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Algorithms of Robust Stochastic Optimization Based on Mirror

Descent Method

A.B. Juditsky,∗ A.V. Nazin,† A.S. Nemirovsky,‡ A.B. Tsybakov§

Abstract

We propose an approach to the construction of robust non-Euclidean iterative algorithms by
convex composite stochastic optimization based on truncation of stochastic gradients. For such
algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails
of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy
of general stochastic algorithms are also proposed.

Keywords: robust iterative algorithms, stochastic optimization algorithms, convex composite stochas-
tic optimization, mirror descent method, robust confidence sets.

1 Introduction

In this paper, we consider the problem of convex composite stochastic optimization:

min
x∈X

F (x), F (x) = E{Φ(x, ω)} + ψ(x), (1)

where X is a compact convex subset of a finite-dimensional real vector space E with norm ‖ · ‖, ω is
a random variable on a probability space Ω with distribution P , function ψ is convex and continuous,
and function Φ : X × Ω → R. Suppose that the expectation

φ(x) := E{Φ(x, ω)} =

∫

Ω
Φ(x, ω)dP (ω)

is finite for all x ∈ X, and is a convex and differentiable function of x. Under these assumptions, the
problem (1) has a solution with optimal value F∗ = minx∈X F (x).

Assume that there is an oracle, which for any input (x, ω) ∈ X × Ω returns a stochastic gradient
that is a vector G(x, ω) satisfying

E{G(x, ω)} = ∇φ(x) and E{‖G(x, ω) −∇φ(x)‖2∗} ≤ σ2, ∀x ∈ X, (2)
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where ‖ · ‖∗ is conjugate norm to ‖ · ‖, and σ > 0 is a constant. The aim of this paper is to construct
(1−α)-reliable approximate solutions of the problem (1), i.e., solutions x̂N , based on N queries of the
oracle and satisfying the condition

Prob{F (x̂N )− F ∗ ≤ δN (α)} ≥ 1− α, ∀α ∈ (0, 1), (3)

with as small as possible δN (α) > 0.
Note that stochastic optimization problems of the form (1) arise in the context of penalized risk

minimization, where the confidence bounds (3) are directly converted into confidence bounds for the
accuracy of the obtained estimators. In this paper, the bounds (3) are derived with δN (α) of order√

ln(1/α)/N . Such bounds are often called sub-Gaussian confidence bounds. Standard results on sub-
Gaussian confidence bounds for stochastic optimization algorithms assume boundedness of exponential
or subexponential moments of the stochastic noise of the oracle G(x, ω)−∇φ(x) (cf. [1, 2, 3]). In the
present paper, we propose robust stochastic algorithms that satisfy sub-Gaussian bounds of type (3)
under a significantly less restrictive condition (2).

Recall that the notion of robustness of statistical decision procedures was introduced by J. Tukey
[4] and P. Huber [5, 6, 7] in the 1960ies, which led to the subsequent development of robust stochastic
approximation algorithms. In particular, in the 1970ies–1980ies, algorithms that are robust for wide
classes of noise distributions were proposed for problems of stochastic optimization and parametric
identification. Their asymptotic properties when the sample size increases have been well studied, see,
for example, [8, 9, 10, 11, 12, 13, 14, 15, 16] and references therein. An important contribution to
the development of the robust approach was made by Ya.Z. Tsypkin. Thus, a significant place in the
monographs [17, 18] is devoted to the study of iterative robust identification algorithms.

The interest in robust estimation resumed in the 2010ies due to the need to develop statistical
procedures that are resistant to noise with heavy tails in high-dimensional problems. Some recent
work [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] develops the method of median of means [30] for
constructing estimates that satisfy sub-Gaussian confidence bounds for noise with heavy tails. Thus,
in [27] the median of means approach was used to construct an (1 − α)-reliable version of stochastic
approximation with averaging (“batch” algorithm) in a stochastic optimization setting similar to (1).
Other original approaches were developed in [31, 32, 33, 34, 35], in particular, the geometric median
techniques for robust estimation of signals and covariance matrices with sub-Gaussian guarantees
[34, 35]. Also there was a renewal of interest in robust iterative algorithms. Thus, it was shown that
robustness of stochastic approximation algorithms can be enhanced by using the geometric median of
stochastic gradients [36, 37]. Another variant of the stochastic approximation procedure for calculating
the geometric median was studied in [38, 39], where a specific property of the problem (boundedness
of the stochastic gradients) allowed the authors to construct (1−α)-reliable bounds under a very weak
assumption about the tails of the noise distribution.

This paper discusses an approach to the construction of robust stochastic algorithms based on
truncation of the stochastic gradients. It is shown that this method satisfies sub-Gaussian confidence
bounds. In Sections 2 and 3, we define the main components of the optimization problem under
consideration. In Section 4, we define the robust stochastic mirror descent algorithm and establish
confidence bounds for it. Section 5 is devoted to robust accuracy estimates for general stochastic
algorithms. Finally, Section 6 establishes robust confidence bounds for problems, in which F has a
quadratic growth. The Appendix contains the proofs of the results of the paper.

2 Notation and Definitions

Let E be a finite-dimensional real vector space with norm ‖ · ‖ and let E∗ be the conjugate space to
E. Denote by 〈s, x〉 the value of linear function s ∈ E∗ at point x ∈ E and by ‖ · ‖∗ the conjugate to

2



norm ‖ · ‖ on E∗, i.e.,
‖s‖∗ = max

x
{〈s, x〉 : ‖x‖ ≤ 1}, s ∈ E∗.

On the unit ball
B = {x ∈ E : ‖x‖ ≤ 1},

we consider a continuous convex function θ : B → R with the following property:

〈θ′(x)− θ′(x′), x− x′〉 ≥ ‖x− x′‖2, ∀x, x′ ∈ B, (4)

where θ′(·) is a continuous in Bo = {x ∈ B : ∂θ(x) 6= ∅} version of the subgradient of θ(·) and ∂θ(x)
denotes the subdifferential of function θ(·) at point x, i.e., the set of all subgradients at this point. In
other words, function θ(·) is strongly convex on B with coefficient 1 with respect to the norm ‖ · ‖.
We will call θ(·) the normalized proxy function. Examples of such functions are:

• θ(x) = 1

2
‖x‖22 for (E, ‖ · ‖) = (Rn, ‖ · ‖2);

• θ(x) = 2e(ln n)‖x‖pp with p = p(n) := 1 + 1
2 lnn for (E, ‖ · ‖) = (Rn, ‖ · ‖1);

• θ(x) = 4e(ln n)
∑n

i=1 |λi(x)|p with p = p(n) for E = Sn, where Sn is the space of symmetric
n× n matrices equipped with the nuclear norm ‖x‖ =

∑n
i=1 |λi(x)| and λi(x) are eigenvalues of

matrix x.

Here and in what follows, ‖ · ‖p denotes the ℓp-norm in Rn, p ≥ 1. Without loss of generality, we will
assume below that

0 = argminx∈B θ(x).

We also introduce the notation

Θ = max
x∈B

θ(x)−min
x∈B

θ(x) ≥ 1

2
.

Now, let X be a convex compact subset in E and let x0 ∈ X and R > 0 be such that maxx∈X ‖x−x0‖ ≤
R. We equip X with a proxy function

ϑ(x) = R2θ

(
x− x0
R

)
.

Note that ϑ(·) is strongly convex with coefficient 1 and

max
x∈X

ϑ(x)−min
x∈X

ϑ(x) ≤ R2Θ.

Let D := maxx,x′∈X ‖x− x′‖ be the diameter of the set X. Then D ≤ 2R.
We will also use the Bregman divergence

Vx(z) = ϑ(z)− ϑ(x)− 〈ϑ′(x), z − x〉, ∀ z, x ∈ X.

In the following, we denote by C and C ′ positive numerical constants, not necessarily the same in
different cases.
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3 Assumptions

Consider a convex composite stochastic optimisation problem (1) on a convex compact set X ⊂ E.
Assume in the following that the function

φ(x) = E{Φ(x, ω)}

is convex onX, differentiable at each point of the setX and its gradient satisfies the Lipschitz condition

‖∇φ(x′)−∇φ(x)‖∗ ≤ L‖x− x′‖, ∀x, x′ ∈ X. (5)

Assume also that function ψ is convex and continuous. In what follows, we assume that we have
at our disposal a stochastic oracle, which for any input (x, ω) ∈ X × Ω, returns a random vector
G(x, ω), satisfying the conditions (2). In addition, it is assumed that for any a ∈ E∗ and β > 0 an
exact solution of the minimization problem

min
z∈X

{〈a, z〉 + ψ(z) + βϑ(z)}

is available. This assumption is fulfilled for typical penalty functions ψ, such as convex power functions
of the ℓp-norm (if X is a convex compact in Rn) or negative entropy ψ(x) = κ

∑n
j=1 xj lnxj , where

κ > 0 (if X is the standard simplex in Rn). Finally, it is assumed that a vector g(x̄) is available,
where x̄ ∈ X is a point in the set X such that

‖g(x̄)−∇φ(x̄)‖∗ ≤ υσ (6)

with a constant υ ≥ 0. This assumption is motivated as follows.
First, if we a priori know that the global minimum of function φ is attained at an interior point

xφ of the set X (what is common in statistical applications of stochastic approximation), we have
∇φ(xφ) = 0. Therefore, choosing x̄ = xφ, one can put g(x̄) = 0 and assumption (6) holds automatically
with υ = 0.

Second, in general, one can choose x̄ as any point of the set X and g(x̄) as a geometric median of
stochastic gradients G(x̄, ωi), i = 1, . . . ,m, over m oracle queries. It follows from [34] that if m is of
order ln

(
ε−1

)
with some sufficiently small ε > 0, then

Prob{‖g(x̄)−∇φ(x̄)‖∗ > υσ} ≤ ε. (7)

Thus, the confidence bounds obtained below will remain valid up to an ε-correction in the probability
of deviations.

4 Accuracy bounds for Algorithm RSMD

In what follows, we consider that the assumptions of Section 3 are fulfilled. Introduce a composite
proximal transform

Proxβ,x(ξ) := argminz∈X
{
〈ξ, z〉+ ψ(z) + βVx(z)

}
= (8)

= argminz∈X
{
〈ξ − βϑ′(x), z〉 + ψ(z) + βϑ(z)

}
,

where β > 0 is a tuning parameter.
For i = 1, 2, . . . , define the algorithm of Robust Stochastic Mirror Descent (RSMD) by the recursion

xi = Proxβi−1,xi−1
(yi), x0 ∈ X, (9)
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yi =

{
G(xi−1, ωi), if ‖G(xi−1, ωi)− g(x̄)‖∗ ≤ L‖x̄− xi−1‖+ λ+ υσ,
g(x̄), otherwise.

(10)

Here βi > 0, i = 0, 1, . . . , and λ > 0 are tuning parameters that will be defined below, and ω1, ω2, . . .
are independent identically distributed (i.i.d.) realizations of a random variable ω, corresponding to
the oracle queries at each step of the algorithm.

The approximate solution of problem (1) after N iterations is defined as the weighted average

x̂N =

[
N∑

i=1

β−1
i−1

]−1 N∑

i=1

β−1
i−1xi. (11)

If the global minimum of function φ is attained at an interior point of the set X and υ = 0, then
definition (10) is simplified. In this case, replacing ‖x̄ − xi−1‖ by the upper bound D and putting
υ = 0 and g(x̄) = 0 in (10), we define the truncated stochastic gradient by the formula

yi =

{
G(xi−1, ωi), if ‖G(xi−1, ωi)‖∗ ≤ LD + λ,
0, otherwise.

The next result describes some useful properties of mirror descent recursion (9). Define

ξi = yi −∇φ(xi−1)

and

ε(xN , z) =
N∑

i=1

β−1
i−1[〈∇φ(xi−1), xi − z〉+ ψ(xi)− ψ(z)] + 1

2
Vxi−1

(xi), (12)

where xN = (x0, . . . , xN ).

Proposition 1 Let βi ≥ 2L for all i = 0, 1, ..., and let x̂N be defined in (11), where xi are iterations
(9) for any values yi, not necessarily given by (10). Then for any z ∈ X we have

[
N∑

i=1

β−1
i−1

]
[F (x̂N )− F (z)] ≤

N∑

i=1

β−1
i−1[F (xi)− F (z)] ≤ ε(xN , z)

≤ Vx0
(z) +

N∑

i=1

[〈ξi, z − xi−1〉
βi−1

+
‖ξi‖2∗
β2i−1

]
(13)

≤ 2Vx0
(z) +

N∑

i=1

[〈ξi, zi−1 − xi−1〉
βi−1

+
3

2

‖ξi‖2∗
β2i−1

]
, (14)

where zi is a random vector with values in X depending only on x0, ξ1, . . . , ξi.

Using Proposition 1 we obtain the following bounds on the expected error F (x̂N )−F∗ of the approx-
imate solution of problem (1) based on the RSMD algorithm. In what follows, we denote by E{·} the
expectation with respect to the distribution of ωN = (ω1, ..., ωN ) ∈ Ω⊗N .

Corollary 1 Set M = LR. Assume that λ ≥ max{M,σ
√
N} + υσ and βi ≥ 2L for all i = 0, 1, ....

Let x̂N be the approximate solution (11), where xi are the iterations of the RSMD algorithm defined
by relations (9) and (10). Then

E{F (x̂N )} − F∗ ≤
[

N∑

i=1

β−1
i−1

]−1 [
R2Θ+

N∑

i=1

(
2Dσ

βi−1

√
N

+
4σ2

β2i−1

)]
. (15)

5



In particular, if βi = β̄ for all i = 0, 1, ..., where

β̄ = max

{
2L,

σ
√
N

R
√
Θ

}
, (16)

then the following inequalities hold:

E{F (x̂N )} − F∗ ≤ β̄
NE

{
sup
z∈X

ε(xN , z)

}
≤ Cmax

{
LR2Θ

N
,
σR

√
Θ√

N

}
. (17)

Moreover, in this case we have the following inequality with explicit constants:

E{F (x̂N )} − F∗ ≤ max

{
2LR2Θ

N
+

4Rσ(1 +
√
Θ)√

N
,
2Rσ(1 + 4

√
Θ)√

N

}
.

This result shows that if the truncation threshold λ is large enough, then the expected error of the
proposed algorithm is bounded similarly to the expected error of the standard mirror descent algorithm
with averaging, i.e., the algorithm in which stochastic gradients are taken without truncation: yi =
G(xi−1, ωi).

The following theorem gives confidence bounds for the proposed algorithm.

Theorem 1 Let βi = β̄ ≥ 2L for all i = 0, 1, ..., and let 1 ≤ τ ≤ N/υ2,

λ = max

{
σ

√
N

τ
,M

}
+ υσ. (18)

Let x̂N be the approximate solution (11), where xi are the RSMD iterations defined by relations (9)
and (10). Then there is a random event AN ⊂ Ω⊗N of probability at least 1 − 2e−τ such that for all
ωN ∈ AN the following inequalities hold:

F (x̂N )− F∗ ≤ β̄

N
sup
z∈X

ε(xN , z) ≤

≤ C

N

(
β̄R2Θ+Rmax

{
σ
√
τN,Mτ

}
+ β̄−1max{Nσ2,M2τ}

)
.

In paticular, chosing β̄ as in formula (16) we have, for all ωN ∈ AN ,

F (x̂N )− F∗ ≤ max

{
C1
LR2[τ ∨Θ]

N
, C2σR

√
τ ∨Θ

N

}
, (19)

where C1 > 0 and C2 > 0 are numerical constants.

The values of the numerical constants C1 and C2 in (19) can be obtained from the proof of the
theorem, cf. the bound in (40).

Confidence bound (19) in Theorem 1 contains two terms corresponding to the deterministic error
and to the stochastic error. Unlike the case of noise with a “light tail” (see, for example, [40]) and
the bound in expectation (17), the deterministic error LR2[τ ∨ Θ]/N depends on τ . Note also that
Theorem 1 gives a sub-Gaussian confidence bound (the order of the stochastic error is σR

√
[τ ∨Θ]/N).

However, the truncation threshold λ depends on the confidence level τ . This can be inconvenient for
the implementation of the algorithms. Some simple but coarser confidence bounds can be obtained
by using a universal threshold independent of τ , which is λ = max{σ

√
N,M}+ υσ. In particular, we

have the following result.
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Theorem 2 Let βi = β̄ ≥ 2L for all i = 0, 1, ..., and let N ≥ υ2. Set

λ = max
{
σ
√
N,M

}
+ υσ.

Let x̂N = N−1
∑N

i=1 xi, where xi are the iterations of the RSMD algorithm defined by relations (9)
and (10). Then there is a random event AN ⊂ Ω⊗N of probability at least 1 − 2e−τ such that for all
ωN ∈ AN the following inequalities hold:

F (x̂N )− F∗ ≤ β̄

N
sup
z∈X

ε(xN , z) ≤

≤ C

N

(
β̄R2Θ+ τRmax

{
σ
√
N,M

}
+ τ β̄−1max{Nσ2,M2}

)
.

In particular, choosing β̄ as in formula (16) we have

F (x̂N )− F∗ ≤ β̄
N sup

z∈X
ε(xN , z) ≤ Cmax

{
LR2[τ ∨Θ]

N
, τσR

√
Θ

N

}
(20)

for all ωN ∈ AN .

The values of the numerical constants C in Theorem 2 can be obtained from the proof, cf. the bound
in (40).

5 Robust Confidence Bounds for Stochastic Optimization Methods

Consider an arbitrary algorithm for solving the problem (1) based on N queries of the stochastic oracle.
Assume that we have a sequence

(
xi, G(xi, ωi+1)

)
, i = 0, ..., N , where xi ∈ X are the search points

of some stochastic algorithm and G(xi, ωi+1) are the corresponding observations of the stochastic
gradient. It is assumed that xi depends only on {(xj−1, ωj), j = 1, . . . , i}. The approximate solution
of the problem (1) is defined in the form:

x̂N = N−1
N∑

i=1

xi.

Our goal is to construct a confidence interval with sub-Gaussian accuracy for F (x̂N )−F∗. To do this,
we use the following fact. Note that for any t ≥ L the value

ǫN (t) = N−1 sup
z∈X

{
N∑

i=1

[
〈∇φ(xi−1), xi − z〉+ ψ(xi)− ψ(z) + tVxi−1

(xi)
]
}

(21)

is an upper bound on the accuracy of the approximate solution x̂N :

F (x̂N )− F∗ ≤ ǫN (t) (22)

(see Lemma 1 in Appendix). This fact is true for any sequence of points x0, . . . , xN in X, regardless of
how they are obtained. However, since the function ∇φ(·) is not known, the estimate (22) cannot be
used in practice. Replacing the gradients ∇φ(xi−1) in (21) with their truncated estimates yi defined
in (10) we get an implementable analogue of ǫN (t):

ǫ̂N (t) = N−1 sup
z∈X

{
N∑

i=1

[
〈yi, xi − z〉+ ψ(xi)− ψ(z) + tVxi−1

(xi)
]
}
. (23)
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Note that computing ǫ̂N (t) reduces to solving a problem of the form (8) with β = 0. Thus, it is
computationally not more complex than, for example, one step of the RSMD algorithm. Replacing
∇φ(xi−1) with yi introduces a random error. In order to get a reliable upper bound for ǫN (t), we need
to compensate this error by slightly increasing ǫ̂N (t). Specifically, we add to ǫ̂N (t) the value

ρ̄N (τ) = 4R
√

5Θmax{Nσ2,M2τ}+ 16Rmax{σ
√
Nτ,Mτ}+

+min
µ≥0

{
20µmax{Nσ2,M2τ}+ µ−1

N∑

i=1

Vxi−1
(xi)

}
,

where τ > 0.

Proposition 2 Let
(
xi, G(xi, ωi+1)

)N
i=0

be the trajectory of a stochastic algorithm for which xi depends
only on {(xj−1, ωj), j = 1, . . . , i}. Let 0 < τ ≤ N/υ2 and let yi = yi(τ) be truncated stochastic gradients
defined in (10), where the threshold λ = λ(τ) is chosen in the form (18). Then for any t ≥ L the
value

∆N (τ, t) = ǫ̂N (t) + ρ̄N (τ)/N

is an upper bound for ǫN (t) with probability 1− 2e−τ , so that

Prob
{
F (x̂N )− F∗ ≤ ∆N (τ, t)

}
≥ 1− 2e−τ .

Since ∆N (τ, t) monotonically increases in t it suffices to use this bound for t = L when L is known.
Note that, although ∆N (τ, t) gives an upper bound for ǫN (t), Proposition 2 does not guarantee that
∆N (τ, t) is sufficiently close to ǫN (t). However, this property holds for the RSMD algorithm with a
constant step, as follows from the next result.

Corollary 2 Under the conditions of Proposition 2, let the vectors x0, . . . , xN be given by the RSMD
recursion (9)–(10), where βi = β̄ ≥ 2L, i = 0, ..., N − 1. Then

ρ̄N (τ) ≤ NǫN (β̄) + 4R
√

5Θmax{Nσ2,M2τ}+
+16Rmax{σ

√
Nτ,Mτ}+ 20β̄−1 max{Nσ2,M2τ}. (24)

Moreover, if β̄ ≥ max
{
2L, σ

√
N

R
√
Θ

}
then

ρ̄N (τ) ≤ NǫN (β̄) + C3LR
2[Θ ∨ τ ] + C4σR

√
N [Θ ∨ τ ],

and with probability at least 1− 4e−τ the value ∆N (τ, β̄) satisfies the inequalities

ǫN (β̄) ≤ ∆N (τ, β̄) ≤ 3ǫN (β̄) + 2C3
LR2[Θ ∨ τ ]

N
+ 2C4σR

√
[Θ ∨ τ ]
N

, (25)

where C3 > 0 and C4 > 0 are numerical constants.

The values of the numerical constants C3 and C4 can be derived from the proof of this corollary.
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6 Robust Confidence Bounds for Quadratic Growth Problems

In this section, it is assumed that F is a function with quadratic growth on X in the following sense
(cf. [41]). Let F be a continuous function on X and let X∗ ⊂ X be the set of its minimizers on X.
Then F is called a function with quadratic growth on X if there is a constant κ > 0 such that for any
x ∈ X there exists x̄(x) ∈ X∗ such that the following inequality holds:

F (x)− F∗ ≥
κ

2
‖x− x̄(x)‖2. (26)

Note that every strongly convex function F on X with the strong convexity coefficient κ is a
function with quadratic growth on X. However, the assumption of strong convexity, when used
together with the Lipschitz condition with constant L on the gradient of F , has the disadvantage
that, except for the case when ‖ · ‖ is the Euclidean norm, the ratio L/κ depends on the dimension
of the space E. For example, in the important cases where ‖ · ‖ is the ℓ1-norm, the nuclear norm,
the total variation norm, etc., one can easily check (cf. [2]) that there are no functions with Lipschitz
continuous gradient such that the ratio L/κ is smaller than the dimension of the space. Replacing the
strong convexity with the growth condition (26) eliminates this problem, see the examples in [41]. On
the other hand, assumption (26) is quite natural in the composite optimization problem since in many
interesting examples the function φ is smooth and the non-smooth part ψ of the objective function is
strongly convex. In particular, if E = Rn and the norm is the ℓ1-norm, this allows us to consider such
strongly convex components as the negative entropy ψ(x) = κ

∑
j xj lnxj (if X is standard simplex in

Rn), ψ(x) = γ(κ)‖x‖pp with 1 ≤ p ≤ 2 and with the corresponding choice of γ(κ) > 0 (if X is a convex
compact in Rn) and others. In all these cases, condition (26) is fulfilled with a known constant κ,
which allows for the use of the approach of [2, 42] to improve the confidence bounds of the stochastic
mirror descent.

The RSMD algorithm for quadratically growing functions will be defined in stages. At each stage,
for specially selected r > 0 and y ∈ X it solves an auxiliary problem

min
x∈Xr(y)

F (x)

using the RSMD. Here
Xr(y) = {x ∈ X : ‖x− y‖ ≤ r}.

We initialize the algorithm by choosing arbitrary y0 = x0 ∈ X and r0 ≥ maxz∈X ‖z − x0‖. We set
r2k = 2−kr20, k = 1, 2, .... Let C1 and C2 be the numerical constants in the bound (19) of Theorem 1.
For a given parameter τ > 0, and k = 1, 2, . . . we define the values

Nk = max

{
4C1

L[τ ∨Θ]

κ
, 16C2

σ2[τ ∨Θ]

κ2r2k−1

}
, Nk =⌋Nk⌊. (27)

Here ⌋t⌊ denotes the smallest integer greater than or equal to t. Set

m(N) := max



k :

k∑

j=1

Nj ≤ N



 .

Now, let k ∈ {1, 2, . . . ,m(N)}. At the k-th stage of the algorithm, we solve the problem of minimization
of F on the ball Xrk−1

(yk−1), we find its approximate solution x̂Nk
according to (9)–(11), where we

replace x0 by yk−1, X by Xrk−1
(yk−1), R by rk−1, N by Nk, and set

λ = max

{
σ

√
N

τ
,Lrk−1

}
+ υσ,
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and

βi ≡ max

{
2L,

σ
√
N

rk−1

√
Θ

}
.

It is assumed that, at each stage k of the algorithm, an exact solution of the minimization problem

min
z∈Xr

k−1
(yk−1)

{〈a, z〉 + ψ(z) + βϑ(z)}

is available for any a ∈ E and β > 0. At the output of the k-th stage of the algorithm, we obtain
yk := x̂Nk

.

Theorem 3 Assume that m(N) ≥ 1, i.e. at least one stage of the algorithm described above is
completed. Then there is a random event BN ⊂ Ω⊗N of probability at least 1 − 2m(N)e−τ such that
for ωN ∈ BN the approximate solution ym(N) after m(N) stages of the algorithm satisfies the inequality

F (ym(N))− F∗ ≤ Cmax

{
κr20 2

−N/4, κr20 exp

(
− C ′κN
L[τ ∨Θ]

)
,
σ2[τ ∨Θ]

κN

}
. (28)

Theorem 3 shows that, for functions with quadratic growth, the deterministic error component can
be significantly reduced – it becomes exponentially decreasing in N . The stochastic error component is
also significantly reduced. Note that the factor m(N) is of logarithmic order and has little effect on the

probability of deviations. Indeed, it follows from (27) that m(N) ≤ C ln
(
C′κ2r20N
σ2(τ∨Θ)

)
. Neglecting this

factor in the probability of deviations and considering the stochastic component of the error, we see
that the confidence bound of Theorem 3 is approximately sub-exponential rather than sub-Gaussian.

7 Conclusion

We have considered algorithms of smooth stochastic optimization when the distribution of noise in
observations has heavy tails. It is shown that by truncating the observed gradients with a suitable
threshold one can construct confidence sets for the approximate solutions that are similar to those in
the case of “light tails”. It should be noted that the order of the deterministic error in the obtained
bounds is suboptimal — it is substantially greater than the optimal rates achieved by the accelerated
algorithms [3, 40], namely, O(LR2N−2) in the case of convex objective function andO(exp(−N

√
κ/L))

in the strongly convex case. On the other hand, the proposed approach cannot be used to obtain robust
versions of the accelerated algorithms since applying it to such algorithms leads to accumulation of
the bias caused by the truncation of the gradients. The problem of constructing accelerated robust
stochastic algorithms with optimal guarantees remains open.

APPENDIX
A.1. Preliminary remarks. We start with the following known result.

Lemma 1 Assume that φ and ψ satisfy the assumptions of Section 3, and let x0, . . . , xN be some
points of the set X. Define

εi+1(z) := 〈∇φ(xi), xi+1 − z〉+ 〈ψ′(xi+1), xi+1 − z〉+ LVxi
(xi+1).

Then for any z ∈ X the following inequality holds:

F (xi+1)− F (z) ≤ εi+1(z).

In addition, for x̂N = 1
N

∑N
i=1 xi we have

F (x̂N )− F (z) ≤ N−1
N∑

i=1

[F (xi)− F (z)] ≤ N−1
N−1∑

i=0

εi+1(z).

10



Proof Using the property Vx(z) ≥ 1

2
‖x−z‖2, the convexity of functions φ and ψ and the Lipschitz

condition on ∇φ we get that, for any z ∈ X,

F (xi+1)− F (z) = [φ(xi+1)− φ(z)] + [ψ(xi+1)− ψ(z)] =

= [φ(xi+1)− φ(xi)] + [φ(xi)− φ(z)] + [ψ(xi+1)− ψ(z)] ≤
≤ [〈∇φ(xi), xi+1 − xi〉+ LVxi

(xi+1)] + 〈∇φ(xi), xi − z〉+ ψ(xi+1)− ψ(z) ≤
≤ 〈∇φ(xi), xi+1 − z〉+ 〈ψ′(xi+1), xi+1 − z〉+ LVxi

(xi+1) = εi+1(z).

Summing up over i from 0 to N − 1 and using the convexity of F we obtain the second result of the
lemma. �

In what follows, we denote by Exi
{·} the conditional expectation for fixed xi.

Lemma 2 Let the assumptions of Section 3 be fulfilled and let xi and yi satisfy the RSMD recursion,
cf. (9) and (10). Then

(a) ‖ξi‖∗ ≤ 2(M + υσ) + λ,

(b) ‖Exi−1
{ξi}‖∗ ≤ (M + υσ)

(σ
λ

)2
+
σ2

λ
, (29)

(c)
(
Exi−1

{‖ξi‖2∗}
)1/2 ≤ σ + (M + υσ)

σ

λ
.

Proof Set χi = 1‖G(xi−1,ωi)−g(x̄)‖∗>L‖xi−1−x̄‖+λ+υσ . Note that by construction
χi ≤ ηi := 1‖G(xi−1,ωi)−∇f(xi−1‖∗>λ. We have

ξi = yi −∇φ(xi−1) = [G(xi−1, ωi)−∇φ(xi−1)](1− χi) + [g(x̄)−∇φ(xi−1)]χi =

= [G(xi−1, ωi)− g(x̄)](1 − χi) + [g(x̄)−∇φ(xi−1)] =

= [G(xi−1, ωi)−∇φ(xi−1)] + [g(x̄)−G(xi−1, ωi)]χi.

Therefore,

‖ξi‖∗ ≤ ‖[G(xi−1, ωi)− g(x̄)](1 − χi)‖∗ + ‖g(x̄)−∇φ(xi−1)‖∗ ≤ 2(M + υσ) + λ.

Moreover, since Exi−1
{G(xi−1, ωi)} = ∇φ(xi−1) we have

‖Exi−1
{ξi}‖∗ =

∥∥Exi−1
{[(G(xi−1, ωi)−∇φ(xi−1))− (g(x̄)−∇φ(xi−1))]χi}

∥∥
∗ ≤

≤ Exi−1
{[‖G(xi−1, ωi)−∇φ(xi−1)‖∗ + ‖g(x̄)−∇φ(xi−1)‖∗]χi} ≤

≤ Exi−1
{‖G(xi−1, ωi)−∇φ(xi−1)‖∗ηi

}
+ (M + υσ)Exi−1

{ηi} ≤

≤ σ2

λ
+ (M + υσ)

(σ
λ

)2
.

Further,
‖ξi‖∗ ≤ ‖G(xi−1, ωi)−∇φ(xi−1)‖∗(1− χ) + ‖g(x̄)−∇φ(xi−1)‖∗χi,

and

Exi−1
{‖ξi‖2∗}1/2 ≤ Exi−1

{‖G(xi−1, ωi)−∇φ(xi−1)‖2∗}1/2 +
+ Exi−1

{‖g(x̄)−∇φ(xi−1)‖2∗χi}1/2 ≤
≤ σ + (M + υσ)E{χi}1/2 ≤ σ + (M + υσ)Exi−1

{ηi}1/2 ≤
≤ σ + (M + υσ)

σ

λ
.
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The following lemma gives bounds for the deviations of the sums
∑

i〈ξi, xi−1 − z〉 and ∑
i ‖ξi‖2∗.

Lemma 3 Let the assumptions of Section 3 be fulfilled and let xi and yi satisfy the recursion of
RSMD, cf. (9) and (10).

(i) If τ ≤ N/υ2 and λ = max

{
σ
√

N
τ ,M

}
+ υσ then, for any z ∈ X,

Prob

{
N∑

i=1

〈ξi, z − xi−1〉 ≥ 16Rmax{σ
√
Nτ,Mτ}

}
≤ e−τ , (30)

and

Prob

{
N∑

i=1

‖ξi‖2∗ ≥ 40max{Nσ2,M2τ}
}

≤ e−τ . (31)

(ii) If N ≥ υ2 and λ = max
{
σ
√
N,M

}
+ υσ then, for any z ∈ X,

Prob

{
N∑

i=1

〈ξi, z − xi−1〉 ≥ 8(1 + τ)Rmax{σ
√
N,M}

}
≤ e−τ , (32)

and

Prob

{
N∑

i=1

‖ξi‖2∗ ≥ 8(2 + 3τ)max{Nσ2,M2}
}

≤ e−τ . (33)

Proof Set ζi = 〈ξi, z − xi−1〉 and ςi = ‖ξi‖2∗, i = 1, 2, . . . Using Lemma 2 it is easy to check that
the following inequalities are fulfilled

(a) |Exi−1
{ζi}| ≤ D

[
(M + υσ)(σ/λ)2 + σ2/λ

]
,

(b) |ζi| ≤ D[2(M + υσ) + λ],

(c) (Exi−1
{ζ2i })1/2 ≤ D[σ + (M + υσ)σ/λ]

(34)

and

(a) Exi−1
{ςi} ≤ [σ + (M + υσ)σ/λ]2,

(b) ςi ≤ [2(M + υσ) + λ]2,

(c) (Exi−1
{ς2i })1/2 ≤ [σ + (M + υσ)σ/λ] [2(M + υσ) + λ].

(35)

In what follows, we apply several times the Bernstein inequality, and each time we will use the
same notation r, A, s for the values that are, respectively, the uniform upper bound of the expectation,
the maximum absolute value, and the standard deviation of a random variable.

1o. We first prove the statement (i). We start with the case M ≤ σ
√

N
τ . It follows from (34) that

in this case

|Exi−1
{ζi}| ≤ 2Dσ2/λ ≤ 4Rσ

√
τ
N =: r,

|ζi| ≤ A := 3λD ≤ 6Rλ,

(Exi−1
{ζ2i })1/2 ≤ s := 2Dσ ≤ 4Rσ.

(36)
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Using (36) and Bernstein’s inequality for martingales (see, for example, [43]) we get

Prob

{
N∑

i=1

ζi ≥ 16Rσ
√
Nτ

}
≤ Prob

{
N∑

i=1

ζi ≥ Nr + 3s
√
Nτ

}
≤

≤ exp



− 9τ

2 + 2
3
3
√
τA

s
√
N



 ≤

≤ exp

{
− 9τ

2 + 3
(
1 + υ

√
τ/N

)
}

≤ e−τ

for all τ > 0 satisfying the condition τ ≤ 16N/(9υ2). On the other hand, in the case under consider-
ation, the following inequalities hold (cf. (35) and (36))

Exi−1
{ςi} ≤ 4σ2︸︷︷︸

=:r

, ςi ≤ 9λ2︸︷︷︸
=:A

, (Exi−1
{ς2i })1/2 ≤ 6λσ︸︷︷︸

=:s

.

Thus,
Nr + 3s

√
τN = 4Nσ2 + 18λσ

√
τN = 22Nσ2 + 18υσ2

√
Nτ ≤ 40Nσ2

for 0 < τ ≤ N/υ2. Applying again the Bernstein inequality, we get

Prob

{
N∑

i=1

ςi ≥ 40Nσ2

}
≤ exp

{
− 9τ

2 +
(
3 + 3υ

√
τ/N

)
}

≤ e−τ

for all τ > 0 satisfying the condition τ ≤ N/υ2.

2o. Assume now that M > σ
√

N
τ , so that λ =M + υσ and σ2 ≤M2τ/N . Then

|Exi−1
ζi| ≤ 4Rσ2/λ ≤ 4RMτ/N︸ ︷︷ ︸

=:r

, |ζi| ≤ R(2(M + υσ) + λ) = 6R(M + υσ)︸ ︷︷ ︸
=:A

,

(Exi−1
{ζ2i })1/2 ≤ 4Rσ ≤ 4MR

√
τ/N︸ ︷︷ ︸

=:s

.

Further,
Nr + 3s

√
τN = 4RMτ + 12RMτ = 16RMτ,

and applying again the Bernstein inequality we get

Prob

{
N∑

i=1

ζi ≥ 16RMτ

}
≤ exp



− 9τ

2 + 2
3
3
√
τA

s
√
N



 ≤ exp

{
− 9τ

2 +
(
3 + 3υσ/M

)
}

≤

≤ exp

{
− 9τ

5 + 3υ
√
τ/N

}
≤ e−τ

for all τ > 0, satisfying the condition τ ≤ 16N/(9υ2). Next, in this case

Exi−1
{ςi} ≤ 4σ2 ≤ 4τM2/N︸ ︷︷ ︸

=:r

, ςi ≤ 9λ2︸︷︷︸
=:A

, (Exi−1
{ς2i })1/2 ≤ 6λσ︸︷︷︸

=:s

≤ 6λM
√
τ/N.

13



Now,
Nr + 3s

√
τN = 4τM2 + 18λσ

√
τN ≤ 22M2τ + 18υσ2

√
Nτ ≤ 40M2τ,

for τ ≤ N/υ2. Applying once again the Bernstein inequality we get

Prob

{
N∑

i=1

ςi ≥ 40τM2

}
≤ exp

{
− 9τ

2 +
(
3 + 3υ

√
τ/N

)
}

≤ e−τ ,

for all τ > 0 satisfying the condition τ ≤ N/υ2.
3o. Now, consider the case λ = max{M,σ

√
N} + συ. Let M ≤ σ

√
N , so that λ = σ(

√
N + υ).

We argue in the same way as in the proof of (i). By virtue of (34) we have

|Exi−1
{ζi}| ≤ 4R σ√

N
=: r,

(Exi−1
{ζ2i })1/2 ≤ 4Rσ =: s,

|ζi| ≤ 6Rλ ≤ 12Rσ
√
N = 3s

√
N.

Hence, using the Bernstein inequality we get

Prob

{
N∑

i=1

ζi ≥ 8Rσ
√
N(τ + 1)

}
≤ Prob

{
N∑

i=1

ζi ≥ Nr + (2τ + 1)s
√
N

}
≤

≤ exp

{
− (2τ + 1)2s2N

2s2N + 2
33s

2N(2τ + 1)

}
≤ exp

{
− (2τ + 1)2

2 + 2(2τ + 1)

}
≤ e−τ .

From (35) we also have

Exi−1
{ςi} ≤ 4σ2︸︷︷︸

=:r

,

(Exi−1
{ς2i })1/2 ≤ 6λσ ≤ 12σ2

√
N =: s,

ςi ≤ 9λ2 ≤ 36σ2N = 4s
√
N.

Now, applying again the Bernstein inequality we get

Prob

{
N∑

i=1

ςi ≥ 16Nσ2 + 24Nσ2τ

}
= Prob

{
N∑

i=1

ςi ≥ Nr + (2τ + 1)s
√
N

}
≤

≤ exp

{
− (2τ + 1)s2N

[2 + 2(2τ + 1)]s2N

}
≤ e−τ .

Proofs of the bounds (32) and (33) in the case M > σ
√
N and λ =M + συ follow the same lines. �

A.2. Proof of Proposition 1. We first prove inequality (13). In view of (8), the optimality
condition for (9) has the form

〈yi+1 + ψ′(xi+1) + βi[ϑ
′(xi+1)− ϑ′(xi)], z − xi+1〉 ≥ 0, ∀ z ∈ X,

or, equivalently,

〈yi + ψ′(xi+1), xi+1 − z〉 ≤ βi〈[ϑ′(xi+1)− ϑ′(xi)], z − xi+1〉 = 〈βiV ′
xi
(xi+1), z − xi+1〉 =

= βi[Vxi
(z)− Vxi+1

(z)− Vxi
(xi+1)], ∀ z ∈ X,
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where the last equality follows from the following remarkable identity (see, for example, [44]): for any
u, u′ and w ∈ X

〈V ′
u(u

′), w − u′〉 = Vu(w)− Vu′(w) − Vu(u
′).

Since, by definition, ξi = yi −∇φ(xi−1) we get

〈∇φ(xi), xi+1 − z〉+ 〈ψ′(xi+1), xi+1 − z〉 ≤ βi[Vxi
(z) − Vxi+1

(z)− Vxi
(xi+1)]−

−〈ξi+1, xi+1 − z〉. (37)

It follows from Lemma 1 and the condition βi ≥ 2L that

F (xi+1)− F (z) ≤ εi+1(z) ≤ 〈∇φ(xi), xi+1 − z〉+ 〈ψ′(xi+1), xi+1 − z〉+ βi
2
Vxi

(xi+1).

Together with (37), this inequality implies

εi+1(z) ≤ βi[Vxi
(z)− Vxi+1

(z) − 1

2
Vxi

(xi+1)]− 〈ξi+1, xi+1 − z〉.

On the other hand, due to the strong convexity of Vx(·) we have

〈ξi+1, z − xi+1〉 −
βi
2
Vxi

(xi+1) = 〈ξi, z − xi〉+ 〈ξi+1, xi − xi+1〉 −
βi
2
Vxi

(xi+1)

≤ 〈ξi+1, z − xi〉+
‖ξi+1‖2∗
βi

.

Combining these inequalities, we obtain

F (xi+1)− F (z) ≤ εi+1(z) ≤ βi[Vxi
(z)− Vxi+1

(z)]− 〈ξi+1, xi − z〉+ ‖ξi+1‖2∗
βi

(38)

for all z ∈ X. Dividing (38) by βi and taking the sum over i from 0 to N − 1 we obtain (13).
We now prove the bound (14). Applying Lemma 6.1 of [1] with z0 = x0 we get

∀z ∈ X,
N∑

i=1

β−1
i−1〈ξi, z − zi−1〉 ≤ Vx0

(z) + 1

2

N∑

i=1

β−2
i−1‖ξi‖2∗, (39)

where zi = argminz∈X
{
µi−1〈ξi, z〉 + Vzi−1

(z)
}
depends only on z0, ξ1, . . . , ξi. Further,

N∑

i=1

β−1
i−1〈ξi, z − xi−1〉 =

N∑

i=1

β−1
i−1[〈ξi, zi−1 − xi−1〉+ 〈ξi, z − zi−1〉] ≤

≤ Vx0
(z) +

N∑

i=1

β−1
i−1〈ξi, zi−1 − xi−1〉+ 1

2
β−2
i−1‖ξi‖2∗.

Combining this inequality with (13), we get (14). �

A.3. Proof of Corollary 1. Note that (15) is an immediate consequence of (13) and of the bounds
for the moments of ‖ξi‖∗ given in Lemma 2. Indeed, (29)(b) implies that, under the conditions of
Corollary 1,

|Exi−1
{〈ξi, z − xi−1〉}| ≤ 2D

[
(M + υσ)

(σ
λ

)2
+
σ2

λ

]
≤ 2Dσ2

λ
≤ 2Dσ√

N
.

15



Further, due to (29)(c),

Exi−1
{‖ξi‖2∗}1/2 ≤ σ + (M + υσ)

σ

λ
≤ 2σ.

Taking the expectation of both sides of (13) and using the last two inequalities we get (15). The
bound (17) is proved in a similar way, with the only difference that instead of inequality (13) we use
(14). �

A.4. Proof of Theorem 1. By virtue of part (i) of Lemma 3, under the condition τ ≤ N/υ2 we
have that, with probability of at least 1− 2e−τ ,

∑N
i=1〈ξi, zi−1 − xi−1〉 ≤ 16Rmax{σ

√
Nτ,Mτ},∑N

i=1 ‖ξi‖2∗ ≤ 40max{Nσ2,M2τ}.

Plugging these bounds in (14) we obtain that, with probability at least 1− 2e−τ , the following holds:

β̄ sup
z∈X

ε(xN , z) ≤ 2β̄Vx0
(z) +

N∑

i=1

[
〈ξi, zi−1 − xi−1〉+ 3

2 β̄
−1‖ξi‖2∗

]
≤

≤ 2β̄R2Θ+ 16Rmax{σ
√
Nτ,Mτ}+ 60β̄−1 max{Nσ2,M2τ}.

Next, taking β̄ = max
{
2L, σR

√
N
Θ

}
we get

N [F (x̂N )− F (z)] ≤ max{4LR2Θ, 2σR
√
NΘ}+ 16Rmax{σ

√
Nτ,Mτ}+

+60max{LR2τ/2, σR
√
NΘ} ≤

≤ max{46LR2τ, 4LR2Θ, 62σR
√
NΘ, 16σR

√
Nτ} (40)

for 1 ≤ τ ≤ N/υ2. This implies (19). �

A.5. Proof of Theorem 2. We act in the same way as in the proof of Theorem 1 with the only
difference that instead of part (i) of Lemma 3 we use part (ii) of that lemma, which implies that if
N ≥ υ2 then with probability at least 1− 2e−τ the following inequalities hold:

∑N
i=1〈ξi, zi−1 − xi−1〉 ≤ 8(1 + τ)Rmax{σ

√
N,M},∑N

i=1 ‖ξi‖2∗ ≤ 8(2 + 3τ)max{Nσ2,M2}.
A.6. Proof of Proposition 2. Define

ρN (τ ;µ, ν) = ν−1R2Θ+ 16Rmax{σ
√
Nτ,Mτ}+

+20(µ + ν)max{Nσ2,M2τ}+ µ−1
N∑

i=1

Vxi−1
(xi).

The proposition is a direct consequence of the following result.

Lemma 4 Define

ρ̄N (τ) = min
µ,ν>0

ρN (τ ;µ, ν) = 4R
√

5Θmax{Nσ2,M2τ}+ 16Rmax{σ
√
Nτ,Mτ}+

+ min
µ>0

{
20µmax{Nσ2,M2τ}+ µ−1

N∑

i=1

Vxi−1
(xi)

}
. (41)

Then, for 0 < τ ≤ N/υ2 and t ≥ L the following inequalities hold

(a) Prob {ǫN (t)− ǫ̂N (t) ≥ ρ̄N (τ)/N} ≤ 2e−τ ,
(b) Prob {ǫ̂N (t)− ǫN (t) ≥ ρ̄N (τ)/N} ≤ 2e−τ .

(42)
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Proof of Lemma. Let us prove the first inequality in (42). Recall that ξi = yi − ∇φ(xi−1),
i = 1, ..., N . Due to the strong convexity of Vx(·), for any z ∈ X and µ > 0 we have

〈ξi, z − xi〉 = 〈ξi, z − xi−1〉+ 〈ξi, xi−1 − xi〉 ≤
≤ 〈ξi, z − xi−1〉+ µ

2 ‖ξi‖2∗ + 1
µVxi−1

(xi).

Thus, for any ν > 0,

N∑

i=1

〈ξi, z − xi〉 ≤
N∑

i=1

[
〈ξi, z − xi−1〉+ µ

2 ‖ξi‖2∗ + 1
µVxi−1

(xi)
]
≤

≤ 1
νVx0

(z) +
N∑

i=1

[
ν
2‖ξi‖2∗ + 〈ξi, zi−1 − xi−1〉+ 1

µVxi−1
(xi) +

µ
2 ‖ξi‖2∗

]

(to obtain the last inequality, we have used Lemma 6.1 from [1] with z0 = x0 in the same way as in
the proof of the Proposition 1). By Lemma 3 there is a set AN of probability at least 1− 2e−τ in the
space of realizations ωN such that, for all ωN ∈ AN ,

N∑

i=1

〈ξi, zi−1 − xi−1〉 ≤ 16Rmax{σ
√
Nτ,Mτ} and

N∑

i=1

‖ξi‖2∗ ≤ 40max{Nσ2,M2τ}.

Recalling that Vx0
(z) ≤ R2Θ, we conclude that

∑N
i=1〈ξi, z − xi〉 ≤ ρN (τ ;µ, ν) for all z ∈ X and all

ωN ∈ AN . Therefore, for ωN ∈ AN we have

ǫN (t)− ǫ̂N (t) = N−1 sup
z∈X

N∑

i=1

〈ξi, z − xi〉 ≤ N−1 min
µ,ν≥0

ρN (τ ;µ, ν) = N−1ρ̄N (τ),

which proves the first inequality in (42). The proof of the second inequality in (42) is similar and
therefore it is omitted. �

A.7. Proof of Corollary 2. From the definition of ǫN (·) we deduce that

β̄

N∑

i=1

Vxi−1
(xi) ≤ ǫN (β̄),

and we get (24) by taking µ = 1/β̄. On the other hand, one can check that for β̄ ≥ max
{
2L, σ

√
N

R
√
Θ

}

the following inequalities hold:

ρ̄(τ) ≤ NǫN (β̄) + max
{
[(20 + 4

√
5)
√
Θ+ 16

√
τ ]Rσ

√
N, (4

√
5Θτ + 26τ)LR2

}
≤

≤ NǫN (β̄) + C1Rσ
√
N [Θ ∨ τ ] + C2LR

2[Θ ∨ τ ].

Finally, since ǫ̂N (β̄) ≤ ǫN (β̄) + ρ̄(τ)/N with probability at least 1− 2e−τ (cf. (42)(b)) we have

∆N (τ, β̄) = ǫ̂N (β̄) + ρ̄(τ)/N ≤ ǫN (β̄) + 2ρ̄(τ)/N

with the same probability. This implies (25). �

A.8. Proof of Theorem 3.

1o. We first show that for each k = 1, . . . ,m = m(N), the following is true.

17



Fact Ik. There is a random event Bk ⊆ Ω⊗N of probability at least 1−2ke−τ such that for all ωN ∈ Bk

the following inequalities hold:

(a) ‖yk − x̄(yk)‖2 ≤ r2k = 2−kr20 for some x̄(yk) ∈ X∗,
(b) F (yk)− F∗ ≤ κ

2r
2
k = 2−k−1κr20.

(43)

The proof of Fact Ik is carried out by induction. Note that (43)(a) holds with probability 1 for k = 0.
Set B0 = Ω⊗N . Assume that (43)(a) holds for some k ∈ {0, . . . ,m − 1} with probability at least
1− 2ke−τ , and let us show that then Fact Ik+1 is true.

Define F k
∗ = minx∈Xr

k
(yk) F (x) and let Xk

∗ be the set of all minimizers of function F on Xrk(yk).

By Theorem 1 and the definition of Nk (cf. (27)), there is an event Ak of probability at least 1− 2e−τ

such that for ωN ∈ Ak after the (k + 1)-th stage of the algorithm we have

κ

2
‖yk+1 − x̄k(yk+1)‖2 ≤ F (yk+1)− F k

∗ ≤ max

{
C1
Lr2k[τ ∨Θ]

Nk+1
, C2σrk

√
[τ ∨Θ]

Nk+1

}
≤

≤ κ

4
r2k =

κ

2
r2k+1,

where x̄k(yk+1) is the projection of yk+1 onto Xk
∗ . Set Bk+1 = Bk ∩ Ak. Then

Prob{Bk+1} ≥ Prob{Bk}+ Prob{Ak} − 1 ≥ 1− 2(k + 1)e−τ .

In addition, due to the assumption of induction, on the set Bk (and, therefore, on Bk+1) we have

‖yk − x̄(yk)‖ ≤ rk,

i.e., the distance between yk and the set X∗ of global minimizers does not exceed rk. Therefore, the
set Xrk(yk) has a non-empty intersection with X∗. Thus, Xk

∗ ⊆ X∗, the point x̄k(yk+1) is contained
in X∗ and F k

∗ coincides with the optimal value F∗ of the initial problem. We conclude that

κ

2
‖yk+1 − x̄(yk+1)‖2 ≤ F (yk+1)− F∗ ≤

κ

2
r2k+1 = 2−kκr20

for some x̄(yk+1) ∈ X∗.
2o. We now prove the theorem in the case N1 ≥ 1. This condition is equivalent to the fact that Nk ≥ 1
for all k = 1, . . . ,m(N), since N1 ≤ N2 ≤ · · · ≤ Nm(N) by construction. Assume that ωN ∈ Bm(N), so

that (43) holds with k = m(N). Since N1 ≥ 1 we have Nk ≤ 2Nk. In addition, Nk+1 ≤ 2Nk. Using
these remarks and the definition of m(N) we get

N ≤
m(N)+1∑

k=1

Nk ≤ 2

m(N)+1∑

k=1

Nk ≤ 2

m(N)∑

k=1

Nk + 4Nm(N) ≤ 6

m(N)∑

k=1

Nk. (44)

Thus, using the definition of Nk (cf. (27)) we obtain

N ≤ 6

m(N)∑

k=1

max

{
4C1

L[τ ∨Θ]

κ
, 16C2

σ2[τ ∨Θ]

κ2r2k−1

}
≤

≤ 24
k̄−1∑

k=1

C1L[τ ∨Θ]

κ
︸ ︷︷ ︸

S1

+96

m(N)∑

k=k̄

C2σ
2[τ ∨Θ]

κ2r2k−1
︸ ︷︷ ︸

S2

,
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where

k̄ = min

{
k :

4C2σ
2

κr2k−1

≥ C1L

}
.

Two cases are possible: S1 ≥ N/2 or S2 ≥ N/2. If S1 ≥ N/2, then

k̄ ≥ C ′κN
L[τ ∨Θ]

,

so that if ωN ∈ Bm(N) then

F (x̂N )− F∗ ≤
κ

2
r2m(N) ≤

κ

2
r2k̄ = 2−k̄−1κr20 ≤ Cκr20 exp

{
− C ′κN
L[τ ∨Θ]

}
. (45)

If S2 ≥ N/2 the following inequalities hold:

κ2r20N

σ2[τ ∨Θ]
≤ Cκ2r20
σ2[τ ∨Θ]

m(N)∑

k=k̄

2k
σ2[τ ∨Θ]

κ2r20
≤ C ′2m(N)−k̄.

Therefore, in this case for ωN ∈ Bm(N) we have

F (x̂N )− F∗ ≤
κ

2
r2m(N) =

κ

2
r2k̄2

−m(N)+k̄ ≤ κ

2
r202

−m(N)+k̄ ≤ C
σ2[τ ∨Θ]

κN
. (46)

3o. Finally, consider the case

N1 := max

{
4C1

L[τ ∨Θ]

κ
, 16C2

σ2[τ ∨Θ]

κ2r20

}
< 1. (47)

Let k∗ ≥ 2 be the smallest integer k such that Nk ≥ 1. If k∗ > N/4 it is not difficult to see that
m(N) ≥ N/4 and therefore for ωN ∈ Bm(N) we have

F (ym(N))− F∗ ≤
κ

2
r2m(N) ≤

κ

2
r20 2

−N/4. (48)

If 2 ≤ k∗ ≤ N/4 we have the following chain of inequalities:

3

m(N)∑

k=k∗

Nk ≥ Nm(N)+1 +

m(N)∑

k=k∗

Nk =

m(N)+1∑

k=1

Nk −
k∗−1∑

k=1

Nk ≥
m(N)+1∑

k=1

Nk −N/4 ≥ N/4,

where the first inequality uses the fact that Nm(N)+1 ≤ 2Nm(N) and the last inequality follows from

the definition of m(N). Based on this remark and on the fact that Nk/2
k ≤ Nk∗/2

k∗ for k ≥ k∗ we
obtain

N

12
≤

m(N)∑

k=k∗

Nk ≤
m(N)∑

k=k∗

2k−k∗Nk∗ ≤ 2m(N)−k∗+2,

where the last inequality follows by noticing that Nk∗ ≤ 2Nk∗−1 < 2. Hence, taking into account
(43)(b) we get that, for ωN ∈ Bm(N),

F (x̂N )− F∗ ≤ κr2k∗2
−m(N)+k∗ ≤ κr202

−m(N)+k∗ ≤ Cκr20/N.

Combining this bound with (45), (46) and (48) we get (28). �
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