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Abstract. Modern scale transition methods developed in mechanics of materials these last years are successfully 
applied to model the particular behavior exhibited by shape memory alloys. Starting from a local kinematical 
analysis based on crystallographic considerations and determining the thermodynamical forces associated to the 
martensitic phase transformation local relationships are determined using the self-consistent approximation. This 
framework is applied to simulate different loading conditions using mechanical or thermal loading paths with 
uniaxial or multiaxial conditions. Results such obtained are compared with experimental results.  

 
1. Introduction 
 
Shape memory alloys (SMA) are materials capable to undergo very large reversible strains under 
mechanical stress or variations of temperature [1]. Such behaviours are due to the martensitic 
transformation wich can appear with different orientation (plates or variants). The 
crystallographic study of the transformation [2] has allowed to propose a relationship between 
the transformation deformation of a variant and its characteristics that are : 
• the normal (n) to the habit plane between the austenite not transformed and the variant of 

martensite; 
• the direction of transformation (m); 
• the amplitude of deformation (g) in the direction m. 
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Figure 1: Transformation of a volume element and strain associated to the transformation 
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2. Modelling 
In a first time, a micromechanical approach based on the physical mechanisms responsible of the 
behavior (variants of martensite) is necessary to determine microscopic properties. A kinematic 
study gives the total strain of the single crystal and a potential (complementary free energy) 
allows to calculate evolution of volumic fractions of variants. Finally we determine microscopic 
properties according to the microstructure: l(r)  and m(r) = function(microstructure) [3]. 
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Figure 2: Principles of the self-consistent method 
 

In a second time, the handwriting and the resolution of a thermomechanical integral equation 
allow to completely define the macroscopic behavior from microscopic properties. In addition, 
the utilization of the Green theory allows to take into account interactions between the different 
grains. By assuming properties are uniform in grains, we obtain [4]: 
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3. Results 
Numerical and experimental results are applied on a Cu-Al-Be SMA [4]. The polycrystal is 
described by 100 grains with their crystallographic orientation randomly chosen in order to don’t 
induce a texture effect (figure 3). 
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Figure 3: Numerical (      ) and experimental (      ) results for a Cu-Al-Be Alloy during a tensile 

test at T = 80°C (a) and a cooling with an applied stress equal to 100 MPa (b). 
The advantage of the model is that it’s possible to numerically draw the evolution of some data 
as volumic fractions of variants. The figure 4 shows this evolution in the same grain for 4 
different loadings. Two tensile test are performed at T = 140°C (a) and at T = 41°C (b): they 
show that only two variants persist at the end of the transformation, these variants are the best 
oriented variants. On the contrary for the cooling with low applied stress (d), the number of 
variant increases (some grains have until 16 variants appearing) and we can note the appearance 
of a self-accommodating  group (variants 5, 6, 7 and 8). These results are confirmed by 
crystallographical observations. 

 
 
 
Figure 4: Evolution of variants during a tensile test at T = 140°C (a), T = 41°C (b) and a cooling 

with an applied stress equal to 500 MPa (c) and 10 MPa (d). 
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