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Abstract

We study the three-dimensional stationary exterior Stokes problem with non standard boundary con-

ditions corresponding to a slip-without-friction boundary conditions. Because the flow domain is un-

bounded, we set the problem in weighted spaces in order to control the behavior at infinity of solutions.

This functional framework allows to prescribe various behaviors at infinity of the solutions. The results

established are related to the existence and the uniqueness of strong and very weak solutions. Our strat-

egy relies on the fact that due to the boundary conditions, the pressure and the velocity can be decoupled

and, as a result, we solve two separate systems to find these quantities.

Keywords : Fluid mechanics, Stokes equations, Slip boundary conditions, Exterior domains, Strong so-

lutions, Very weak solutions, Weighted spaces
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1 Introduction

Let Ω′ be a simply-connected bounded domain of R3 assumed to have a boundary Γ of class C 2,1 and let

Ω denote the complement of Ω′, in other words, the exterior of Ω′. For a prescribed external force f , we
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consider the stationary Stokes equations, describing the flow of a viscous and incompressible fluid past the

obstacle Ω′:

−∆u+∇π= f and div u = 0 in Ω, (1.1)

where the unknowns are the velocity field u and the pressure π. To these equations, we supplement the

following Navier’s type slip-without-friction boundary conditions:

u ·n = 0 and curl u×n = 0 on Γ, (1.2)

where curl u is the vorticity field and n is the unit normal vector to the boundary Γ pointing outside Ω.

As it is now well known, the boundary conditions (1.2) are closely related to the classical Navier boundary

conditions, in which it is assumed that there is a stagnant layer of fluid close to the obstacle Ω′ allowing the

fluid to slip and the slip velocity is proportional to the rate-of-strain tensor field:

u ·n = 0 and 2[D(u)n]τ+αuτ = 0 on Γ, (1.3)

where

D(u) = 1

2

(∇u+∇uT )
denotes the rate-of-strain tensor field, α is a scalar friction function and the notation [·]τ denotes the tan-

gential component of a vector on Γ. The boundary conditions (1.3), proposed by Navier [26] are commonly

used in the presence of rough boundaries (see for instance [2, 21]). We also refer to [27] for a review of

experimental studies that show various situations in which the slip property occurs.

The link between the boundary conditions (1.2) and (1.3) can be highlighted using, on the one hand, the

fact that (1.2) is equivalent to (see [29])

u ·n = 0 and ∇uτ ·n = 0 on Γ (1.4)

and on the other hand, the fact that the following identity holds (see [28])

2[D(u)n]τ =∇uτ ·n−kτuτ+ [∇(u ·n)]τ on Γ, (1.5)

where kτ is the principal curvature of Γ. Indeed we see that (1.2) is then equivalent to

u ·n = 0 and 2[D(u)n]τ+kτuτ = 0 on Γ,

that is the Navier boundary condition (1.3) where the friction function is replaced by the principal curva-

ture of Γ. Moreover, we also see that on flat boundaries, the boundary conditions (1.2) coincide exactly

with the Navier boundary conditions (1.3) without friction. It is therefore interesting to study the exterior

Stokes problem (1.1) with the boundary conditions (1.2). For further discussions on the relationships be-
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tween the boundary conditions (1.2) and (1.3), the reader can also refer to [14] or [25] and references therein.

The objective of this paper is to investigate the existence and the uniqueness of strong and very weak solu-

tion of the exterior problem (1.1)–(1.2). Because the domain is unbounded, the data and the solutions are

assumed to belong to adequate weighted Sobolev spaces in order to control and to precise the behaviour

of the functions at infinity. The main contribution of the paper is that the results are established for a very

wide range of behaviour at infinity (growth or decay at infinity). This work follows a previous paper of one of

the authors [5] in which a solution with a particular behaviour at infinity, corresponding to the variational

solution and its regularity, was investigated.

Moreover, this work is also a starting point for the numerical analysis of (1.1)–(1.2), using the so-called in-

verted finite elements method originally developed by Boulmezaoud in [8] (see also, e.g., [7, 9, 10]) where

the use of weighted Sobolev spaces is in the heart of the method.

In order to study (1.1)–(1.2), our strategy is the following: due to the boundary conditions (1.2), we can

look for the pressure π separately from the velocity u. This can be done by solving, on the one hand, the

generalized Neumann problem

div (∇π− f ) = 0 in Ω and (∇π− f ) ·n = 0 on Γ, (1.6)

and on the other hand, the so-called Hodge-Laplacian problem −∆u = F and div u = 0 in Ω,

u ·n = 0 and curl u×n = 0 on Γ,
(1.7)

where F = f −∇π. This gives the opportunity to solve the exterior problems (1.6) and (1.7) that are also

interesting by themselves. Let us emphasize that solving these problems is not straightforward because

we are really interested in various behaviour at infinity of the solutions. Indeed, the method that we use to

solve (1.6) and (1.7), relies on the properties of the Laplace operator in the whole spaceR3. But these proper-

ties naturally bring out compatibility conditions that the data necessarily satisfy when looking for solutions

that decay faster than the variational solution. As a result, the solutions defined onΩ that we already have in

hand (generally the variational solution) must be extended to the whole space in an appropriate manner in

order to satisfy the compatibility conditions. Observe that these difficulties can be avoided when studying

the standard exterior Laplace problem with Dirichlet boundary conditions, by the use of duality arguments

(see, e.g. [18]). But this approach can not be used for problem (1.7) due to the fact that the Hodge-Laplacian

operator is not a self adjoint operator.

Observe also that, in [5], the study of (1.1)–(1.2) was also based on the resolution of (1.7). But, because the

study was focusing on the variational solution, then using the variational formulation, the pressure π was

obtained thanks to de Rham theorem and characterizations of distributions by means of their gradients.
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We would like to mention that, to the best of our knowledge, the exterior problem (1.1)–(1.2) has not been

considered by many authors, apart from [5]. This is also the case for the exterior problem (1.1)–(1.3), where

as far as we know, we can only mention the work of two of the authors have done in [15]. On the other hand,

in bounded domains, one can refer for instance to [6, 11, 12, 13]. Still in the case of bounded domains, we

can also mentioned some numerical studies that go through the resolution the Hodge-Laplacian problem

(see, e.g., [1, 11]).

The paper is organized as follows. In Section 2, we introduce the Notation, the functional framework based

on weighted Hilbert spaces. Section 3 is devoted to the study of problems (1.6) and (1.7), where we include

the non homogeneous case for the boundary conditions. Finally, in Section 4, we consider the exterior

Stokes problem (1.1)–(1.2). We first start by recall the existence and the uniqueness result of weak solution

proved in [5], then we use the results established in the Section 3 to prove the existence and uniqueness of

strong solutions. We finally end with the study of very weak solutions. We have deferred in the appendices

the proofs of some technical results regarding the density statements or characterization of dual spaces

needed to establish results on the very weak solutions.

2 Notation and preliminaries

2.1 Notation

Throughout this paper we assume thatΩ′ ⊂R3 is a simply connected bounded domain that has a boundary

Γ of class C 2,1. Let Ω be the complement of Ω′ in R3, in other words an exterior domain. We assume that

the origin of the coordinates is placed in the obstacle Ω′. We will use bold characters for vector and matrix

fields. A point in R3 is denoted by x = (x1, x2, x3) and its distance to the origin by

r = |x| = (
x2

1 +x2
2 +x2

3

)1/2
.

Let N denote the set of non-negative integers and Z the set of all integers. For any multi-index λ ∈ N3, we

denote by ∂λ the differential operator of orderλ,

∂λ = ∂|λ|

∂
λ1
1 ∂

λ2
2 ∂

λ3
3

, |λ| =λ1 +λ2 +λ3.

For anyα ∈Z, Pα stands for the space of polynomials of degree less than or equal toα and P ∆
α the harmonic

polynomials of Pα. If α is a negative integer, we set by convention Pα = {0}. We denote by D(Ω) the space

of C ∞ functions with compact support in Ω, D(Ω) the restriction to Ω of functions belonging to D(R3).

We recall that D′(Ω) is the space of distributions defined on Ω. For m Ê 1, we recall that H m(Ω) is the

well-known Hilbert space W m,2(Ω). We shall write u ∈ H m
loc (Ω) to mean that u ∈ H m(O ), for any bounded

domain O , with O ⊂ Ω. For R > 0, we denote by BR the open ball of radius R centered at the origin. We
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set ΩR =Ω∩BR . For any m ∈N \ {0}, the space H m−1/2(Γ) denotes the usual trace space on Γ, of functions

belonging to H m(ΩR ) and the space H−m+1/2(Γ) is its dual space. The notation 〈·, ·〉 will denote adequate

duality pairing and will be specified when needed. We denote by 〈·, ·〉Γ the duality pairing between the space

H−1/2(Γ) and its dual space H 1/2(Γ). Given a space B with dual space B ′ and a closed subspace X of B , we

denote by B ′⊥X the subspace of B ′ orthogonal to X , that is

B ′⊥X =
{

f ∈ B ′, ∀v ∈ X , 〈 f , v〉 = 0
}
= (B/X )′.

Finally, as usual, C > 0 denotes a generic constant the value of which may change from line to line and even

at the same line.

2.2 Weighted Hilbert spaces

We introduce the weight function

ρ(x) = (
1+ r 2)1/2

.

For α ∈Z, we introduce

W 0
α(Ω) =

{
u ∈D′(Ω), ραu ∈ L2(Ω)

}
,

which is a Hilbert space equipped with the norm:

‖u‖W 0
α (Ω) = ‖ραu‖L2(Ω).

Let m Ê 1 be an integer. We define the weighted Hilbert space:

W m
α (Ω) =

{
u ∈D′(Ω); ∀λ ∈N3 : 0 É |λ| É m, ρα−m+|λ|∂λu ∈ L2(Ω)

}
,

equipped with the norm

‖u‖W m
α (Ω) =

( ∑
0É|λ|Ém

‖ρα−m+|λ|∂λu‖2
L2(Ω)

)1/2

.

We define the semi-norm

|u|W m
α (Ω) =

( ∑
|λ|=m

‖ρα∂λu‖L2(Ω)

)1/2

.

Let us give examples of such space that will be often used in the remaining of the paper. For m = 1, we have

W 1
α(Ω) =

{
u ∈D′(Ω), ρα−1u ∈ L2(Ω), ρα∇u ∈ L2(Ω)

}
and for m = 2,

W 2
α+1(Ω) =

{
u ∈W 1

α(Ω), ρα+1∂2u ∈ L2(Ω)
}

.

For the sake of simplicity, we have defined these spaces with integer exponents on the weight function. But
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naturally, these definitions can be extended to real number exponents with eventually some slight modifi-

cations (see[3] for more details). Observe that the space D(Ω) is dense in W m
α (Ω) (see [18] or [20]). All the

local properties of the space W m
α (Ω) coincide with those of the standard Hilbert space H m(Ω). Hence it also

satisfies the usual trace theorems on the boundary Γ. The closure of D(Ω) in W m
α (Ω) is denoted by W̊ m

α (Ω)

and, as in bounded domains, can be characterized by

W̊ m
α (Ω) =

{
u ∈W m

α (Ω), γ0u = 0, γ1u = 0, · · · ,γm−1u = 0 on Γ
}

.

The dual space of W̊ m
α (Ω) is denoted by W −m−α (Ω) equipped with the usual dual norm. This allows to extend

the definition of the space W m
α (Ω) for any α and m belonging to Z.

We shall now give some basic properties of those spaces:

Proposition 2.1.

1. For any α, m ∈Z and for any λ ∈N3, the mapping

u ∈W m
α (Ω) → ∂λu ∈W m−|λ|

α (Ω) (2.8)

is continuous.

2. For any α, m ∈Z, we have the following continuous embedding:

W m
α (Ω) ,→W m−1

α−1 (Ω). (2.9)

3. For any α, m ∈ Z, the space Pm−α−2 is the space of all polynomials included in W m
α (Ω) and if m Ê 1,

the following Poincaré-type inequality holds:

∀u ∈W m
α (Ω), inf

λ∈P j ′
‖u +λ‖W m

α (Ω) ÉC |u|W m
α (Ω), (2.10)

where j ′ = min(m −α−2,m −1). In other words the semi-norm | · |W m
α (Ω) is a norm on W m

α (Ω)/P j ′ . In

particular, | · |W 1
0 (Ω) is a norm on W 1

0 (Ω).

4. For any α ∈Z, m ∈N\ {0}, we have the following Poincaré-type inequality:

∀u ∈ W̊ m
α (Ω), ‖u‖W m

α (Ω) ÉC |u|W m
α (Ω). (2.11)

For more details on the above properties, the reader can refer to [3, 4, 18, 20, 22] and references therein.

The result that we state below was proved by Giroire [18] and extended in weighted Lp -spaces in [3]:
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Proposition 2.2. For m ∈Z and α ∈Z, the Laplace operator defined by

∆ : W m+1
α+m (R3)/P ∆

−α−1 7→W m−1
α+m (R3)⊥P ∆

α−1 (2.12)

is an isomorphism.

Remark 2.3. The isomorphism result stated in Proposition 2.2 is the property of the Laplace operator men-

tioned in the introduction, and that will be used to solve problem (1.7). As we also already mentioned, the

main issue is to deal with the compatibility condition that appears in the right hand side of (2.12) when

αÊ 1.

We end this section by introducing the spaces that will be used to study problems (1.7) and (1.1) – (1.2). We

first recall that for any vector field v = (v1, v2, v3), the curl of v is defined by

curl v =
(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

Next, note that the vector-valued Laplace operator of a vector field v is equivalently defined by

∆v =∇ div v−curl curl v.

This leads to the following definitions. For α ∈Z, we define

Hα(curl,Ω) =
{

v ∈W 0
α(Ω); curl v ∈W 0

α+1(Ω)
}

,

Hα(div,Ω) =
{

v ∈W 0
α(Ω); div v ∈W 0

α+1(Ω)
}

and we set

Xα(Ω) = Hα(curl,Ω)∩Hα(div,Ω).

These spaces are respectively endowed with the norms

‖v‖Hα(curl,Ω) =
(
‖v‖2

W 0
α (Ω)

+‖curl v‖2
W 0

α+1(Ω)

)1/2
,

‖v‖Hα(div,Ω) =
(
‖v‖2

W 0
α (Ω)

+‖div v‖2
W 0

α+1(Ω)

)1/2

and

‖v‖Xα(Ω) =
(
‖v‖2

W 0
α (Ω)

+‖div v‖2
W 0

α+1(Ω)
+‖curl v‖2

W 0
α+1(Ω)

)1/2
.

Observe that D(Ω) is dense in Hα(div,Ω) and in Hα(curl,Ω). For the proof, one can use the same arguments

than for the proof of the density of D(Ω) in W m
α (Ω)(see [18, 20]). Therefore, recalling that n is the unit

normal vector to the boundary Γ pointing outside Ω, if v belongs to Hα(div,Ω), then v has normal trace v ·n
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in H−1/2(Γ). By the same way, if v belongs to Hα(curl,Ω), then v has a tangential trace v×n that belongs to

H−1/2(Γ). Similarly in bounded domain, we have the trace theorems: for any α ∈ Z, there exists C > 0 such

that

∀v ∈ Hα(div,Ω), ‖v ·n‖H−1/2(Γ) ÉC‖v‖Hα(div,Ω),

∀v ∈ Hα(curl,Ω), ‖v×n‖H−1/2(Γ) ÉC‖v‖Hα(curl,Ω).

Moreover the following Green’s formulas hold. For any v ∈ Hα(div,Ω) and ϕ ∈W 1−α(Ω), we have

〈
v ·n,ϕ

〉
Γ =

∫
Ω

v ·∇ϕdx+
∫
Ω
ϕdivv dx (2.13)

and for any v ∈ Hα(curl,Ω) andϕ ∈W 1−α(Ω), we have

〈
v×n,ϕ

〉
Γ =

∫
Ω

v ·curlϕdx−
∫
Ω

curl v ·ϕdx. (2.14)

We denote by H̊α(div,Ω), the closure of D(Ω) in Hα(div,Ω) that can be characterized as follow:

H̊α(div,Ω) =
{

v ∈ Hα(div,Ω); v ·n = 0 on Γ
}

.

The dual space of H̊α(div,Ω) is denoted by H−1−α(div,Ω) and is characterized by the below proposition (see [5,

Proposition 2.3]).

Proposition 2.4. Assume that α ∈ Z. A distribution f belongs to H−1
α (div,Ω) if and only if there exist ψ ∈

W 0
α(Ω) and χ ∈W 0

α−1(Ω), such that

f =ψ+∇χ.

Moreover we have

‖ψ‖W 0
α (Ω) +‖χ‖W 0

α−1(Ω) ÉC‖f ‖H−1
α (div,Ω).

In the sequel, we will also need the following two subspaces of Xα(Ω):

Xα,T (Ω) =
{

v ∈ Xα(Ω); v ·n = 0 on Γ
}

(2.15)

and

Vα,T (Ω) =
{

v ∈ Xα,T ; div v = 0 inΩ
}

. (2.16)

Finally, to give a sense on the second boundary condition (1.2), we introduce:

G(∆,Ω) =
{

v ∈W 1
0 (Ω); ∆v ∈ H−1

1 (div,Ω)
}

. (2.17)
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This is a Banach space for the norm

‖v‖G(∆,Ω) = ‖v‖W 1
0 (Ω) +‖∆v‖H−1

1 (div,Ω).

Then we have the following properties (see [5, Lemma 5.1 and Corollary 5.2])

Lemma 2.5.

i) The space D(Ω) is dense in G(∆,Ω).

ii) The linear mapping γ : v → curl v|Γ×n defined on D(Ω) can be extended to a linear continuous map-

ping

γ : G(∆,Ω) −→ H−1/2(Γ).

Moreover, we have the Green formula: for any v ∈G(∆,Ω) and anyϕ ∈V−1,T (Ω),

−〈∆v,ϕ〉H−1
1 (div,Ω)×H̊−1(div,Ω) =

∫
Ω

curl v ·curlϕdx−〈curl v×n,ϕ〉Γ. (2.18)

3 Auxiliary problems

In this section, we deal with the auxiliary problems that are the generalized Neumann and the Hodge-

Laplacian problems.

3.1 Generalized Neumann problem

We consider here the following problem: given f and g , we look for a function π satisfying

div
(∇π− f

)= 0 in Ω and
(∇π− f

) ·n = g on Γ. (3.19)

We start by looking for a solution π ∈W 1
0 (Ω) which is equivalent to look for the variational solution. Here, it

is clear that (3.19) is equivalent to:
Find π ∈W 1

0 (Ω) such that:∫
Ω
∇π ·∇ϕdx =

∫
Ω

f ·∇ϕdx+〈
g ,ϕ

〉
Γ .

(3.20)

Thanks to the Poincaré-type inequality (2.10), a straightforward application of the Lax-Milgram theorem

allows to establish the following result.

Proposition 3.1. Given (f, g ) ∈ L2(Ω)×H−1/2(Γ), then (3.19) has a unique solution π ∈W 1
0 (Ω).

We continue by looking for a solution π ∈ W 1
α+1(Ω) for α 6= −1. The case α<−1 can be solved in a straight-

forward manner using the isomorphism result of the Laplace operator (2.12) in R3 and the standard exterior

Neumann problem.
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Theorem 3.2. Let α<−1 be an integer and assume (f, g ) ∈ W 0
α+1(Ω)×H−1/2(Γ). Then problem (3.19) has at

least a solution π ∈W 1
α+1(Ω).

Proof. Extend f by zero in Ω′ and denote by f̃ the extended function that belongs to W 0
α+1(R3). As a result,

div f̃ belongs to W −1
α+1(R3) (see (2.8)) and since α < −1 there exists π̃ ∈ W 1

α+1(R3) satisfying (see Proposi-

tion 2.2)

−∆ π̃= div f̃ in R3.

Thus it is clear that, on Γ,
(∇ π̃+ f̃

) ·n belongs to H−1/2(Γ). Therefore there exists a unique z ∈ W 1
0 (Ω) satis-

fying (see [18] or [17, Lemma 3.7]):

∆z = 0 in Ω and ∇z ·n = (∇ π̃+ f̃
) ·n+ g on Γ.

Because α<−1, we deduce that z also belongs to W 1
α+1(Ω). Now setting π= z − π̃|Ω, then π ∈W 1

α+1(Ω) and

satisfies (3.19).

�

Finally, let us solve problem (3.19) when α>−1 and to that end, we first introduce the space

N ∆
α (Ω) =

{
ζ ∈W 1

α(Ω); ∆ζ= 0 in Ω and ∇ζ ·n = 0 on Γ
}

,

that is the null space of the exterior Neumann problem for the Laplace operator. The below characterization

has been established by Giroire [18].

Proposition 3.3. Assume α ∈Z. Then we have

N ∆
α (Ω) =

{
w(λ)−λ, λ ∈P ∆

−1−α
}

where w(λ) ∈W 1
0 (Ω) is the unique solution of the Neumann problem

∆w(λ) = 0 in Ω and ∇w(λ) ·n =∇λ ·n on Γ. (3.21)

In particular N ∆
α (Ω) = {

0
}

when αÊ 0 and N ∆
−1(Ω) =R.

Remark 3.4. Observe that, since we are dealing with an exterior domain Ω that has its boundary of class

C 2,1, then regularity results on the exterior Neumann problem for Laplace show that if ζ ∈ N ∆
α (Ω), then ζ

also belongs to W 3
α+2(Ω) (see [18] or [17, theorems 3.9 and 3.10]).

Theorem 3.5. Let α > −1 be an integer and assume (f, g ) ∈ W 0
α+1(Ω)× H−1/2(Γ) satisfies the necessary com-

patibility condition

∀ϕ ∈N ∆
−α−1(Ω), −

∫
Ω

f ·∇ϕdx = 〈
g ,ϕ

〉
Γ . (3.22)
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Then problem (3.19) has at least a solution π that belongs to W 1
α+1(Ω).

Proof.

• COMPATIBILITY CONDITION. Let us first prove that (3.22) is indeed a necessary condition. Consider

π ∈W 1
α+1(Ω) a solution of (3.19) and ϕ ∈N ∆

−α−1(Ω). On the one hand, using (2.13), we have

〈
g ,ϕ

〉
Γ =

〈
(∇π− f ) ·n,ϕ

〉
Γ =

∫
Ω

(∇π− f ) ·∇ϕdx

=
∫
Ω
∇π ·∇ϕdx−

∫
Ω

f ·∇ϕdx.

On the other hand, using again (2.13) and the fact that ϕ ∈N ∆
−α−1(Ω), we can write

0 = 〈∇ϕ ·n,π
〉
Γ =

∫
Ω
∇π ·∇ϕdx.

Summarizing, we get (3.22).

• EXISTENCE. Let us now prove the existence of a solution to (3.19). Because α > −1 and f ∈ W 0
α+1(Ω),

then f also belongs to L2(Ω). Hence Proposition 3.1 insures the existence ofπ ∈W 1
0 (Ω) satisfying prob-

lem (3.19). It remains now to prove that π actually belongs to W 1
α+1(Ω) and this is done using Propo-

sition 2.2. To that end, let π′ ∈ H 1(Ω′) be the unique solution of

∆π′ = 0 in Ω′ and π′ =π on Γ. (3.23)

Setting now

π̃=

π in Ω,

π′ in Ω′,
(3.24)

then π̃ belongs to W 1
0 (R3). In order to use (2.12), we need to prove that ∆π̃ belongs to W −1

α+1(R3)⊥P ∆
α .

For any ϕ ∈D(R3), we have

〈∆π̃,ϕ〉D ′(R3)×D(R3) =
∫
R3
π̃∆ϕdx =

∫
Ω
π∆ϕdx+

∫
Ω′
π′∆ϕdx. (3.25)

Observe that ∫
Ω
π∆ϕdx = 〈∇ϕ ·n,π〉Γ−

∫
Ω
∇ϕ ·∇πdx

= 〈∇ϕ ·n,π〉Γ−
∫
Ω

(∇π− f ) ·∇ϕdx−
∫
Ω

f ·∇ϕdx.
(3.26)

Besides

〈g ,ϕ〉Γ = 〈(∇π− f ) ·n,ϕ〉Γ =
∫
Ω

(∇π− f ) ·∇ϕdx. (3.27)

11



Combining (3.26) and (3.27), we obtain

∫
Ω
π∆ϕdx = 〈∇ϕ ·n,π〉Γ−〈g ,ϕ〉Γ−

∫
Ω

f ·∇ϕdx. (3.28)

Now, thanks again to (2.13) and (3.23), we have∫
Ω′
π′∆ϕdx =−〈∇ϕ ·n,π〉Γ+〈∇π′ ·n,ϕ〉Γ. (3.29)

Adding (3.28) and (3.29), we arrive at

〈∆π̃,ϕ〉D ′(R3)×D(R3) = 〈∇π′ ·n,ϕ〉Γ−〈g ,ϕ〉Γ−
∫
Ω

f ·∇ϕdx. (3.30)

From here, because f ∈W 0
α+1(Ω), then for any ϕ ∈D(R3), we have the estimate

|〈∆π̃,ϕ〉D ′(R3)×D(R3)| ÉC‖ϕ‖W 1
−α−1(R3),

which proves that ∆π̃ belongs to W −1
α+1(R3).

Consider now λ ∈ P ∆
α and let us prove that 〈∆π̃,λ〉W −1

α+1(R3)×W 1
−α−1(R3) = 0, which according to (3.30),

amounts to prove that ∫
Ω

f ·∇λdx+〈g ,λ〉Γ−〈∇π′ ·n,λ〉Γ = 0. (3.31)

Let w(λ) ∈ W 1
0 (Ω) be the unique solution of (3.21). Thanks to proposition 3.3, w(λ)−λ belongs to

N ∆
−α−1(Ω). Besides, because α>−1, w(λ) also belongs to W 1

−α−1(Ω). Then taking the first two terms

of (3.31), we can write∫
Ω

f ·∇λdx+〈g ,λ〉Γ =
∫
Ω

f ·∇w(λ)dx+〈g , w(λ)〉Γ−
∫
Ω

f ·∇(w(λ)−λ)dx−〈g , w(λ)−λ〉Γ.

But because w(λ)−λ belongs to N ∆
−α−1(Ω), then thanks to the compatibility condition (3.22), the last

two terms of the above equation satisfy∫
Ω

f ·∇(w(λ)−λ)dx+〈g , w(λ)−λ〉Γ = 0.

Hence (3.31) is reduced to prove that∫
Ω

f ·∇w(λ)dx+〈g , w(λ)〉Γ−〈∇π′ ·n,λ〉Γ = 0. (3.32)

For the second term of (3.32), using (2.13) and the fact that w(λ) satisfies (3.21), we can write
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〈g , w(λ)〉Γ = 〈(∇π− f ) ·n, w(λ)〉Γ =
∫
Ω

(∇π− f ) ·∇w(λ)dx = 〈∇w(λ) ·n,π〉Γ−
∫
Ω

f ·∇w(λ)dx. (3.33)

Next, for the third term, using again (2.13), (3.21) and also the fact that π=π′ on Γ, we have

〈∇π′ ·n,λ〉Γ =
∫
Ω′
∇π′ ·∇λdx = 〈∇λ ·n,π′〉Γ = 〈∇w(λ) ·n,π〉Γ. (3.34)

Then (3.32) follows from the combination of (3.33) and (3.34).

This shows that∆π̃ is orthogonal to polynomials of P ∆
α , which implies that∆π̃belongs to W −1

α+1(R3)⊥P ∆
α .

Thanks to Proposition 2.2, there exists q ∈W 1
α+1(R3) satisfying

∆q =∆π̃ in R3.

It follows from α > −1 and Proposition 2.2 that π̃− q is a polynomial of W 1
0 (R3). But this space does

not contain non zero polynomials (see Proposition 2.1). Thus, we deduce that π belongs to W 1
α+1(Ω).

�

3.2 The Hodge-Laplacian problem with Non Standard Boundary Condition

In this section we study the following Laplace problem: given f , h , χ and g , we look for u satisfying −∆u = f and div u =χ in Ω,

u ·n = g and curl u×n = h×n on Γ.
(E T )

For α ∈Z, we introduce here the space

Yα,T (Ω) =
{

v ∈ Xα,T (Ω), div v = 0 and curl v = 0 in Ω
}

.

Observe that this space can be characterized as follow (see [24, Proposition 4.8])

Yα,T (Ω) =
{
∇v, v ∈N ∆

α (Ω)
}

.

In particular, if αÊ−1, then we have Yα,T (Ω) = {
0
}
.

The result that we state below regarding the existence and the uniqueness of weak solution to problem (E T ),

was established in [5] (see Proposition 5.3).

Proposition 3.6. Assume χ= 0, f ∈W 0
1 (Ω), g ∈ H 1/2(Γ), h ∈ H−1/2(Γ), satisfying

div f = 0,
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f ·n = divΓ(h×n) on Γ, (3.35)

and

∀ϕ ∈ Y−1,T (Ω),
∫
Ω

f ·ϕdx+〈h×n,ϕ〉Γ = 0, (3.36)

then problem (E T ) has a unique solution u ∈W 1
0 (Ω).

Our aim here is to establish the existence of strong solutions to (E T ) that belong to the space W 2
α+1(Ω), for

any α ∈ Z. We begin by stating results regarding the necessary conditions that the data of problem (E T )

satisfy .

Proposition 3.7. If u ∈W 2
α+1(Ω) is a solution of (E T ), with data f ∈W 0

α+1(Ω), χ ∈W 1
α+1(Ω), g ∈ H 3/2(Γ) and

h ∈ H 1/2(Γ), then necessarily we have

div(f+∇χ) = 0 in Ω, (3.37)

(f+∇χ) ·n = divΓ(h×n) on Γ. (3.38)

and if α> 0,

∀ϕ ∈ Y−α−1,T (Ω),
∫
Ω

f ·ϕdx+〈h×n,ϕ〉Γ = 0. (3.39)

Proof. The necessary condition (3.37) is straightforward by taking the divergence of the first equation

of (E T ). Next, in order to establish the second necessary condition (3.38), let u ∈ W 2
α+1(Ω) be a solution

of (E T ) and consider z = curl u. It is clear that z belongs to Hα(div,Ω) and we can write

∀ϕ ∈D(Ω), 〈curl z ·n,ϕ〉Γ =
∫
Ω

curl z ·∇ϕdx

=−〈z×n,∇ϕ〉Γ
= 〈divΓ(z×n),ϕ〉Γ
= 〈divΓ(h×n),ϕ〉Γ.

As a consequence,

〈(∇div u−∆u) ·n,ϕ〉Γ = 〈divΓ(h×n),ϕ〉Γ

and

〈(f +∇χ) ·n,ϕ〉Γ = 〈divΓ(h×n),ϕ〉Γ.

Then (3.38) holds in the H−1/2(Γ) sense due to the density of D(Ω) in W 1
α(Ω) for any α ∈Z.

Finally, let us prove (3.39). Observe that because of the characterization of the space Y−1−α,T (Ω), the com-

patibility condition (3.39) only appears for the case α > 0. Let u ∈ W 2
α+1(Ω) be again a solution of (E T ).

Multiplying the first equation of (E T ) byφ ∈ X−α−1,T (Ω) and integrating, give∫
Ω
−∆u ·φdx =

∫
Ω

f ·φdx
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which can be writing as ∫
Ω

curl curl u ·φdx−
∫
Ω
∇χ ·φdx =

∫
Ω

f ·φdx.

It follows from (2.13) and (2.14), that∫
Ω

curl u ·curlφdx =
∫
Ω

f ·φdx−
∫
Ω
χdivφdx+〈h×n,φ〉Γ.

As a result, we see that the data f, χ and h satisfy the necessary condition

∀φ ∈ X−α−1,T (Ω), s.t. curlφ= 0,
∫
Ω

f ·φdx−
∫
Ω
χdivφdx+〈h×n,φ〉Γ = 0. (3.40)

Then for any ϕ ∈ Y−α−1,T (Ω) ⊂ X−α−1,T (Ω), we clearly have (3.39). Conversely, if (3.39) holds, then (3.40)

also holds. Indeed, letφ be in X−α−1,T (Ω) such that curlφ= 0. Then, because α> 0, the problem

∆v = divφ in Ω and ∇v ·n = 0 on Γ,

has a solution v ∈W 2−α(Ω) (see [17, Theorem 3.9]). Set now ϕ=φ−∇v , then obviously ϕ ∈ Y−α−1,T (Ω) and,

thanks to (3.39), we can write∫
Ω

f ·φdx−
∫
Ω

f ·∇v dx+〈h×n,φ〉Γ−〈h×n,∇v〉Γ = 0. (3.41)

It follows from (3.37), (3.38) and (2.13), that

−〈h×n,∇v〉Γ = 〈divΓ (h×n), v〉Γ = 〈(f+∇χ) ·n, v〉Γ
=

∫
Ω

(f+∇χ) ·∇v dx+
∫
Ω

v div (f+∇χ)dx

=
∫
Ω

(f+∇χ) ·∇v dx.

This shows that

−
∫
Ω

f ·∇v dx−〈h×n,∇v〉Γ =
∫
Ω
∇χ ·∇v dx. (3.42)

Moreover, using (2.13) and the fact that ∇v ·n = 0 on Γ allow to obtain∫
Ω
∇χ ·∇v dx =−

∫
Ω
χdivφdx. (3.43)

Then (3.40) follows from the combination of (3.41), (3.42) and (3.43).

�

Remark 3.8. In the course of the latter proof, we can observe that, on the one hand, condition (3.40) is natu-

rally satisfied by the data, and on the other hand, we showed the equivalence between (3.39) and (3.40). The

choice of using (3.39) in order to express the necessary condition that satisfy the data, is motivated by the study
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of the exterior Stokes problem (1.1)–(1.2) where it will be more convenient to verify (3.39).

Before stating results on strong solutions, let us make a further remark.

Remark 3.9. Let R > 0 be a real number large enough so that Ω′ ⊂ BR . We recall that ΩR =Ω∩BR . In what

follows, we shall use the fact that if u ∈ H 1(ΩR ) solves the following mixed boundary value problem:


−∆u = f and div u =χ in ΩR ,

u ·n = g and curl u×n = h×n on Γ,

u = a on ∂BR ,

(3.44)

with data f ∈ L2(ΩR ), χ ∈ H 1(ΩR ), g ∈ H 3/2(Γ), h ∈ H 1/2(Γ) and a ∈ H 3/2(∂BR ), then we have u ∈ H 2(ΩR ).

Indeed, because the two components Γ and ∂BR of the boundary are completely disconnected, we can use a

partition of unity to establish the regularity result. The proof is postponed in Section A.

We now split the statements on the existence of strong solutions into two parts, depending on the values

of α.

Theorem 3.10. Let α É 0 be an integer. Assume f ∈ W 0
α+1(Ω), χ ∈ W 1

α+1(Ω), g ∈ H 3/2(Γ) h ∈ H 1/2(Γ) satisfy-

ing (3.37) and (3.38). Then problem (E T ) has at least a solution u ∈W 2
α+1(Ω).

Proof. We divide the proof into two steps.

• STEP 1. This step is dedicated to the proof of the existence of u ∈W 1
α(Ω) solution of (E T ).

We first consider the case χ= 0. Then the key point is to construct an extension of the datum f in such

a way that the extension is divergence free which in turn allows get a divergence free solution of the

Hodge-Laplacian in the whole space R3. To that end, observe that in view of (3.38), for all ϕ ∈ H 2(Ω′),

we have

〈
f ·n,ϕ

〉
Γ =

〈
divΓ(h ×n),ϕ

〉
Γ =−〈

h ×n,∇ϕ〉
Γ . (3.45)

In particular, if ϕ= 1, we get:

〈
f ·n,1

〉
Γ = 0. (3.46)

Consider now the following Neumann problem in the bounded domain Ω′

∆θ = 0 in Ω′ and ∇θ ·n = f ·n on Γ. (3.47)
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Owing to condition (3.46), problem (3.47) has a solution θ ∈ H 1(Ω′). Let us now set

f̃ =

f in Ω,

∇θ in Ω′.

Then, on the one hand, clearly f̃ belongs to W 0
α+1(R3), and because αÉ 0, Proposition 2.2 yields the

existence of ṽ ∈W 2
α+1(R3), satisfying

−∆ṽ = f̃ in R3. (3.48)

On the other hand, for any ϕ ∈D(R3), we can write

〈div f̃ ,ϕ〉D ′(R3)×D(R3) =−
∫
R3

f̃ ·∇ϕdx

=−
∫
Ω

f ·∇ϕdx−
∫
Ω′
∇θ ·∇ϕdx

=−〈f ·n,ϕ〉Γ+〈∇θ ·n,ϕ〉Γ

= 0

which implies that div f̃ = 0 in R3. Therefore, taking the divergence of (3.48) and thanks again to

Proposition 2.2, we deduce that div ṽ is a harmonic polynomial of W 1
α+1(R3) which means that there

exists p ∈P ∆
−α−2 such that div ṽ = p. Using now a characterization of harmonic polynomials (see [16,

Lemma 4.1]), there exists q ∈P ∆
−α−1 such that p = div q. Hence, setting ũ = ṽ−q ∈W 2

α+1(R3), then we

have

−∆ũ = f̃ in R3 and div ũ = 0 in R3.

Next, let us introduce the following problem∆z = 0 and div z = 0 in Ω,

z ·n =−ũ ·n+ g and curl z×n = (−curl ũ+h)×n on Γ.
(3.49)

In order to apply Proposition 3.6, we need to prove (3.35) and (3.36) for the above problem. For any
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ϕ ∈D(Ω), we can write:

〈
divΓ(−curl ũ×n+h×n),ϕ

〉
Γ =

〈
div Γ( −curl ũ×n),ϕ

〉
Γ+

〈
div Γ( h×n),ϕ

〉
Γ

= 〈
curl ũ×n,∇ϕ〉

Γ+
〈

div Γ(h×n),ϕ
〉
Γ

=−
∫
Ω

curl curl ũ ·∇ϕdx+〈
divΓ(h×n),ϕ

〉
Γ

=
∫
Ω
∆ ũ ·∇ϕdx+〈

divΓ(h×n),ϕ
〉
Γ

=−
∫
Ω

f̃ ·∇ϕdx+〈
divΓ(h×n),ϕ

〉
Γ

=−〈
f ·n,ϕ

〉
Γ+

〈
divΓ(h×n),ϕ

〉
Γ

= 0.

Then (3.35) follows from the density of D(Ω) in W 1
β

(Ω) for any β ∈Z.

Next, to prove (3.36) for problem (3.49), let us takeϕ ∈ Y−1,T (Ω). Owing to the characterization of the

space Y−1,T (Ω), we haveϕ=∇w(λ), for λ ∈R and w(λ) ∈W 1
0 (Ω) is the unique solution of (3.21). Then

using the above relations, we can write

〈(−curl ũ+h)×n,ϕ〉Γ = 〈(−curl ũ+h)×n,∇w(λ)〉Γ
=−〈divΓ((−curl ũ+h)×n), w(λ)〉Γ
= 0.

Consequently, thanks to Proposition 3.6, problem (3.49) has a solution z ∈W 1
0 (Ω) ⊂W 1

α(Ω) sinceαÉ 0.

Setting now u = z+ ũ|Ω, then u belongs to W 1
α(Ω) and satisfies (E T ).

We now consider the case where χ ∈W 1
α+1(Ω). Let us introduce the following problem:

−∆v =χ in Ω and ∇v ·n = 0 on Γ.

Since α < 0, this problem has at least a solution v ∈ W 2
α+1(Ω (see [17, Theorem 3.9]). Consider the

following problem: −∆z = f +∇χ and div z = 0 in Ω,

z ·n = g and curl z×n = h×n on Γ.
(3.50)

Because the data satisfy (3.37) and (3.38), then the previous case allows to establish the existence of

z ∈W 1
α+1(Ω) solution to (3.50). We thus deduce that u = z−∇v ∈W 1

α(Ω) is a solution of problem (E T ).

• STEP 2. In this step, we prove that the solution u ∈ W 1
α(Ω) established in the first step, also belongs

to W 2
α+1(Ω) due to the assumptions on the data and the fact that the boundary Γ is of class C 2,1. The
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regularity result can be established by combining the Laplace problem in the whole space R3 and the

mixed boundary value problem for Laplace discussed in Remark 3.9. So let R > 0 be a real number

large enough so that Ω′ ⊂ BR and consider the following partition of unity:

ψ1,ψ2 ∈C ∞(R3), 0 Éψ1,ψ2 É 1, ψ1 +ψ2 = 1 in R3

ψ1 = 1 in BR , supp ψ1 ⊂ BR+1.
(3.51)

Next, extend f by zero in Ω′ and denote by f̃ ∈ W 0
α+1(R3) the extended function. Moreover, let ũ ∈

W 1
α(R3) be an extension of u. Then ũ can be written as:

ũ =ψ1 ũ+ψ2 ũ = ũ1 + ũ2.

Next, one can easily observe that ũ2 satisfies:

−∆ũ2 = f̃2 in R3

where f̃2 =ψ2 f̃−∆ψ2ũ−2∇ψ2 ·∇ũ. Owing to the support of ψ2, f̃2 has the same regularity as f̃ and so

belongs to W 0
α+1(R3). It follows from Proposition 2.2 that there exists z̃ ∈W 2

α+1(R3) satisfying

−∆z̃ = f̃2 in R3.

This implies that ũ2− z̃ ∈W 1
α(R3) is a harmonic tempered distribution and therefore a harmonic poly-

nomial that belongs to P ∆
−α−1. The fact that P ∆

−α−1 ⊂W 2
α+1(R3) yields that ũ2 also belongs to W 2

α+1(R3).

In particular, we have ũ2 = u outside BR+1, so the restriction of u to ∂BR+1 belongs to H 3/2(Γ). There-

fore, u satisfies: 
−∆u = f and div u =χ in ΩR+1,

u ·n = g and curl u×n = h×n on Γ,

u = ũ2 on ∂BR+1,

It follows from Remark 3.9 and the assumptions on the data and on the boundary Γ, that u belongs to

H 2(ΩR+1), which in turn shows that ũ1 also belongs to H 2(ΩR+1). Thus we can conclude that u also

belongs to W 2
α+1(Ω).

�

We now look for strong solutions of problem (E T ), when α> 0.

Theorem 3.11. Let α> 0 be an integer and assume f ∈ W 0
α+1(Ω), χ ∈ W 1

α+1(Ω), g ∈ H 3/2(Γ) and h ∈ H 1/2(Γ)

satisfying (3.37), (3.38) and (3.39). Then problem (E T ) has at least a solution u ∈W 2
α+1(Ω).
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Proof. Observe that it enough to prove the existence of a solution u that belongs to W 1
α(Ω). Indeed, one can

then proceed as in the step 2 of the proof of Theorem 3.10 to show that u also belongs to W 2
α+1(Ω).

Now, to prove the existence of a solution u that belongs to W 1
α(Ω), we split the proof in two cases

• THE CASE g = 0. Becauseα> 0, then f ∈ L2(Ω),χ ∈W 1
0 (Ω) and by virtue of Theorem 3.10, problem (E T )

has a solution u in W 2
0 (Ω). It remains now to prove that u belongs to W 1

α(Ω). This is again based on the

properties of the Laplace equation in the whole space R3. To that end, let u′ ∈ H 2(Ω′) be the unique

solution of

∆u′ = 0 in Ω′ and u′ = u on Γ. (3.52)

Set now

ũ =

u in Ω,

u′ in Ω′.
(3.53)

It is clear that ũ belongs to W 1
−1(R3). Set F =−∆ũ and let us prove that F belongs to W −1

α (R3). For any

ϕ ∈D(R3), we have

〈F,ϕ〉D ′(R3)×D(R3) = −
∫
R3

ũ ·∆ϕdx

= −
∫
Ω

u ·∆ϕdx−
∫
Ω′

u′ ·∆ϕdx

=
∫
Ω

u · (curl curlϕ−∇ divϕ)dx+
∫
Ω′

u′ · (curl curlϕ−∇ divϕ)dx

=
∫
Ω

curl u ·curlϕdx+
∫
Ω′

curl u′ ·curlϕdx+
∫
Ω
χ divϕdx+

∫
Ω′

divu′ divϕdx

=
∫
Ω

f ·ϕdx+〈
h×n,ϕ

〉
Γ+

〈
ϕ ·n,χ

〉
Γ−

〈
ϕ ·n,divu′〉

Γ−
〈

curl u′×n,ϕ
〉
Γ .

Due to the density of the space D(R3) in W 1−α(R3) and since f belongs to W 0
α+1(Ω), we deduce that

F belongs to W −1
α (R3). In order to apply Proposition 2.2, the main point is now to show that F is

orthogonal to harmonic polynomials of W 1−α(R3), namely to the space P ∆
α−1. So let λ be in P ∆

α−1 and

in view of the above computations, we need to prove that

〈F,λ〉W −1
α (R3)×W 1−α(R3) =

∫
Ω

f ·λdx+〈h×n,λ〉Γ+
〈
λ ·n,χ

〉
Γ−

〈
λ ·n,divu′〉

Γ−
〈

curl u′×n,λ
〉
Γ = 0. (3.54)

But, on the one hand, computations in Ω′ using (2.13), (2.14), the fact that u = u′ on Γ and so u ·n =
u’ ·n = 0 on Γ, show that

0 =
∫
Ω′
λ ·∆u′ dx

=−〈curl u′×n,λ〉Γ+〈curlλ×n,u′〉Γ−〈λ ·n,div u′〉Γ,

=−〈curl u′×n,λ〉Γ+〈curlλ×n,u〉Γ−〈λ ·n,div u′〉Γ,
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which implies that

−〈curl u′×n,λ〉Γ−〈λ ·n,div u′〉Γ =−〈curlλ×n,u〉Γ. (3.55)

On the other hand, similar computations in Ω show that∫
Ω

f ·λdx =−
∫
Ω
∆u ·λdx

=−
∫
Ω

u ·∆λdx+〈curlλ×n,u〉Γ−〈h×n,λ〉Γ−〈λ ·n,χ〉Γ,

which implies that ∫
Ω

f ·λdx = 〈curlλ×n,u〉Γ−〈h×n,λ〉Γ−〈λ ·n,χ〉Γ. (3.56)

Combining (3.55) and (3.56) allow to prove (3.54). It follows from Proposition 2.2 that there exists

ṽ ∈W 1
α(R3) satisfying

∆ṽ =∆ũ in R3.

As a result, since α > 0, the difference ũ− ṽ ∈ W 1
0 (R3) is a harmonic polynomials and therefore ũ = ṽ

which in turn shows that u ∈W 1
α(Ω).

• THE CASE g 6= 0. Let w be in W 3
α+1(Ω) such ∇w ·n = g . Next consider the problem:

−∆z = f +∆∇w and div z =χ−∆w in Ω,

z ·n = 0 and curl z×n = h×n on Γ.
(3.57)

According to the previous case, problem (3.57) has a solution z ∈ W 1
α(Ω) if the following conditions

are satisfied:

div
(
f +∆∇w +∇χ−∇∆w

)= 0 in Ω, (3.58a)(
f +∆∇w +∇χ−∇∆w

) ·n = divΓ (h×n) on Γ, (3.58b)∫
Ω

(f +∆∇w) ·ϕdx+〈h×n,ϕ〉Γ = 0, ∀ϕ ∈ Y−α−1,T (Ω). (3.58c)

Conditions (3.58a) and (3.58b) follow immediately from (3.37) and (3.38) respectively. Besides, if ϕ ∈
Y−α−1,T (Ω), then using (2.13), we clearly have∫

Ω
∆∇w ·ϕdx = 0.

Then (3.58c) follows from (3.39). We deduce that there exists z ∈ W 1
α(Ω) satisfying (3.57) and u =

z+∇w ∈W 1
α(Ω) is the required solution of (E T ).

�
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4 Exterior Stokes problem with Non Standard Boundary Conditions

In this section, we study the following exterior Stokes problem: given f , h , χ and g , we look for a pair (u,π)

that satisfies:


−∆u+∇π= f and div u =χ in Ω,

u ·n = g and curl u×n = h×n on Γ.
(ST )

We first recall the result on the existence and the regularity of the variational solution of (ST ) proved in [5]

(see Corollary 5.2 and Theorem 6.1).

Theorem 4.1. Assume that f ∈ H−1
1 (div,Ω), χ ∈ L2(Ω), g ∈ H 1/2(Γ) and h ∈ H−1/2(Γ). Then problem (ST ) has

a unique solution (u,π) ∈W 1
0 (Ω)×L2(Ω) and there exists a constant C such that:

‖u‖W 1
0 (Ω) +‖π‖L2(Ω) ÉC

(
‖f ‖H−1

1 (div,Ω) +‖h×n‖H−1/2(Γ) +‖χ‖L2(Ω) +‖g‖H 1/2(Γ)

)
. (4.59)

Moreover if f ∈W 0
1 (Ω), χ ∈W 1

1 (Ω), g ∈ H 3/2(Γ) and h ∈ H 1/2(Γ), then (u,π) ∈W 2
1 (Ω)×W 1

1 (Ω).

4.1 Strong solutions

As for problem (E T ), we are interested here in looking for strong solution (u,π) ∈W 2
α+1(Ω)×W 1

α+1(Ω) for any

α ∈Z. Let us first give a characterization of the kernel Sα(Ω) defined by:

Sα(Ω) =
{

(u,π) ∈W 2
α+1(Ω)×W 1

α+1(Ω),−∆u+∇π= 0, div u = 0 in Ω

u ·n = 0 and curl u×n = 0 on Γ
}

.

For all α ∈Z, we introduce the following space:

Nα =
{

(λ,µ) ∈Pα×P ∆
α−1; div λ= 0 and −∆λ+∇µ= 0 in R3

}
that is the null space of the Stokes operator in the whole space R3. We recall that Nα = {(0,0)}, when α < 0

and N0 =P0 × {0}. The reader can refer to [16] for the proof and for more details.

Proposition 4.2. Assume that α ∈Z.

1. If αÊ 0, then Sα(Ω) = {
(0,0)

}
.

2. If α < 0, then Sα(Ω) =
{(

v(λ)+λ,θ(λ)+µ
)
; (λ,µ) ∈ N−α−1

}
, where the pair (v(λ),θ(λ)) ∈ W 2

1 (Ω)×
W 1

1 (Ω) is the unique solution of


−∆v(λ)+∇θ(λ) = 0 and div v(λ) = 0 in Ω,

(v(λ)+λ) ·n = 0 and (curl v(λ)+curlλ)×n = 0 on Γ.
(4.60)
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Proof.

1. Because αÊ 0, we clearly have Sα(Ω) ⊂S0(Ω). But Theorem 4.1 implies that S0(Ω) = {
(0,0)

}
.

2. Let (u,π) ∈ Sα(Ω) and denote by ũ and π̃ their extensions to R3 that belong to W 2
α+1(R3)×W 1

α+1(R3).

Define

F =−∆ũ+∇π̃ and H = div ũ in R3.

Then clearly the pair (F , H) belongs to W 0
α+1(R3)×W 1

α+1(R3) and has a compact support. Thanks to [16,

Theorem 4.4], there exists (z,θ) ∈W 2
1 (R3)×W 1

1 (R3) satisfying the following Stokes problem:

−∆z+∇θ = F and div z = H in R3.

It follows that

−∆(z− ũ)+∇(θ− π̃) = 0 and div (z− ũ) = 0 in R3.

Becauseα< 0, we deduce that (z−ũ,θ−π̃) belongs to W 2
α+1(R3)×W 1

α+1(R3). Then thanks again to [16,

Theorem 4.4], we deduce that (z− ũ,θ− π̃) ∈ N−α−1 which means that there exists (λ,µ) ∈ N−α−1 such

that z− ũ =λ and θ− π̃=µ. Therefore the restriction of (z,θ) to Ω belongs to W 2
α+1(Ω)×W 1

α+1(Ω) and

satisfies (4.60).

�

We are now ready to state the existence and the uniqueness of strong solution to problem (ST ).

Theorem 4.3. Let α ∈Z and assume that f ∈W 0
α+1(Ω), χ ∈W 1

α+1(Ω), g ∈ H 3/2(Γ) and h ∈ H 1/2(Γ) such that

∀(ξ,η) ∈S−α(Ω),
∫
Ω

f ·ξdx−
∫
Ω
χηdx+〈h×n,ξ〉Γ+〈g ,η〉Γ = 0. (4.61)

Then, problem (ST ) has a unique solution (u,π) ∈ W 2
α+1(Ω)×W 1

α+1(Ω)/S 2
α (Ω) and we have the following

estimate:

inf
(ξ,η)∈S 2

α (Ω)

(
‖u+ξ‖W 2

α+1(Ω) +‖π+η‖W 1
α+1(Ω)

)
ÉC

(
‖f ‖W 0

α+1(Ω) +‖χ‖W 1
α+1(Ω) +‖g‖H 3/2(Γ) +‖h×n‖H 1/2(Γ)

)
.

Proof. Observe first that the uniqueness is a straightforward consequence of Proposition 4.2. We now

divide the proof of the theorem into two parts dedicated to the compatibility condition and the existence

statement.

• COMPATIBILITY CONDITION. Let us prove that (4.61) is a necessary condition. Suppose that (u,π) ∈
W 2
α+1(Ω)×W 1

α(Ω) is a solution of problem (ST ). For any (ξ,η) ∈D(Ω)×D(Ω), thanks to (2.13) and (2.14),
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we can write:∫
Ω

f ·ξdx =
∫
Ω

(−∆u+∇π) ·ξdx =−
∫
Ω
∆u ·ξdx+

∫
Ω
∇π ·ξdx

=
∫
Ω

(curl curl u−∇χ) ·ξdx+
∫
Ω
∇π ·ξdx

=−
∫
Ω

u ·∆ξdx−
∫
Ω
πdiv ξdx+〈u,curl ξ×n〉Γ−〈h×n,ξ〉Γ+

〈
χ,ξ ·n

〉
Γ+〈π,ξ ·n〉Γ

and ∫
Ω
χηdx =−

∫
Ω

u ·∇ηdx+〈
g ,η

〉
Γ .

Then making the difference between these relations allows to obtain that for any (ξ,η) ∈D(Ω)×D(Ω),∫
Ω

f ·ξdx−
∫
Ω
χηdx =

∫
Ω

u · (−∆ξ+∇η)dx−
∫
Ω
πdiv ξdx+〈u,curl ξ×n〉Γ−〈h×n,ξ〉Γ

+〈
χ,ξ ·n

〉
Γ+〈π,ξ ·n〉Γ−

〈
g ,η

〉
Γ .

Since D(Ω) is dense in W 2
α+1(Ω) and in W 1

α+1(Ω), then the above relation is still valid for any (ξ,η) ∈
W 2
α+1(Ω)×W 1

α+1(Ω). In particular, if (ξ,η) belongs to S−α(Ω), we obtain (4.61).

• EXISTENCE. Let us introduce the following Generalized Neumann problem:

div(∇π− f−∇χ) = 0 in Ω and (∇π− f−∇χ) ·n =−divΓ (h×n) on Γ. (4.62)

In order to use Theorem 3.5 if α>−1, we need to prove that the following compatibility condition is

satisfied

∀ϕ ∈N ∆
−α−1(Ω), −

∫
Ω

(f +∇χ) ·∇ϕdx = 〈−divΓ (h×n),ϕ
〉
Γ . (4.63)

First observe that, thanks to (2.13), we have:

∀ϕ ∈N ∆
−α−1(Ω),

∫
Ω
∇χ ·∇ϕdx = 0.

Next, owing to Remark 3.4, if ϕ ∈ N ∆
−α−1(Ω), then ϕ also belongs to W 3

−α+1(Ω). As a result, ∇ϕ ∈
W 2

−α+1(Ω) and it follows that (∇ϕ,0) belongs to S−α(Ω). Hence, in view of (4.61) we have:∫
Ω

f ·∇ϕdx+〈
h×n,∇ϕ〉

Γ = 0,

which implies that

−
∫
Ω

f ·∇ϕdx = 〈
h×n,∇ϕ〉

Γ

and (4.63). Then thanks to Theorems 3.2 and 3.5, there exists π ∈ W 1
α+1(Ω) satisfying (4.62). As a
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consequence, problem (ST ) is reduced to −∆u = f−∇π and div u =χ in Ω,

u ·n = g and curl u×n = h×n on Γ.
(4.64)

Thanks again to Remark 3.4 and the characterization of the space Y−α−1,T (Ω), if ϕ ∈ Y−α−1,T (Ω), then

ϕ belongs to W 2
−α+1(Ω) and as a consequence, (ϕ,0) ∈S−α(Ω) and (4.61) implies that∫

Ω
f ·ϕdx+〈h×n,ϕ〉Γ = 0.

Besides, using (2.13), we have ∫
Ω
∇π ·ϕdx = 0.

We therefore deduce that ∫
Ω

(f −∇π) ·ϕdx+〈h×n,ϕ〉Γ = 0.

Thus, thanks to Theorems 3.10 and 3.11, there exists u ∈ W 2
α+1(Ω) satisfying (4.64) and this ends the

proof of the theorem.

�

4.2 Very weak solutions

In this subsection, we study the existence and the uniqueness of very weak solution (u,π) ∈W 0
α(Ω)×W −1

α (Ω),

where α ∈Z, for the Stokes problem (ST ). The main idea here relies on the use of a duality argument using

the strong solutions obtained in the previous subsection. To that aim, we introduce the following space for

any α ∈Z:

Tα(Ω) =
{

v ∈ H̊α−2(div ,Ω); div v ∈ W̊ 1
α(Ω)

}
,

which is a Hilbert space equipped with the norm

‖v‖Tα(Ω) = ‖v‖W 0
α−2(Ω) +‖divv‖W 1

α (Ω).

The next two lemmas give some properties related to the space Tα(Ω). Their proofs are postponed in Sec-

tion B and Section C.

Lemma 4.4. Assume α ∈ Z. A distribution f belongs to (Tα(Ω))′ if and only if there exist φ ∈ W 0
−α+2(Ω) and

f0 ∈W −1−α(Ω) such that

∀ϕ ∈ Tα(Ω), 〈f,ϕ〉(Tα(Ω))′×Tα(Ω) =
∫
Ω
φ ·ϕdx+〈 f0,divϕ〉W −1−α (Ω)×W̊ 1

α (Ω). (4.65)
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Moreover, the following estimate holds:

∥ f ∥(Tα(Ω))′= max
{
‖φ‖W 0

−α+2(Ω),‖ f0‖W −1−α (Ω)

}
. (4.66)

Lemma 4.5. Let α ∈Z. Then the following properties hold:

(i) The space D(Ω) is dense in Tα(Ω). As a consequence, relation (4.65) implies that

f =φ+∇ f0. (4.67)

(ii) For any v ∈ Tα(Ω) and χ ∈W −1−α(Ω), we have

〈∇χ,v
〉

(Tα(Ω))′×Tα(Ω) =−〈
χ,divv

〉
W −1−α (Ω)×W̊ 1

α (Ω) . (4.68)

Next, to give a sense to the boundary conditions, we introduce, for any α ∈Z, the following space:

Hα(∆,Ω) =
{

v ∈W 0
−α(Ω); ∆v ∈ (Tα(Ω))′

}
,

equipped with the norm:

‖v‖Hα(∆,Ω) = ‖v‖W 0−α(Ω) +‖∆v‖(Tα(Ω))′ .

Lemma 4.6. The space D(Ω) is dense in Hα(∆,Ω).

The proof of this lemma is given in Section D. Finally, in order to write a Green formula, we define for α ∈Z:

Zα(Ω) =
{

v ∈W 2
α(Ω); divv = 0, v ·n = 0 and curl v×n = 0 on Γ

}
.

Lemma 4.7. The linear mapping γ : u 7−→ curl u|Γ × n defined on D(Ω) can be extended to a linear and

continuous mapping

γ : Hα(∆,Ω) 7−→ H−3/2(Γ)

and we have the following Green formula : for any u ∈ Hα(∆,Ω) and v ∈ Zα(Ω)

〈∆u,v〉(Tα(Ω))′×Tα(Ω) =
∫
Ω

u ·∆vdx+〈curl u×n,v〉H−3/2(Γ)×H 3/2(Γ) . (4.69)

The proof of this lemma is very similar to that of [6, Lemma 4.14]. But in order to make this paper as self-

contained as possible, we give the proof in Section E.

We now give the definition of a very weak solution of (ST ).

Definition 4.1. Let f, χ, g and h be such that

f ∈ (T−α(Ω))′, χ ∈W 0
α+1(Ω), g ∈ H−1/2(Γ) and h×n ∈ H−3/2(Γ),
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a pair (u,π) ∈W 0
α(Ω)×W −1

α (Ω) is called very weak solution of (ST ) if, for any (ϕ, q) ∈ Z−α(Ω)×W 1−α(Ω), the

relations

−
∫
Ω

u ·∆ϕdx−〈π,divϕ〉W −1−α (Ω)×W̊ 1
α (Ω) =

〈
f ,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
h×n,ϕ

〉
H−3/2(Γ)×H 3/2(Γ) (4.70)

and ∫
Ω

u ·∇q dx =−
∫
Ω
χq dx+〈

g , q
〉
Γ (4.71)

are statisfied.

Note that Z−α(Ω) is included in T−α(Ω), which insures that all the relations are well defined.

Proposition 4.8. Under the assumptions of Definition 4.1, the two following statements are equivalent:

(A) find (u,π) ∈W 0
α(Ω)×W −1

α (Ω) a very weak solution of (ST )

(B) find (u,π) ∈W 0
α(Ω)×W −1

α (Ω) satisfying (ST ) in the sense of distributions.

Proof. Let us prove that (A) ⇒ (B). So consider (u,π) ∈W 0
α(Ω)×W −1

α (Ω) a very weak solution of (ST ). Then

thanks to relations (4.70) and (4.71), for anyϕ ∈D(Ω), we have

−∆u+∇π= f and div u =χ in Ω.

Next, using (4.67), it is clear that u belongs to H−α(∆,Ω). Therefore, thanks to (4.68) and (4.69), for any

ϕ ∈ Z−α(Ω), we can write

−
∫
Ω

u ·∆ϕdu =−〈
∆u,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
curl u×n,ϕ

〉
H−3/2(Γ)×H 3/2(Γ)

= 〈
f−∇π,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
curl u×n,ϕ

〉
H−3/2(Γ)×H 3/2(Γ)

= 〈
f,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
π,divϕ

〉
W −1

α (Ω)×W̊ 1−α(Ω) +
〈

curl u×n,ϕ
〉

H−3/2(Γ)×H 3/2(Γ) .

It follows from (4.70) that for anyϕ ∈ Z−α(Ω),

〈
curl u×n,ϕ

〉
H−3/2(Γ)×H 3/2(Γ) =

〈
h×n,ϕ

〉
H−3/2(Γ)×H 3/2(Γ) .

But for any µ ∈ H 3/2(Γ), there existsϕ ∈ Z−α(Ω) such thatϕ=µ on Γ (see proof of Lemma 4.7 in Section E).

Thus for any µ ∈ H 3/2(Γ), we can write

〈
curl u×n,µ

〉
H−3/2(Γ)×H 3/2(Γ) =

〈
h×n,µ

〉
H−3/2(Γ)×H 3/2(Γ) ,

and we deduce that curl u×n = h×n on Γ. Finally, from the equation div u = χ, we deduce that for any

q ∈W −1−α(Ω) 〈
u ·n, q

〉
Γ =

〈
g , q

〉
Γ ,
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which yields u ·n = g on Γ.

Let us now prove (B) ⇒ (A). So suppose that (u,π) ∈ W 0
α(Ω)×W −1

α (Ω) satisfies system (ST ) in the sense of

distributions. Then using (4.68), (4.69) and the fact that D(Ω) is dense in T−α(Ω), it is clear that (4.70) holds.

Finally, from the equation div u =χ and (2.13), we easily deduce (4.71).
�

Finally, the main result of this part reads as follows:

Theorem 4.9. Let f, χ, g and h be such that

f ∈ (T−α(Ω))′, χ ∈W 0
α+1(Ω), g ∈ H−1/2(Γ), h×n ∈ H−3/2(Γ)

and satisfy the necessary condition

∀(ξ,η) ∈S−α−1(Ω),
〈

f,ξ
〉

(T−α(Ω))′×T−α(Ω) +〈h×n,ξ〉Γ−
∫
Ω
χηdx+〈

g ,η
〉

H−1/2(Γ)×H 1/2(Γ) = 0. (4.72)

Then, problem (ST ) has a unique solution (u,π) ∈W 0
α(Ω)×W −1

α (Ω)/Sα+1(Ω).

Proof.

Observe that, in view of Proposition 4.8, if the pair (u,π) ∈ W 0
α(Ω)×W −1

α (Ω) is a solution of (ST ), then for

any (ϕ, q) ∈ Z−α(Ω)×W 1−α(Ω), adding (4.70) and (4.71), we have∫
Ω

u · (−∆ϕ+∇q)dx−〈
π,divϕ

〉
W −1−α (Ω)×W̊ 1

α (Ω)

= 〈
f ,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
h×n,ϕ

〉
Γ−

∫
Ω
χq dx+〈

g , q
〉

H−1/2(Γ)×H 1/2(Γ) .

(4.73)

In particular, if (ϕ, q) ∈S−α−1(Ω), we obtain (4.72).

It remains now to look for (u,π) ∈ W 0
α(Ω)×W −1

α (Ω) satisfying (4.73). To that end, we proceed in two steps

depending on the datum g .

STEP 1: we assume g = 0. Then let T be the linear form defined by:

T :
(
W 0−α(Ω)×W̊ 1−α(Ω)

)⊥Sα+1(Ω) −→ R

(w,θ) 7−→ 〈
f ,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
h×n,ϕ

〉
Γ−

∫
Ω
χq dx,

where the pair (ϕ, q) ∈W 2−α(Ω)×W 1−α(Ω) is a solution of the following problem (see Theorem 4.3): −∆ϕ+∇q = w and divϕ=−θ in Ω,

ϕ ·n = 0 and curlϕ×n = 0 on Γ

and satisfies the following estimate:

inf
(ξ,η)∈S−α−1(Ω)

(
∥ϕ+ξ ∥W 2−α(Ω) +‖q +η‖W 1−α(Ω)

)
ÉC

(
∥ w ∥W 0−α(Ω) +‖θ‖W 1−α(Ω)

)
.
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Then for any pair (w,θ) ∈W 0−α(Ω)×W̊ 1−α(Ω) and for any (ξ,η) ∈Sα+1(Ω), we can write

|T (w,θ)| =
∣∣∣∣〈f ,ϕ

〉
(T−α(Ω))′×T−α(Ω) +

〈
h×n,ϕ

〉
Γ−

∫
Ω
χq dx

∣∣∣∣
=

∣∣∣∣〈f ,ϕ+ξ〉(T−α(Ω))′×T−α(Ω) +
〈

h×n,ϕ+ξ〉Γ−∫
Ω
χ (q +η)dx

∣∣∣∣
É C

(
∥ f ∥(T−α(Ω))′ +||χ||W 0

α+1(Ω)+ ∥ h×n ∥H−3/2(Γ)

)(
∥ w ∥W 0

α+1(Ω) +‖θ‖W 1−α(Ω)

)
.

Hence the mapping T defines an element on the dual space of
(
W 0−α(Ω)×W̊ 1−α(Ω)

) ⊥ Sα+1(Ω). Since the

dual space of
(
W 0−α(Ω)×W̊ 1−α(Ω)

) ⊥ Sα+1(Ω) is
(
W 0
α(Ω)×W −1

α (Ω)
)

/Sα+1(Ω), from Riesz’ representation

theorem, there exists a unique pair (u,π) ∈W 0
α(Ω)×W −1

α (Ω)/Sα+1(Ω) satisfying (4.73).

STEP 2: Assume g 6= 0. Then according to [17, Lemma 3.7]), there exists v ∈W 1
0 (Ω) satisfying

∆v = 0 in Ω and ∇v ·n = 0 on Γ.

Let R be a positive real number large enough so thatΩ′ ⊂ BR and letψ ∈D(Ω) such that 0 ÉψÉ 1, suppψ ⊂ ΩR+1

and ψ= 1 in ΩR . Set now w = vψ, then w has obviously a compact support and thus w belongs to W 1
α(Ω).

Next,∆w = v∆ψ+2∇v ·∇ψhas a compact support and thus belongs to W 0
α+1(Ω) which is included in W −1

α (Ω)

(see (2.9)). Hence, ∆(∇w) belongs to (T−α(Ω))′. Consider now the following problem: −∆z+∇π= f +∆(∇w) and div z =χ−∆w in Ω,

z ·n = 0 and curl z×n = h×n on Γ.
(4.74)

According to step 1, problem (4.74) has a solution (z,π) ∈ W 0
α(Ω) ×W −1

α (Ω) if the following condition is

satisfied

〈f +∆(∇w),ξ〉(T−α(Ω))′×T−α(Ω) −
∫
Ω

(χ−∆w)ηdx+〈h×n,ξ〉Γ = 0, ∀(ξ,η) ∈ S−α−1(Ω). (4.75)

But in view of (4.72), if (ξ,η) ∈ S−α−1(Ω), then we have

〈f +∆(∇w),ξ〉(T−α(Ω))′×T−α(Ω) −
∫
Ω

(χ−∆w)ηdx+〈h×n,ξ〉Γ

=−〈g ,η〉Γ+〈∆(∇w),ξ〉(T−α(Ω))′×T−α(Ω) +
∫
Ω
∆w ηdx.

Furthermore, owing to (4.68), we clearly have

〈∆(∇w),ξ〉(T−α(Ω))′×T−α(Ω) = 〈∇(∆w),ξ〉(T−α(Ω))′×T−α(Ω) =−〈∆w,div ξ〉W −1
α (Ω)×W̊ 1−α(Ω) = 0.
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Next, using (2.13), we can write ∫
Ω
∆w ηdx =−

∫
Ω
∇w ·∇ηdx+〈

g ,η
〉
Γ .

It remains to prove that ∫
Ω
∇w ·∇ηdx = 0. (4.76)

But, using the fact that (ξ,η) belongs to S−α−1(Ω) and using (2.14), we can write

∫
Ω
∇w ·∇ηdx =

∫
Ω
∇w ·∆ξdx =−

∫
Ω
∇w ·curl curl ξdx

and

0 = 〈curl ξ×n,∇w〉Γ =
∫
Ω
∇w ·curl curl ξdx

which proves (4.76). This insures the existence of (z,π) ∈W 0
α(Ω)×W −1

α (Ω) satisfying (4.74) which yields that

the pair (u,π) = (z+∇w,π) is the required solution of (ST ).

�

Appendices

A Proof of the statement of Remark 3.9

Consider the following partition

θ1, θ2 ∈C ∞(ΩR ), 0 É θ1, θ2 É 1, θ1 +θ2 = 1 in ΩR

θ1 = 1 in ΩR/3, supp θ1 ⊂Ω2R/3.

Then we can write u = θ1u+θ2u = u1 +u2. Now it is clear that

−∆u1 = f1 and div u1 =χ1 in ΩR , (A.77)

where f1 = θ1f−u∆θ1−2∇u·∇θ1 ∈ L2(ΩR ) and χ1 = θχ+u·∇θ1 ∈ H 1(ΩR ). Moreover, under the assumptions

on θ1, it is also clear that on the boundaries, we have

u1 ·n = g , curl u1 ×n = h×n on Γ and u1 ·n = 0 , curl u1 ×n = 0 on ∂BR . (A.78)
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Under the assumptions on the data, we deduce that u1 that satisfies (A.77)–(A.78) belongs to H 2(ΩR ) (see [6,

Proposition 4.7]). Similar arguments show that u2 satisfies the Dirichlet problem

−∆u2 = f2 in ΩR , u2 = 0 on Γ and u2 = a on ∂BR ,

where f2 = θ2f−u ∆θ2 −2∇u ·∇θ2 ∈ L2(ΩR ). This shows that u2 ∈ H 2(ΩR ) (see for instance [19] or [23]).

B Proof of Lemma 4.4

Let f ∈ (Tα(Ω))′ and consider the space E =W 0
α−2(Ω)×W̊ 1

α(Ω) equipped with the norm

∀h = (h0,h1) ∈ E , ∥ h ∥E=∥ h0 ∥W 0
α−2(Ω) +‖h1‖W 1

α (Ω).

The mapping L :ϕ ∈ Tα(Ω) 7→ (ϕ,divϕ) ∈ E is an isometric mapping. Set G = L(Tα(Ω)) and S = L−1 : G 7→ Tα(Ω),

then the linear mapping defined by

h ∈G 7→ 〈
f ,Sh

〉
(Tα(Ω))′×Tα(Ω)

is linear and continuous on G . Therefore thanks to Hahn-Banach theorem, there exists an extension Π of L

which is linear and continuous on E satisfying ‖Π‖E ′ =∥ f ∥(Tα(Ω))′ . From the Riesz’s Representation theorem,

there existsφ ∈W 0
−α+2(Ω) and f0 ∈W −1−α(Ω) such that for any h = (h0,h1) ∈ E ,

〈Π,h〉E ′×E = 〈
φ,h0

〉
W 0

−α+2(Ω)×W 0
α−2(Ω) +

〈
f0,h1

〉
W −1−α (Ω)×W̊ 1

α (Ω)

=
∫
Ω
φ ·h0 dx+〈

f0,h1
〉

W −1−α (Ω)×W̊ 1
α (Ω)

and it is clear that ‖Π‖E ′ = max
{
∥φ ∥W 0

−α+2(Ω),‖ f0‖W −1−α (Ω)

}
.

C Proof of Lemma 4.5

(i) Let ` ∈ (Tα(Ω))′ such that 〈
`,ϕ

〉
(Tα(Ω))′×Tα(Ω) = 0, ∀ϕ ∈D(Ω).

Thanks to Lemma 4.4, there existφ ∈W 0
−α+2(Ω) and f0 ∈W −1−α(Ω) such that:

〈
`,ϕ

〉
(Tα(Ω))′×Tα(Ω) =

∫
Ω
φ ·ϕdx+〈

f0,divϕ
〉

W −1−α (Ω)×W̊ 1
α (Ω) .

As a consequence

φ−∇ f0 = 0 in D′(Ω)

and this implies that ∇ f0 =φ ∈W 0
−α+2(Ω). It follows that (see [17, Theorem 2.7]) if αÊ 3, f0 belongs to

W 1
−α+2(Ω) and if α É 2, there exist a unique real number c and a unique s ∈ W 1

−α+2(Ω) such that f0 =
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s + c. But because we have the embeddings W 1
−α+2(Ω) ,→ W 0

−α+1(Ω) ,→ W −1−α(Ω), then s also belongs

to W −1−α(Ω) which in turn implies that c belongs to W −1−α(Ω). Since α É 2, the space W −1−α(Ω) does not

contain polynomial functions and thus c = 0. It follows that f0 = s also belongs to W 1
−α+2(Ω) for αÉ 2.

Therefore, for any v ∈ Tα(Ω), we can write:

〈`,v〉(Tα(Ω))′×Tα(Ω) =
∫
Ω
φ ·vdx+〈

f0,div v
〉

W −1−α (Ω)×W̊ 1
α (Ω)

=
∫
Ω
φ ·vdx+

∫
Ω

f0 div vdx

=
∫
Ω
∇ f0 ·vdx+

∫
Ω

f0 div vdx.

Finally, because v ∈ H̊α−2(div,Ω) and f0 ∈W 1
−α+2(Ω), then one can use (2.13) to the first integral of the

last relation to obtain

〈`,v〉(Tα(Ω))′×Tα(Ω) = 0, ∀v ∈ Tα(Ω)

which ends the proof.

(ii) Due to the density of D(Ω) in Tα(Ω), then the Green Formula (4.68) clearly holds.

D Proof of Lemma 4.6

Proof. Let ` ∈ (Hα(∆,Ω))′ such that

〈`,v〉(Hα(∆,Ω))′×Hα(∆,Ω) = 0, ∀v ∈D(Ω). (D.79)

Proceeding as in the proof of Lemma 4.4, we can show that there exists (f,g) ∈ W 0
α(Ω)×Tα(Ω) such that for

any v ∈ Hα(∆,Ω),

〈`,v〉(Hα(∆,Ω))′×Hα(∆,Ω) =
∫
Ω

f ·v dx+〈
∆v,g

〉
(Tα(Ω))′×Tα(Ω) .

Now, it follows from (D.79), that `= 0 on D(Ω) and thus

f +∆g = 0 in D′(Ω).

Let f̃ be the extension by zero of f that belongs to W 0
α(R3) and g̃ be the extension by zero of g that belongs

to Hα−2(div,R3). Then thanks to (D.79), for anyϕ ∈D(R3), we have∫
R3

f̃ ·ϕdx+
∫
R3

g̃ ·∆ϕdx =
∫
Ω

f ·ϕdx+
∫
Ω

g ·∆ϕdx = 0

Which yields

−∆g̃ = f̃ in D′(R3).
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As a consequence, ∆g̃ belongs to W 0
α(R3) and, due to the density of D(R3) in W 2

−α+2(R3), we have

〈∆g̃ ,ϕ〉W 0
α (R3)×W 0−α(R3) = 〈g̃ ,∆ϕ〉W 0

α−2(R3)×W 0
−α+2(R3), ∀ϕ ∈W 2

−α+2(R3).

In particular, this shows that ∆g̃ ∈W 0
α(R3) is orthogonal to polynomials of P ∆

α−2. Then, according to Propo-

sition 2.2 there exists λ ∈ W 2
α(R3) such that −∆λ = ∆g̃ . Thus the harmonic function λ+ g̃ belongs to

W 2
α(R3)+W 0

α−2(R3) ⊂ W 0
α−2(R3). Then there exists a polynomial K ∈ P ∆−α ⊂ W 2

α(R3) satisfying g̃ = K −λ ∈
W 2
α(R3). Hence, because g ∈ W 2

α(Ω), we deduce that g ∈ W̊ 2
α(Ω). Now, due to the density of D(Ω) in W̊ 2

α(Ω),

there exists a sequence (gk )k∈Z ⊂ D(Ω) such that gk → g in W 2
α(Ω) as k →∞. Consequently div gk → divg

in W 1
α(Ω) which shows that gk → g in Tα(Ω). Thus for any v ∈ Hα(∆,Ω), we have

〈`,v〉(Hα(∆,Ω))′×Hα(∆,Ω) =
∫
Ω

f ·v dx+〈
∆v,g

〉
(Tα(Ω))′×Tα(Ω)

= −
∫
Ω
∆g ·v dx+〈

∆v,g
〉

(Tα(Ω))′×Tα(Ω)

= lim
k→∞

(
−

∫
Ω
∆gk ·v dx+〈

∆v,gk

〉
(Tα(Ω))′×Tα(Ω)

)
= lim

k→∞

(
−

∫
Ω
∆gk ·v dx+

∫
Ω

v ·∆gk dx
)

= 0.

�

E Proof of Lemma 4.7

Let us first recall, that for any given function v defined on Γ, we denote by vτ, the tangential component

of v on Γ. Let now x be a point on Γ and V be a neighbourhood of x in Γ such that there exists two family

of curves of class C 2 on V . The lengths `1 and `2 along each families are natural system of coordinates in

V . Letτ1 andτ2 the unit tangent vectors to each family of curves. We therefore have vτ = (v·τ1)τ1+(v·τ2)τ2.

Consider now µ ∈ H 3/2(Γ) such that µ · n = 0. Because weighted Sobolev spaces satisfy the usual trace

theorems, there existsϕ ∈W 2
α(Ω) such thatϕ=µ on Γ and

‖ϕ‖W 2
α (Ω) É ‖µ‖H 3/2(Γ). (E.80)

Moreover, we can chooseϕ so that

∇ϕ ·n =−n divΓµτ+
2∑

j=1

(
∂µτ
∂` j

×τ j

)
×n.
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With this choice and using the following relations

divϕ= divΓϕτ+kτ(ϕ ·n)+ (∇ϕ ·n) ·n on Γ,

where kτ is the principal curvature of Γ,

curlϕ=
2∑

j=1

∂ϕτ
∂` j

×τ j + (∇ϕ ·n)×n on Γ

and

(ϕ×n)×n =−ϕτ,

we have

divϕ= 0 and curlϕ= 0 on Γ,

which implies thatϕ ∈ Zα(Ω).

Next, if u ∈D(Ω), then the Green formula (4.69) holds and, as a result, we can write

∣∣〈curl u×n,µ〉Γ
∣∣= ∣∣〈curl u×n,ϕ〉Γ

∣∣
É ‖u‖W 0−α(Ω)‖ϕ‖W 2

α (Ω) +‖∆u‖(Tα(Ω))′‖ϕ‖Tα(Ω)

É ‖u‖Hα(∆,Ω)‖ϕ‖W 2
α (Ω)

which implies, thanks to (E.80), that

‖curl u×n‖H−3/2(Γ) É ‖u‖Hα(∆,Ω).

Therefore the linear mapping γ : u → curl u|Γ×n defined on D(Ω) is continuous for the norm of Hα(∆,Ω).

Since D(Ω) is dense in Hα(∆,Ω), γ can be extended by continuity to a mapping still called γ defined on

Hα(∆,Ω) to H−3/2(Γ) and formula (4.69) holds for all u ∈ Hα(∆,Ω) andϕ ∈ Zα(Ω).
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