood on February 2017 by an ITRES CASI
1500 imaging sensor. This dataset contains 48 spectral
bands covering the spectral range of 380 nm to 1050 nm
with 1 m ground sampling distance. The scene consists
of 601x2384 pixels representing 20 urban land use/cover
classes, and contains 50’4856 labeled reference samples.
The details of this dataset can be found in .

5.2.2. Label noise simulation

For the hyperspectral datasets, it is difficult to find sim-
ilar classes with visual inspection due to the high dimen-
sionality of the data. So we measure class similarity using
the Jeffries-Matusita distance and Transformed divergence
measure (Richards et al., 1999) and visual interpret the
spectral signatures of some training samples for the most
similar classes. According, the class labels are flipped as
defined in Table 3.

5.2.3. Model

We used a recent state-of-the-art hyperspectral image
classification framework named spectral-spatial residual
residual network (SSRN) (Zhong et al., 2018). It consecu-
tively extracts spectral and spatial features for pixel wise
classification of hyperspectral image. The spectral feature
learning consists of two 3-D convolutional layer, and two
residual blocks. Following the spectral features, spatial

Thttp:/ /www.grss-ieee.org/community /technical-
committees/data-fusion
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Table 3: Table of the selected label noise on the Hyperspectral image classification datasets. The classes which are flipped according to the
label noise is described below. a — b indicates the label a is flipped into class label b, and a < b indicates that the labels are flipped in both

direction.

Dataset ‘ Label noise

Pavia University
7/9 classes impacted

meadows < trees, gravel & self building blocks, bare soil — meadows, bitumen < asphalt. Out of
9 classes, 7 classes are impacted by the label noise.

Chikusei
10/19 classes impacted

baresoil (park) — baresoil (farm); baresoil (farm) — baresoil (park), rowcrops; weeds — grass,
rowcrops, forest; forest — rice(grown), weeds; grass — weeds, rowcrops; rice(grown) — forest, weeds;
rowcrops — baresoil(farm), weeds, grass; plastic home — asphalt, manmade(dark); manmade(dark)
— plastic house;paved ground — baresoil(farm)

GRSS_DFC 2018
10/20 classes impacted

healthy grass — stressed grass; stressed grass — bare earth; evergreen trees — deciduous trees;
deciduous trees — residential buildings; residential buildings — roads, sidewalks; non-residential
buildings — sidewalks; roads — major thoroughfares, sidewalks; sidewalks — major thoroughfares,
crosswalks; crosswalks — major thoroughfares; major thoroughfares — highways

features are extracted using 3-D convolutional layer and
two spatial residual blocks. Average pooling layer is added
on top of the spectral-spatial feature volume, and followed
by the fully connected layer with softmax activation func-
tion. Dropout layer (p=0.5) is added after the average
pooling layer and batchnormalization layer is stacked be-
fore the softmax activation. Please refer to (Zhong et al.,
2018) for additional details of the SSRN architecture.

We trained the SSRN architecture using SGD momen-
tum optimizer with Ir = 0.01 and m = 0.9 for 600 epochs
using the batch size of 128 for the SoA methods, and 256
for the CLEOT. As with aerial scene classification we also
employed the eary stopping criterion to avoid overfitting,
and terminate the training process, if the validation loss
did not decrease for 15 epochs. All the methods follow
similar training procedure. The hyperparameters of our
proposed method CLEQT are set to @ = 1, 8 = 0.05 experi-
mentally for all the datasets, and the entropic regularizer
is set to 4 = 0.05 for the PaviaU and Chikusei datasets,
and A = 1 for the remaining dataset. In the case of pixel-
wise labeling task of hyperspectral image, x in (11) and
(13) refers to the input image pixel.

While partitioning the ground truth reference samples
into training, validation and testing subsets, we followed
the conventional protocol in the hyperspectral remote
sensing community to train classifier with small number of
training samples. Accordingly, we used 20% of samples for
training, 10% samples for validation and remaining 70%
samples for testing purpose for the Pavia University, and
Chikusei datasets. Where as for the GRSS DFC 2018
dataset, we used 10% samples for training, 10% samples
for validation and remaining 80% samples for evaluation.
The training and validation samples are impacted by the
label noise, and clean testing labeled samples is used for
evaluation.

5.2.4. Results

Table 4 presents the classification performance of SoA
methods and CLEOT for the three hyperspectral datasets.
The experiments are conducted with different noise levels
(see Table 4 for noise levels) to effectively access the ro-
bustness of SoA and proposed methods. The noise level

p. = 0 indicates the clean labeled training and validation
samples, which is an upper bound for all the methods.

Figure 3 shows the relative difference (in %) of meth-
ods with respect to the baseline (Cross entropy) method.
The proposed CLEOT consistently outperformed the exist-
ing SoA methods with large margin (about 15-20%) in
the higher level label noise (except in GRSS__DFC_ 2018).
However our method still has the large performance mar-
gin with other methods. On the lower level label noise,
fig. 3 reveals there is no significant difference between the
best SoA and CLEOT method. However our method has
several distinct advantages over the SoA, CLEOT (i) con-
verges faster than the best SoA method, which is beneficial
for very large scale remote sensing datasets, (ii) consis-
tently performs better irrespective of noise level, whereas
the best SoA varies with respect to the noise level, for
instance with Pavia University, Sigmoid outperforms in
mid level noise, but in higher level noise Unhinged out-
performed the Sigmoid loss function, (iii) monotonically
degrades the classification accuracy as the noise level in-
creases with complex dataset, whereas SoAs do not follow
this trend, thus existing methods are not as reliable. This
also reveals that the best SoAs might be more sensitive to
the neural network initialization under label noise. Thus,
our proposed method can be considered as a alternative
candidate to train robust deep neural networks for remote
sensing image analysis.

As observed with aerial scene classification, the the clas-
sification accuracy of loss Cross entropy decreases as the
noise level increases. The magnitude of decrease in accu-
racy is dependent on the amount classes affected by the
label noise, and also the nature of the datasets. It is noted
that on the Chikusei dataset, Cross entropy is very ro-
bust compared to other datasets, this might be due to the
large patches of homogeneous landscapes in the dataset as
well as the appearance of label noise at pixel level. In fu-
ture work, we will consider more complicated noise model
for the hyperspectral datasets, where the label noise could
appears as spatially correlated clusters of pixels.
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Table 4: The average classification accuracies and standard deviation of SoA methods and our proposed CLEOT method on the pixel-wise
labeling task of hyperspectral datasets. The accuracy measures are computed over three runs, and the best accuracies are reported in bold.

Method PaviaU GRSS_DFC_ 2018
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5
(0.0) (0.19) (0.37) (0.57)
Cross entropy | 99.93+0.02 95.62+0.38 85.31+0.60 78.01+£1.78 65.13+1.49 84.93+2.27 68.66+16.13  76.71+6.37 79.54+16.57 71.54+14.54  44.33+11.52
Unhinged 99.97+0.02 98.58+0.01 94.91+0.01 93.02+0.02 78.55+0.01 87.07+1.48 94.23+1.03 85.24+3.85 92.76+0.65 75.90+2.21 45.11+4.45
Sigmoid 99.98+0.00 99.68+0.05 97.56+0.01 88.69+0.01 69.31+0.02 90.33+6.72 84.87+7.01 90.18+4.09 86.23+3.79 85.18+5.31 54.04+6.11
Ramp 99.59+0.49 98.58+0.17 96.04+0.65 90.70£2.02 75.75+4.65 92.32+3.11 85.91+8.29 77.50+3.32 85.70+3.69 82.01+8.13 40.19+8.92
Savage 99.97+0.01 95.91+0.86 86.07+0.38 76.06+0.08 64.84+1.33 83.09+10.68  92.20+3.27 88.42+4.15 91.69+1.43 83.96+3.50 48.23+15.16
Bootstrap soft | 99.89+0.01 91.44+3.28 85.96+2.34 75.27+1.18 66.07+2.25 85.57+13.96  87.55+5.59 87.93+5.96 80.07+3.81 75.92+12.42  28.37+7.38
Backward E 99.94+0.02 90.91+3.52 84.08+0.64 76.26+3.39 71.65+6.74 85.51+7.97 69.67+25.91  84.44+5.94 86.08+4.64 78.40+£11.54  71.13+12.40
Forward E 96.65+4.65 95.74+0.26 87.64+1.05 84.05+3.24 65.46+5.09 79.26+9.11 88.50+0.50 88.84+3.04 87.35+6.44 85.44+5.28 83.30+4.46
CLEOT 99.80+0.12 99.28+0.24 98.42+0.21 96.91+0.50 91.31+0.23 | 96.01+0.59 95.50+0.56 94.81+0.50 92.18+1.51 91.08+0.15 62.98+1.65
Method chikusei
0.0 0.1 0.2 0.3 0.4 ‘ 0.5 0.6
Cross entropy | 99.99+0.01  99.27+0.04 98.98+0.02 95.92+0.17 92.40+0.42 86.37+0.31 61.31+0.26
Unhinged 99.87+0.18 99.74+0.16 99.45+0.09 99.19+0.01 97.57+0.22 91.72+0.37 67.29+7.45
Sigmoid 99.44+0.01 99.51+0.01 99.42+0.01 99.23+0.02 99.06+0.02 94.35+0.06 64.02+0.03
Ramp 99.88+0.15 99.16+0.64 99.50+0.01 99.17+0.13 97.69+0.75 91.81+0.96 64.79+7.15
Savage 99.99+0.02 99.98+0.00 98.67+0.01 90.78+1.45 83.39+3.81 66.87+2.46 52.40+0.05
Bootstrap soft | 99.95+0.04 99.59+0.16 98.73+0.31 95.79+1.44 92.35+0.48 81.39+7.73 63.48+4.44
Backward E 99.92+0.10 97.74+1.43 97.34+1.24 95.81+0.90 89.68+5.60 79.26+4.32 65.31+9.60
Forward E 99.99+0.01 99.17+0.01 98.98+0.04 96.84+0.05 95.58+0.06 83.89+0.06 64.15+0.04
CLEOT 99.88+0.01 99.41+0.13 99.59+0.12 99.24+0.01 99.10+0.02 | 96.64+1.20 84.50+1.35
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Fig. 3: Relative difference in performance of our proposed method and state-of-the-art methods with respect to cross entropy loss function
for the three hyperspectral datasets: (a) Pavia University, (b) Chikusei, (¢) GRSS_DFC_2018.

5.8. Analysis of the results

We now provide an analysis of our approach through
interpretation of the confusion matrices and by looking at
actual examples.

First, we interpret the impact of label noise through
confusion matrix and our proposed method to the best
performing SoA (Savage)?, and baseline method (CCE) on
NWPU19 dataset with clean and noisy labels (with noise
ratio of 0.4). Though, the label noise is simulated in the
paper, the existence of label noise is very realistic in re-
mote sensing, because of the close (spectral) similarities
between classes or presence of two objects in the same im-
age. For example, there is a possibility for the class tennis
ground to co-exist with medium residential area, and
the classes (intersection, freeway, and overpass) are known
to be very similar between each other. Even with clean la-
beled data, confusion matrix in figure 4 (a) reveals that

2We choose the method which performed the best across the noise
level

traditional CNN confuses among those classes, this is due
to the fact that class tennis ground also looks like medium
residential area as shown in figure 1, and the human
annotator can also make similar kind of mistake. Fur-
ther, the confusion matrix visualized in Figure 4 shows
that class tennis ground is the most difficult one to cor-
rectly classify. Our proposed CLEOT additionally misclas-
sifies 13 samples compared to CCE on clean data. On the
other hand CCE, and savage misclassifies majority of the
noisy samples. Further, detailed analysis of the misclassi-
fied samples reveals that different methods has a comple-
mentary behavior to each other, suggesting that ensemble
methods could tackle the label noise effectively.

To analysis our results qualitatively, we also visualized
images with respect to the predictions of three methods
(CCE, Savage, CLEQT) as shown in Figure 5. In the top
line of Figure 5 we visualize images that are not correctly
predicted by all methods including when trained on clean
data, showing the difficulty of CNN on those classes. A
close inspection reveals that a human can label the second



image with a baseball diamond correctly, and could con-
fuse it with the class in the two other images (residential,
tennis court). While such behavior exists in clean label
case, and if the dataset is affected by the label noise, the
deep neural network might find more difficult to predict
the classes correctly, yielding a strong need for accurate
labeled annotations. In the middle row we provide three
images that are not correctly predicted by all the three
methods under label noise (noisy CCE, Savage, and CLEOT),
but are correctly classified by the clean CCE. Finally, the
bottom row presents images that are correctly classified
by CLEQT, but failed with noisy CCE, and Savage loss func-
tions. The visual inspection reveals all the three images
are quite easy to classify and not confusing since the class
of interest have large spatial extent in the image. However,
the Savage and CCE failed to correctly predict the classes.
We can see that CLEQT has a behavior similar to human
inspection on this case and predicted the classes correctly.
This illustrates that exploiting knowledge from the nearby
samples in the feature space while training helps making
neural networks less sensitive to label noise.

Fig. 5: Top row indicates the difficult samples (true label:
medium residential, baseball diamond, tennis court) which
are incorrectly predicted by clean CCE loss, and robust loss functions
(pred label: tennis court, tennis court, intersection). The
second row indicates the samples (true label: dense residential,
tennis court, overpass) which are correctly predicted by the clean
CCE, but failed with noisy CCE, Savage, CLEOT loss functions un-
der the impact of label noise (pred label: medium residential,
medium residential, intersection). The Last row indicates the
samples (true label: tennis court, dense residential, beach)
correctly predicted by our proposed method, failed by the noisy CCE,
Savage loss functions (pred label: medium residential, medium
residential,river).

5.4. Computational time analysis

Table 5 reports the computational time analysis of our
proposed CLEOT method and the SoA methods with one
dataset each from aerial image labeling task and pixel-
wise labeling of hyperspectral image. As expected, com-
putational time of our proposed method is higher than the
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existing methods. The high computational time is due to
the number of sinkhorn iterations required to approximate
the optimal transport distance. The computational time
of CLEQOT can be reduced, if the number of sinkhorn it-
erations are decreased. This might slightly decrease the
accuracy of our proposed method. For example, when the
sinkhorn iterations is decreased to 15, the computational
time is reduced to 173 Secs and the classification accu-
racy is reduced by 2%, but still our method outperform
the existing methods. The forward and backward method
requires trained crossentropy method to estimate the class
transition matrix, thus resulting in higher computational
time. The computational burden of our proposed method
is reasonable with the existing state of art methods.

Table 5: Computational run time (in Secs) of the CLEOT and exist-
ing methods computed with one aerial image labeling dataset and
hyperspectral dataset over the single run. The computational time
are measured for fixed number of epochs (100 epochs) for all the
methods. The numbers in brackets for CLEOT indicates the number
of fixed sinkhorn iterations.

Method NWPU-19 PaviaU
Comp.time (in Secs) Comp.time (in Secs)
Crossentropy 114 586
Unhinged 108 582
Sigmoid 108 585
Ramp 110 591
Savage 115 599
Bootstrap soft 108 586
Backward E 221 1164
Forward E 223 1165
CLEOT (50) 245 778
CLEOT (15) 173 674

6. Conclusion

In this paper, we proposed the CLEOT method to learn
robust deep neural networks under label noise in remote
sensing. The proposed method leverages on the geometric
structure of underlying data, and uses optimal transport
with entropic regularization to regularize the classification
model. We evaluated the robustness of CLEOT on two very
different applications, one focusing on image scene classifi-
cation, the second one on pixel-wise classification of hyper-
spectral images with different deep learning architectures.
Our proposed approach performed better than competing
state of the art approaches and has shown strong robust-
ness in the presence of significant amount of label noise.
Future works will consider other regularization schemes
of the optimal transport problem, and use an embedding
metric in the definition of the cost matrix Dy instead of
relying to the distance in the input space.
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