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A review
and new developments in the draping simulations

P. Boisse∗, J. Colmars, N. Hamila, N. Naouar, Q. Steer 
Université de Lyon, LaMCoS, INSA, Lyon, F-69621, France

Bending properties play a significant role in the forming of textile composites reinforcements, particularly in determining the shape of wrinkles. The physics related 

to the bending of fibrous reinforcements is specific. Bending is due to slippage between the fibers and since the fibers are quasi-inextensible, standard plate and shell 
theories are irrelevant. To measure bending characteristics, three experimental tests (and their variants) have been developed in the last decades, and efforts are 

currently devoted to extending and improving these tests. From their results, simulations can be performed by introducing a flexural energy related to the bending 

moment and the curvature. In particular, wrinkles during forming can be simulated. In the case of 3D modeling of thick reinforcements, the use of generalized 

continuum mechanics model is necessary because of the bending stiffness of each fiber and the slippage between fibers. In order to simulate textile reinforcements 
with shells, some shell approaches, different of the standard theories, can correctly calculate the rotations of textile reinforcement normals.

1. Introduction

Textile composites make it possible to produce parts with good
performances and low mass, and consequently various sectors in the
industry, especially aeronautics industry, have developed new products
made of composites [1–3]. Composite manufacturing processes are
numerous and often complex. They frequently include a forming stage
of dry textile reinforcements (in Liquid Molding Processes (LCM) [4,5])
or preimpregnated textile reinforcements [6–9]. The development of
high-quality forming processes is necessary but can be difficult. Nu-
merical simulations of the composite forming process can give an initial
validation of the feasibility of the process and a determination of sui-
table parameters. This helps avoid a time-consuming and costly “trial
and error” development.

The simulation of the textile reinforcement (or prepreg) forming
process requires the knowledge and the modeling of the textile re-
inforcement's thermomechanical behavior. During the process, the
matrix is either absent (in LCM processes, it is injected afterwards) or
melted (due to heating above the melt temperature of the prepreg).
Some deformation modes of the reinforcement during the composite
forming are specific and render forming possible. A significant effort
has been made over the last two decades to model this mechanical
behavior in order to simulate the forming process.

The textile reinforcements are made up of fibers with very small

diameters (5 or 7 μm for a carbon fiber). The fibers are quasi-in-
extensible and bonded by weaving (or braiding, knitting, stitching …).
Movements are nevertheless possible between fibers due to the relative
slippage. These two points, i.e., the quasi-inextensibility and possible
slippage between fibers, are the two main reasons for the very specific
mechanical behavior of fibrous reinforcements. When it comes to pre-
pregs, their mechanical behavior is of the same nature because the resin
is melted during forming and does not change the deformation modes.
The relative slippage between fibers leads to a much lower bending
stiffness than for continuous materials such as metals or polymers.
Classical plate and shell theories do not apply (in their standard form)
and there is no direct relation between the bending stiffness and that of
tension as there is for plates made of continuous materials. This weak
bending stiffness facilitates the forming and reduces the loads during
the process. Large curvatures can be obtained without damage of the
textile reinforcement. On the other hand, wrinkling of the fibrous re-
inforcements is frequent because of the slippage between fibers and the
consequent low bending stiffness.

Forming simulations for textile composite reinforcements (often
called draping simulations) were first carried out with a membrane
hypothesis, i.e., neglecting the bending stiffness [10–15]. However, it
has been shown that the simulation of wrinkles during textile re-
inforcement forming needs a shell approach which takes into account
the bending stiffness [16–18]. The analysis of wrinkles is linked to the
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bending behavior since their number and size depend on the bending
stiffness. The fibrous nature and the architecture of the weaving (or
stitching/braiding) condition all the mechanical behaviors of the re-
inforcement. The tensile behavior depends on the crimp and on the
weave between warp and weft yarns [19–22].

Much experimental and modeling work has concerned and still
concerns in-plane shear [23–28]. The bending of textile materials has
been a topic of research studies for the past hundred years. The Peirce
method was developed in the 1930's [29,30], and is based on the
cantilever bending of a textile specimen under its own weight (Fig. 1). It
is noteworthy that this method is still widely used today. Its utilization
is specified in several standards [31–33]. This method assumes that the
bending moment has a linear dependence on the curvature, as detailed
below in Section 3. The Kawabata bending test (KES-F2) (Fig. 2) makes
it possible to obtain a loading cycle and shows that the bending beha-
vior is generally not linear [34]. Grosberg's model provides the possi-
bility of taking friction into account by introducing a threshold moment
which must be exceeded in order for the curvature to vary [35]. The

Dahl model [36] is a generalization of the Coulomb friction model. It
makes it possible to take into account the friction and to obtain a mo-
ment-curvature curve that is more realistic on a cycle than the Gros-
berg's model [37]. Extensions of these models have been developed in
Refs. [38,39] with the aim to take into account the viscosity and the
Stribeck effect (characterized by decreasing friction with respect to low
velocities) [38,40].

The main bending tests and methods of analysis are presented in
Section 3 as well as the extensions of these methods to high-tempera-
ture measurements required in the case of prepregs. The experimental
methods cited above aim to determine the relation between the bending
moment and the curvature. A plate or shell theory also provides the
kinematics for the points situated in the thickness [41–43]. However,
kinematics in the thickness of the textile reinforcements is very specific
in view of the quasi-inextensibility of the fibers and the possible relative
slippage.

Many of the draping simulations are currently based on shell finite
elements with the objective of determining the deformation of the mean
surface and in particular wrinkles and in-plane shear angles [44–52].
The kinematics through the thickness is generally not considered.

Section 4 gives a presentation of the simulation of the wrinkling
onset and the developments during the draping of the textile re-
inforcements. The influence of the different rigidities and especially the
bending stiffness on the wrinkles is analyzed. The concept of a locking
angle is questioned.

In some cases and in particular when simulating the forming of 3D
reinforcements whose thickness may be significant, it is necessary to
determine strains and stresses throughout the thickness of the re-
inforcement. To obtain a result in the most general case, a 3D simula-
tion can be performed. Section 5 shows that the analysis of bending of
textile reinforcements by 3D finite elements leads to difficulties when
using a behavior law involving the standard continuum mechanics of
Cauchy [53,54]. Generalized Continuum Mechanics approaches
[55,56] make it possible to overcome some difficulties in material
modeling. It will be shown in section 5 that a second gradient model
can lead to correct 3D simulations for the bending of the textile

Fig. 1. Peirce flexometer [29].

Fig. 2. Kawabata bending test - KES-FB2, experimental curve and Grosberg model [64].
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reinforcements. Finally, section 6 presents a shell formulation for si-
mulations of the forming of fibrous reinforcements which correctly
models their kinematics and the deformation of the points in their
thickness [57].

It should be underlined that the research in the field of the present
subject is currently very active. A large part of the articles in reference
are from 2016 to 2017.

2. Taking into account bending behavior when analyzing the

forming of textile reinforcements

2.1. Reasons for the specific bending behavior of textile reinforcements

The bending stiffness of fibrous material, especially of composite
textile reinforcements, is weak. In membrane approaches [10–15,58]
and in kinematic approaches (based on the fishnet algorithm) [59–61],
the bending stiffness is neglected. The fact that the textile bending
stiffness is so weak is due to possible slippage between the fibers. Fig. 3
shows a three-point bending of a textile interlock reinforcement. The
bending of the specimen is principally due to the slippage between the
fibers. When the textile reinforcement is considered as a continuous
medium, this deformation is a shear strain. The deformation of zone A
(Fig. 3) is of the same nature as that of zone A′ in a shear test. The
possible slippage leads to a weak shear stiffness when the fibrous re-
inforcement is seen as a continuous medium and consequently the
bending stiffness of the reinforcement when seen as a plate or a shell is
also low.

The inextensibility (or quasi-inextensibility) of the fibers is the
second specificity of the mechanical behavior of fiber reinforcements.
In a bending test such as that shown in Fig. 3, the inextensibility fixes
the position of the material sections initially perpendicular to the mean
surface. These material sections do not remain perpendicular in the
deformed state. The kinematics of the fibrous materials based on pos-
sible slippage between fibers and fiber inextensibility do not correspond
to the assumptions of standard plate theories (Kirchhoff, Mindlin). For a
continuous material (such as a metal sheet), plate theories lead to
membrane and bending rigidities that are linked and can be calculated
from the elastic properties of the material and the plate geometry. For
textile reinforcements such an approach would lead to excessive
bending stiffness because slippage between fibers is not taken into ac-
count in standard plate theories. Consequently it is not possible to use
standard shell finite elements available in commercial software in

which the bending rigidity is calculated from the tensile modulus and
standard shell theories. To carry out a correct analysis, the fibrous re-
inforcement analyses can be done by decoupling the membrane and
bending behaviors [44,62].

2.2. Decoupling the membrane and bending behaviors. Analysis of the mean

surface bending

In order to improve the membrane approaches, the bending de-
formation energy can be added and decoupled from that of the mem-
brane by considering a moment-curvature relation that is independent
of the membrane deformations. The virtual work theorem relates, i.e.,
the internal, exterior and acceleration virtual works respectively. In any
virtual displacement field η such as η=0 on the boundary with pre-
scribed displacements, we have:

− =η η ηW ( ) W ( ) W ( )ext int acc (1)

The internal virtual work can be assumed to be separated into:

= +η η ηW ( ) W ( ) W ( )int int
memb

int
bend (2)

where ηW ( )int
memb is the virtual work of membrane and ηW ( )int

bend is the
virtual work of bending with:

∫= +η η ηW ( ) χ ( )M χ ( )M dSint
bend

S 11
11

22
22

(3)

Here, χ and χ11 22 are the curvatures in the warp and weft directions.
The bending moments in the warp and weft directions are assumed to
be in the formM (χ ), M (χ ),11

11
22

22 The twisting virtual work ηχ ( )M12
12 is

neglected. It can be added if the twisting stiffness is important (and if
experimental data exist).

This approach requires the membrane properties of the textile re-
inforcement (tension and in-plane shear) and the bending moments as a
function of the curvature. The latter property is given directly by the
experimental devices presented in Section 3. This approach is im-
plemented in a rotation-free three-node shell element [44] to simulate
textile reinforcement forming. Fig. 4 shows the simulation of the deep
drawing of a tetrahedral shape and the comparison with the forming
experiment. The shear angles but also the wrinkles are in good agree-
ment [46]. This approach is used in Section 4 to analyze wrinkling si-
mulations.

Nevertheless, the approach presented above (as well as most of all
current methods taking bending stiffness into account in textile re-
inforcement forming) does not give the distribution of displacements

 Fig. 3. Shear deformation of a reinforcement during 

bending.
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and strains in the thickness. For some analyses, shear angles and
wrinkle shapes are sufficient. If strain and stresses in the thickness are
required, a 3D approach (see Section 5) or a specific shell formulation
for fibrous reinforcements must be used (see Section 6).

3. Experimental methods for measuring the bending property

To introduce bending in the modeling of a textile reinforcement
deformation by shell elements, the relation between the bending mo-
ment and the curvature M(χ) is the characteristic whose knowledge is
necessary.

3.1. Peirce cantilever test

This method [29] and its variants and extensions have been in-
troduced in 1930 by F.T. Peirce and are still in use [31–33]. The test is
based on the cantilever bending of a textile specimen subjected to its
own weight. The specimen is progressively advanced until the free end
makes contact with the inclined plane of the device (Fig. 5). The po-
sition of a point of the midline of the textile specimen is located in (x,y)
(Fig. 5). w is the weight per unit length and ℓ is the overhanging length
of the specimen The relation between the bending moment M and the
curvature χ is assumed to be linear. (This is a main assumption of the
Peirce's approach):

M=Gχ (4)

where G is the bending stiffness assumed to be constant. For small
deflections, y’ is small and the curvature

= ′
+ ′

′
χ

y

(1 y )2 (5)

can be approximated by χ=y’’. The bending moment in a section of
the textile specimen is:

= −M
w

2
(ℓ x) .2 (6)

Replacing the bending moment (Eq. (6)) and the curvature χ=y’’,
in Eq. (4), a differential equation of the deflection is obtained:

′ = −′Gy
w

2
(ℓ x)2 (7)

By integrating twice and taking into account the boundary condi-
tions y (0)= y '(0)= 0, the deflection δ at the free end is obtained:

= =δ y(ℓ)
wℓ

8G

4

(8)

An inclined plane passing through the free end after deformation A
(Fig. 5) and the clamping point B is considered. It is oriented relative to
the horizontal by the angle θ. The flexural rigidity =S G

w
is expressed in

function of θ:

Fig. 4. Tetrahedral forming. Comparison of simulation and experiments [46].

Fig. 5. Peirce's Cantilever bending test [29,63].
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= =S
G

w

ℓ

8tgθ

3

(9)

For large deflections, Peirce introduces a corrective term function:

= =S
G

w

ℓ cos θ/2

8tgθ

3

(10)

Consequently, the flexural rigidity S and the bending stiffness G are
determined by Eq. (10) from the measurement of the overhanging
length ℓ for a given angle of inclination θ.

In the standard commercial device (Fig. 6), the inclined plane is
fixed at θ=41.5°. With this angle:

= ≈S
G

w

ℓ

8 (11)

The correction by cosθ/2 in the case of large deflections (Eq. (10)) is
empirical. However, it can be validated by a finite element analysis of a
specimen bending. Table 1 compares, for the same given weight w) the
angle θ obtained by the Peirce equation (10) to the angle θ obtained by
an F.E. simulation using a beam element. The two angles are close: the
difference is less than 3% for angles up to 41.5°. Equation (10) (and its
particular form (11) when the inclined plane is fixed at θ=41.5° can be
used in practice to determine the bending stiffness by a simple test. The
Peirce test nevertheless presents a limitation. It assumes a linear
bending behavior M=Gχ and provides a constant value of the bending
stiffness G. Finally it should be mentioned that Lammens et al. con-
cluded that use of the ASTM D1388 cantilever test resulted in mea-
surements with inaccuracies [63]. The bending behavior of some textile
reinforcements was non-linear as is shown in the following. The next

section 3.2 presents extensions of the Peirce method which are intended
to determine the bending behavior M(χ) whether the behavior is linear
or not.

3.2. Cantilever bending test. Extensions of the Peirce method

Extensions of the Peirce test have been realized by De Bilbao et al.
[64] and Liang et al. [65,66] with the aim of performing an optical
measurement on the entire deformed shape of the specimen in flexion.
The bending device developed in Ref. [64] makes it possible to vary the
bending length (Fig. 7). Fig. 8 shows the principle for obtaining the
Moment-Curvature curve from a single image of the deflection. The
image is processed to determine the midline of the deformed specimen.
The latter is approximated by an analytic curve (uniform quartic
B‐spline in Ref. [66]). The curve can therefore be determined at all
points. The specimen is subjected to its own weight which fixes the
bending moment for each section. This gives the Moment-Curvature
curve by analyzing only one deflection since the moment and the cur-
vature vary from zero at the free end up to a maximum value at the
clamped end. The influence of the specimen length has been tested in
Refs. [64] and [65]. The Moment-Curvature plots obtained for different
lengths are fairly coherent. In order to obtain larger curvatures, re-
quired to model wrinkles in formation, an additional mass can be added
at the free end of the specimen [65].

Dangora et al. [67,68] and Alshahrani et al. [69,70] developed
cantilever tests in which the specimen was initially vertical. In this way,
the effects of gravity were avoided (at least for small deflections).

Finally, it can be underlined that the geometry of the cantilever
bending test and its free end lead to an absence of spurious tension in
the specimen. This is important since the tensile stiffness is very large in
comparison with its bending counterpart.

3.3. Kawabata bending test and its extensions

The Kawabata bending test (KES-FB2) and its extensions constitute
the second main family of bending tests. The KES-FB2 test was devel-
oped in 1980 [34] (Fig. 9a) and involves a constant curvature imposed
on a textile specimen by the rotation of one clamp. A diagram showing
the principle is shown in Fig. 9b [71]. The bending moment is directly
measured by the device. Fig. 2 presents the Moment-Curvature curve
obtained by a Kawabata test on a carbon fabric during a loading/un-
loading cycle [64]. It shows a non-linear and hysteretic behavior, which
is also the case for other materials tested with the Kawabata bending
test [72]. Such a loading cycle is less easy to achieve with a cantilever
test. Nevertheless, forming simulations do not generally require the
bending behavior on a cycle. The device proposed in Refs. [71,73]
(Fig. 9c) works according to the same principle as the Kawabata
bending test, and uses the capabilities of a rheometer to control the
temperature and bending rate.

3.4. Three-point bending test

The three-point bending test is widely used for composite material
bending [74–78]. For textile reinforcements it requires the bending
stiffness to be sufficiently large. It can be used for either thick enough
textile reinforcements (Fig. 10a [79,82] and Fig. 10b [80]) or for small
specimens. Margossian et al. used bending clamps of a Dynamic Me-
chanical Analysis (DMA) system to perform three-point bending tests on
unidirectional thermoplastic prepregs (Fig. 10c) [81]. The specimen
shown in Fig. 10c had a length of 20mm. Such a DMA system was also
used to analyze bending properties in Ref. [73]. The three-point
bending test is well adapted to analyze the deformations in the thick-
ness of the reinforcement by an optical method (Fig 10a and b) [79,80].

Fig. 6. Standard cantilever bending test with an inclined plane at 41.5°.

Table 1

Comparison between Peirce model and beam FE analysis.

Weight per
unit length
(N/mm)

Angle
Teta (°)
(Peirce)

Angle
Teta (°)
EF

Relative
difference

Characteristics of the
bending specimen

0.00 0 0.00
4.21E-05 6 5.98 0.274% Thickness

(mm)
0.319

8.56E-05 12 11.95 0.419% Width (mm) 50
1.32E-04 18 17.84 0.901% Lenght L (mm) 120
1.82E-04 24 23.56 1.849% Bending

modulus G
1.73

2.39E-04 30 29.36 2.128% (N.mm)
3.06E-04 36 35.07 2.585%
3.86E-04 42 40.63 3.270%
4.87E-04 48 46.18 3.797%
6.19E-04 54 51.75 4.162%
8.01E-04 60 57.39 4.347%
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3.5. Influence of the temperature and speed

A major effort has been and is still devoted to the development of
simulation of thermoforming prepregs that are either thermoset
[17,50,83,84] or thermoplastic [85–94]. These processes are performed
at high temperature. In particular the process of stamp forming of a
thermoplastic prepreg is carried out after a pre-heating step slightly
above the melting point. In the case of the PA66 matrix, the melting
point is 260 °C and the thermoforming is carried out at a temperature in
the region of 280 °C [90]. In the case of the PEEK matrix, the melting
point is 343 °C and the thermoforming is carried out at a temperature in

the region of 360 °C [87]. These temperatures concerning the PEEK
matrix represent a maximum for the thermoforming of thermoplastic
prepregs. Forming thermoset prepreg must be carried out at a tem-
perature lower than the onset of cure. In the case of epoxy matrices, the
temperature must remain below 100 °C. Forming is generally performed
at 70 °C [69,84].

At these temperatures, the mechanical behavior and especially the
bending behavior varies greatly with temperature. The bending test is
realized at a set of temperatures corresponding to those that can be
reached at each point during thermoforming. Different devices are used
for this purpose.

Fig. 7. Optical measurement of the deflection for different 

bending lengths [64].

Fig. 8. Different stage of the determination of the Moment-Curvature
curve from a cantilever bending test [66].

Fig. 9. Bending tests for which a constant curvature is achieved by
clamp rotation. (a) Kawabata bending test [34, 72], (b) principle of
the tests, (c) bending device developed in Ref. [71].

6



Acc
ep

te
d 

M
an

us
cr

ip
t

Fig. 11 shows the use of an infrared heater in the case of thermoset
prepregs [69]. For these materials, the processing temperature re-
mained below 100 °C. In the case of thermoforming of thermoplastic
prepregs, the temperatures is generally higher: covering an interval
above and below the melting temperature (343 °C for the PEEK matrix,
285 °C for the PPS matrix). A thermal environmental chamber was used,
see Fig. 12. To achieve correct bending, the homogeneity of the tem-
perature field had to be checked. This can be tricky, but it is necessary
in order to get meaningful results. Fig. 12 shows the thermocouples that
were used in that objective and several modifications made it possible
to obtain a homogeneous temperature field [65].

The bending test presented in Ref. [71] uses the capabilities of a
rheometer for temperature control. The three-point bending test

developed by Margossian et al. [81] (Fig. 10c), using a Dynamic Me-
chanical Analysis (DMA) system, enabled analyses up to 600 °C. In-
frared heating was also associated to cantilever bending in order to
analyze the flexural rigidities of a cross-ply thermoplastic laminate up
to 120° [68]. Fig. 13 presents two sets of bending moment-curvature
plots. The first one was measured for a 5-harness carbon satin and
epoxy prepreg from room temperature to 90 °C (Fig. 13a) [69] and the
second one for a 5-harness carbon satin and PPS prepreg from room
temperature to 300 °C (Fig. 13b) [65]. The temperature dependence
was significant in both cases. Moreover, the curves were not linear.

Given the highly temperature dependent mechanical behavior of the
prepregs, the thermoforming simulation must combine thermal and
forming analyses [87,93,95]. Nevertheless, a large part of the present
simulations assume that the prepreg is always and everywhere at the
process temperature. This is a strong hypothesis that could often be
questioned.

Some of the devices presented above can control the rate of the
bending test. Tests carried out at different rates were thus performed to
identify the parameters of the rate-dependent bending models, espe-
cially the viscoelastic ones [71,81,91,95–97]. It remains to take into
account the effect of bending speed in composite forming simulations to
show if this aspect is important and in which cases.

3.6. Relation between bending rigidity of yarns and fabrics

An alternative to carrying out bending tests on each textile re-
inforcement may be the calculation of the bending stiffness of the re-
inforcement from that of the yarns and the internal architecture of the
fabric. A review of such approaches and some extensions are given in
Refs. [98–100]. Lomov et al. presented a model based on the re-
presentation of fabric deformation as a coordinate transformation
[101]. Sagar et al., proposed an approach that takes into account the
compression of the yarns [102]. These approaches are compared to
experimental data for different yarns and fabrics and show reasonable
agreement of the models.

4. Wrinkling during forming. Influence of the bending stiffness

Wrinkles are one of the principal defects that may appear during the
draping of a reinforced composite textile. They may also appear when
forming other materials, in particular metals, when the thickness is
small [103–107]. In the case of fibrous reinforcements, the tendency
towards wrinkling is all the greater as the bending stiffness is low
considering the possible slippage between the fibers. The objective of
this section is to analyze the link between the onset and the develop-
ment of wrinkles and the bending stiffness (and also tension and shear
stiffnesses). The concept of a shear locking angle is also questioned.

The virtual work theorem (Eq. (2) and (3)) can be written, in any
virtual displacement field η such as η=0 on the boundary with

Fig. 10. Three point bending tests. (a) Bending of a preconsolidated thermoplastic sheets [82]. (b) Bending of an interlock reinforcement [80], (c) Bending of an unidirectional
thermoplastic prepreg in a DMA system [81].

Fig. 11. Bending test at high temperature. Infrared heaters for thermoset prepregs [69].

Fig. 12. Thermocouples to check the homogeneity of the temperature field inside a
thermal environmental chamber during a Bending test at high temperature [65].
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prescribed displacements,

− − − =η η η η ηW ( ) W ( ) W ( ) W ( ) W ( )ext int
tens

int
shear

int
bend

acc (12)

where η η ηW ( ), W ( ), W ( )int
tens

int
shear

int
bend are respectively the virtual works

of tension, in-plane shear and bending. Wrinkles develop when the
virtual work theorem leads to off-plan solutions. This is a global
equation involving tension, in-plane shear and bending virtual works.

4.1. Wrinkling in compression in the yarn direction

When a textile reinforcement is subjected to a compression in the
yarn direction, buckling occurs rapidly. The bending energy generated
by the buckling is smaller than the compression energy that would be
required by a compression deformation of the yarns. Fig. 14 shows the
computed deformed shapes of an 80×20mm textile strip whose two
edges are moved closer (40mm) [16]. The size of wrinkles that develop
increases with bending stiffness. In this example (Fig. 14), when the
bending stiffness is multiplied by ten, the number of wrinkles is divided
by two. The fact that the size of the wrinkles depends on the bending

stiffness has been observed in other cases. Nevertheless, it was also
found to have a relatively low sensitivity to the bending stiffness
[44,65]. There is, however, no consensus on this subject at present.
Ropers et al. [73] state that a twofold difference in bending stiffness
clearly modifies the result of a half-dome simulation forming.

Wrinkling in longitudinal compression such as that presented in
Fig. 14 is almost immediate if the fabric is free. Nevertheless, forming
processes are designed to avoid these situations. On the other hand,
forming on double-curved geometries requires shear deformations in
the plane of the textile reinforcements which cannot be avoided. The
next section focuses on wrinkles when forming a textile reinforcement
on a hemisphere.

4.2. Influence of tensile, in-plane shear and bending stiffnesses on wrinkling

during the forming of a double curved shape

A very unbalanced woven fabric, with a ratio between the tensile
stiffness in warp and weft directions equal to 250, has been considered.
The experiment shown in Fig. 15d was carried out in Nottingham
University [108]. The simulation was performed by considering ex-
clusively the tensile strain energy in Fig. 15a, the tensile and in-plane
shear strain energies in Fig. 15b, and finally the three stain energies,
i.e., tension, in plane shear and bending, in Fig 15c. Only the latter case
led to a deformed shape in agreement with experimental results. The
simulation based on the membrane hypothesis (no bending stiffness, Fig
15b) gave wrinkles that were small and plentiful. To obtain wrinkles of
a correct geometry by the simulation, a bending stiffness is necessary.
There is an important connection between wrinkles and bending stiff-
ness and the latter determines their shape (and therefore their number).

Amirbayat and Hearle have analyzed textile fabric buckling through
minimization of the deformation energy in three fold buckling which is
the basic form for more complicated buckling patterns [109–111]. They
showed that the deformed shape can be related to dimensionless
groups, relating bending, membrane and potential energies, and fixed
by sheet parameters [109,110,112].

4.3. Wrinkling and shear locking angle

The in-plane shear deformation required for forming on a double
curved surface is one of the main causes of wrinkling. In-plane shear
tests of textile reinforcements and in particular the ‘picture frame test’

Fig. 13. Bending moment-Curvature curves for different temperatures. (a) 5-harness carbon satin and epoxy prepreg [69]. (b) 5-harness carbon satin and PPS prepreg [65].

Fig. 14. Wrinkling in compression of a woven reinforcement strip with different bending
stiffnesses (from bottom to top 1, 10, 102, 103 N /mm).
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highlight an angle from which the wrinkling appears. This angle is
called the ‘shear locking angle’ [113–117]. Some textile forming si-
mulation approaches, and in particular a kinematic modeling approach,
consider that wrinkling occurs when this angle is reached or exceeded.
The example shown in Fig. 16 shows the opposite. This is the forming of
a woven carbon reinforcement by a tetrahedric punch with several
blank holders [46] (already shown in Fig. 4). In zone A, both experi-
mentally and in simulation, the shear angle reaches 60° without any
wrinkle onset. On the other hand, wrinkles develop in many other areas
of the horizontal part of the reinforcement where the shear angle is less
than 40°.

The wrinkle onset does not depend solely on the shear angle; the
other strain energies also play a role. The deformations of the textile
reinforcement and in particular the wrinkles are a solution of the global
equation (12) (Virtual work theorem). The blank holders (which have
an important effect in the case shown in Fig. 16) create tensions that
decrease or suppress wrinkling in the useful part. Finally, the shear
locking angle is not sufficient to determine the wrinkle onset. Wrinkles
are given by the solution of the global dynamic equation (12) and all
the deformation energies play a role [16,118–122].

4.4. Wrinkling of UD laminates during forming

The analyses regarding wrinkling presented above concern a single
woven ply. Composites are often laminated and composed of a set of
plies, and the actions between the plies are an important part of the
development of wrinkles. This is particularly the case for laminates
composed of unidirectional plies.

Composites with continuous unidirectional reinforcements (UD) are
used in applications where stiffness is a major concern. The stiffness is
optimal because the fibers are straight. The different plies of prepregs
(or reinforcements) can be draped by hand or by an automated fiber
placement [6,123]. Alternatively, a flat laminate made of UD plies can
be formed into the final shape [50]. During the manufacture of com-
posites from UD prepregs, the formation of wrinkling is frequent
[124–126]. Such wrinkling can be severe (Fig. 17) [126–129]. Several
studies have aimed to understand the causes of these wrinkles and how
to avoid them [125–130].

Generally, wrinkling of a ply of a stack occurs when the ply is
subjected to compressive stresses in the direction of its fibers. The UD
plies are very anisotropic since the tensile rigidity is high in the di-
rection of the fibers and almost zero in the perpendicular direction.
Contact and friction create a connection between the plies. For a given
geometry of the manufactured part, compressive stresses in the

Fig. 15. Hemispherical forming of an unbalanced textile reinforce-
ment, (a) tensile stiffness only, (b) tensile and in-plane shear rigid-
ities, (c) tensile + in-plane shear + bending rigidities, (d)
Experimental forming.

Fig. 16. A zone A with a shear angle of 60° (zone A) with no wrinkle. Some wrinkles develop in areas where the shear angles are less than 40°.
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plies for certain stacking sequences. Wrinkling can be reduced by
changing the stacking sequence, however, this would modify the me-
chanical properties of the final composite.

Lightfoot et al. highlighted one of the main mechanisms of wrinkle
formation during the prepreg stacking [127]. In a U-shaped mold, two
plies at 90° and 0° were draped in this order. The first 90 °-ply correctly
fit the U mold and its corner due to its low stiffness. On the contrary, the
0 °-ply was rigid in the direction of the fibers and the contact in the
radius was not perfect during the draping on the mold (bridging ply).
The autoclave pressure ensured the contact of the 0° ply in the radius.
This led to a movement of the ply and, due to the friction with the 90°
ply, this movement created a wrinkling of the ply [127].

5. 3D modeling of the bending of a textile reinforcement. The need

for generalized continuum mechanics

5.1. The limit of standard continuum mechanics of Cauchy

3D finite element modeling of textile reinforcements makes it pos-
sible to simulate the deformation of reinforcements of great thickness
and cases where the phenomena in the reinforcement thickness play an
important role. Interlock reinforcement (such as that shown in Fig. 3) is
used in motor blades with a thickness reaching several centimeters in
the root of the fan blade [131–133]. These interlock materials consist of
two yarn directions (warp and weft) that are linked in the thickness by
weaving. Such an architecture makes it possible to avoid delamination.
There is no yarn in the thickness direction. Among the hyperelastic
models proposed for anisotropic materials [134,135], a constitutive law
has been proposed in Ref. [80] for this type of interlock materials. The
six deformation modes are considered (Fig. 18): extensions in the warp
and weft directions (invariants Ielong1 and Ielong2), in-plane shear (in-
variant Icp) and transverse shear in the warp and weft directions (in-
variants Ict1 and Ict2) and transverse compaction (invariant Icomp). The
deformation energy is assumed to be the sum of deformation energies
corresponding to the six deformation modes:

= + + + +
+

w w I w I w I w I w I

w I

( ) ( ) ( ) ( ) ( )

( )

elong elong elong elong comp comp cp cp ct ct

ct ct

1 1 2 2 1 1

2 2 (13)

Appendix A gives the relations between the six above invariants and
the theoretical invariants of a orthotropic material [136]. The six po-
tential strain energies of Eq. (13) are identified from tension, transverse
compression, in-plane shear and transverse shear tests [80,131].

A three-point bending of an interlock reinforcement was carried out
experimentally and simulated using 3D hexahedral elements and the
hyperelastic model presented above (Fig. 19a and b). The direction
after deformation of the material lines initially perpendicular to the
mid-surface of the interlock was fairly well obtained by the simulation.
It was close to vertical. Nevertheless, in the simulation, the two outer
parts remained almost horizontal (Fig. 19b) whereas experience shows
that they should be rising (Fig. 19a). To understand this phenomenon, a
simplified model was considered Fig. 19c [53]. The interlock specimen
was modeled by a set of hinged parallel bar systems. The transverse
shear stiffness of this 4 bar system was equal to zero (it was actually
very weak in the textile reinforcement). When a vertical displacement
was imposed at the center of the specimen, the deformation was simply
due to the shear deformations in the part between the supports of the
specimen (Fig. 19d). The deformed shape obtained for this simplified
model was close to that obtained by the continuous 3D hyperelastic
model (Fig. 19b), which implies that the two outer parts remained al-
most horizontal in this case. The shear stiffness of the textile re-
inforcement was very low because of the possible sliding between fibers
and close to that of the bar system which was zero.

In the simplified model, if the bars were replaced by beams, an
elevation of the ends was obtained (Fig. 19e). The flexural stiffness of
the beams represented that of the fibers. Each fiber had a very small
diameter and therefore a low bending rigidity, but the number of fibers
was significant. It is not possible in a Cauchy mechanical model to si-
multaneously have a very low shear stiffness (because of the possible
slippage between the fibers) and a bending stiffness originating from
the fibers. This is the limit of Cauchy mechanical models in textile re-
inforcement deformation simulation.

The next two sections present possible approaches to correctly

Fig. 17. Wrinkles induced by forming [126,127].

Fig. 18. Deformation modes of layer to layer in-
terlock reinforcements (a and b) stretches, (c)
transverse compression, (d) in-plane shear and (e
and f) transverse shears.
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model the bending of fibrous materials in the context of a 3D con-
tinuous approach. In section 5.1, a stiffness related to the curvature is
added to the 3D hexahedral finite elements, and in section 5.2, a second
gradient approach is used to take into account the local bending stiff-
ness of the fibers.

5.2. 3D hexahedral finite elements with curvature stiffness

In rotation-free shell elements, the curvature of a finite element is
calculated from the position of the neighboring elements without the
need for rotational degrees of freedom [137,138]. This approach is
extended to calculate the curvature of 3D hexahedral finite elements
(Fig. 20a) [131,139]. Additional internal nodal loads are calculated
from these curvatures. They reflect the local bending stiffness of the
fibers. The kinematics (interpolation functions) of the element is not

modified and is that of a classical trilinear 8 node finite element. Points
fixed on the neighboring elements makes it possible to calculate the
curvature. The approach is technically similar to those used in free
rotation shell elements [137,138]. It is detailed in Ref. [131]. The
curvature χ of the fibers creates a local bending moment M χ( ). The
internal virtual work corresponding to the virtual curvature ∗χ is:

∫= ∗W M χ χ dA( )bend

A
int (14)

In an 8 node finite element:

∑=
=

∗W ω M χ ψ χ ψ A ψ J( ( )) ( ) ( )bend

α

α α α α sαint

1

2

(15)

For two integration points ψα, Jsα is the jacobian of the mapping
from the isoparametric domain of bi-unit length [-1,1] to the physical
domain. The curvature interpolations can be written as:

= =χ B u χ B uandp p11 1 22 2 (16)

where up is a vector containing the displacement of each node of the
patch used to calculate the curvature. B1 and B2 are detailed in Ref.
[131]. The bending moment in eqs. (14) and (15) is assumed to be
dependent on the curvature =M M χ( ). The nodal internal loads due to
the local bending stiffness at each node of the patch of triangular ele-
ments can be computed as:

= +F B M B M A( ) ( )p
T

l
T

l Tint
bend

1 1 2 2 (17)

The simulation of the three-point bending test using these 3D finite
elements with curvature stiffness led to a deformed shape in good
agreement with experiments (Fig. 20b). Other simulations based on
such enhanced 3D elements can be found in Refs. [131,139].

5.3. Second gradient approach

Models developed in the framework of the generalized continuum
mechanics (in particular the second gradient models), bring improve-
ments beyond the standard continuum mechanics of Cauchy
[55,56,140–144]. To avoid the difficulties highlighted in section 5.1 in
3D simulations of textile reinforcement bending, a second gradient 3D
orthotropic model can be introduced [54,145–149]. The strain energy
density depends both on the right Cauchy-Green tensor C and on its
gradient:

∇ = + ∇C C C CW( , ) W ( ) W ( )I II (18)

Here, WI is the strain energy of the Cauchy model (first gradient)
andWII is the second gradient strain energy. It takes the local curvature
of the continuum into account and consequently makes it possible to
take into consideration the local fiber bending regardless of the first
gradient behavior.

The second gradient energy introduced from the invariants defined
in section 5.1 can be in the following form:

Fig. 19. Three point bending of an interlock reinforcement. (a) Experiment, (b) simula-
tion based on a model of Cauchy, (c) hinged bar system: initial, (d) hinged bar system:
deformed shape, (e) beams instead of bars.

Fig. 20. (a) Computation of the curvature in a hexahedral element, (b) Improvement of the three point bending test simulation [131].
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∇ = ∇ ∇ ∇ = ∇ + ∇

+ ∇

W W I I I ks I k I

k I

C( ) ( , , )
1

2

1

2
s

1

2
s

II II cp ct ct cp cp ct ct

ct ct

1 2
2

1 1
2

2 2
2

(19)

In this second gradient strain energy, the gradients of Ict1 and Ict2 are
measures of the out-of-plane curvatures of the warp and weft fibers,
respectively. The gradient of the invariant Icp is associated with the in-
plane bending of the fibers. As a consequence, the second gradient
material parameters kscp, ksct1 and ksct2 represent the in-plane and out of
plane bending stiffness of the fibres.

Different approaches are possible depending in particular on the
internal architecture of the reinforcement and the stresses. In a general
way, the terms of the second gradient relate to shear deformations that
are major in the case of textile reinforcements since the fibers are al-
most inextensible [54,146]. The deformation obtained during the si-
mulation of the three-point bending test using a second gradient model
is presented in Fig. 21. It is in correct agreement with experiments.
Second gradient models have shown to be of interest in different cases
of forming and bending of textile composite reinforcements [150–152].

A comparison of the deformed midlines obtained experimentally
and by the different approaches presented in sections 5 and 6 for the
simulation of the three point bending of the thick interlock specimen
(Fig. 19a)) is presented in Fig. 22. The deformed shaped obtained using
the Cauchy model shows a too small radius of curvature at the center of
the specimen and free extremities that do not rise enough. The other
approaches are all close to the experiments.

6. Specific shell approaches for the bending of textile

reinforcements

The possible slippage between the fibers of a textile reinforcement
leads to a bending behavior that is not correctly described by the
classical shell theories of Kirchhoff and Mindlin. In particular, the
bending and membrane stiffnesses are not simply related by the
thickness of the plate as this is the case for continuous materials in
conventional theory. For textile reinforcements, it is possible to de-
couple the membrane deformation and bending energies as is done in
Eqs. (2) and (3). The bending deformation energy is determined by the
relation M(χ) (bending moment-curvature) which can be determined
by the experimental methods presented in Section 3. A finite element
analysis (or an analytical calculation in some cases) based on the be-
havior M(χ) makes it possible to determine the mid-surface of the de-
formed reinforcement (Figs. 4, 14 and 15c and 16). Nevertheless, the
displacements and strains in the thickness are not specified. In some
analyses, it is not necessary to have knowledge of them, whereas in
other cases, and in particular for thick textile reinforcements, the ma-
terial directions initially perpendicular to the mid-surface (so called
‘normals’) rotate in a very specific manner (e.g., Fig. 19a). The classical
theories of plates provide displacements and strains in the thickness
direction. They are irrelevant for fibrous reinforcements. Beyond the
problem of non-coupling of the membrane and bending stiffnesses,
Kirchhoff's theory assumes that material directions initially perpendi-
cular to the surface remain perpendicular after deformation. The de-
formed shapes shown in Figs. 3, 9 and 19a, 23 and 24 for example
clearly demonstrate that the bending behavior of the textile reinforce-
ment is far from Kirchhoff's theory.

In Mindlin's theory, the curvature is the derivative of the rotation of
the normal (material direction initially perpendicular to the mid-sur-
face). This is not the case for fibrous reinforcements. For example, as
can be seen in Fig. 23, between sections 1 and 3, the normals remained
vertical but the curvature was non-zero. Moreover, trying to simulate
the bending of a textile reinforcement using Mindlin shell finite ele-
ments did not give a result in agreement with experiments [57].

The physics of textile reinforcement bending is specific. It is based
on the quasi-inextensibility of the fibers on the one hand and on the
possibility of sliding between the fibers on the other hand. Liang et al.
proposed a shell finite element for textile composite reinforcements
based on Ahmad's approach [57,153]. The finite element is shown in
Fig. 23c. It consists of parallel fibers, and the internal virtual work of
the element is obtained as the sum of virtual works of tension and of the

Fig. 21. Improvement of the 3 point bending test simulation by the use of a second
gradient approach [54].

Fig. 22. Comparison of the deformed midline
obtained for the 3 point bending of the interlock
specimen for the different approaches presented
in section 5 and 6.
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bending of each fiber.

∫ ∫∑ ∑= +
= =

δW T δε dL M δχ dLe

f

n

L

f f

f

n

L

f f
int

1

11
11

1

33
33

f f (20)

Here, T11 and M33 are the tension load and bending moment on the
fiber segment f , respectively, and δε11 and δχ33 are respectively the
virtual tensile strain and curvature. The tensile and bending strains can
be calculated precisely using neighboring elements. This specific shell
element gives results that are in good agreement with experiment,
especially in terms of rotations of the normals (Fig. 23). The simulation
of the three-point bending of the interlock reinforcement studied in
Section 5 is shown in Fig. 24. The results are accurate using a very low
number of degrees of freedom (20 dof in Fig. 24). Friction between
fibers plays a major role in the bending stiffness. It can be taken into
account in the bending stiffness of each fiber. Other simulations and
comparisons with experiments are presented in Ref. [57]. Sheet metal
forming simulations are made using shell finite elements based on
Kirchhoff or Mindlin theories (classical). A specific shell theory (non-
classical) should be necessary for fibrous reinforcements. Much remains
to be done and in particular this approach should be extended to 3D
shells.

7. Conclusion

Modeling and draping simulation of composite reinforcements re-
present a very active area of research. Although the first simulations of
textile reinforcement forming were carried out under the hypothesis of

a membrane, it has been shown that the bending stiffness, although
weak, played a significant role: in particular, it determines the size of
the wrinkles. The physics of bending are not the same for a continuous
plate, made for instance of metal, and for a textile reinforcement. In the
first case, the bending corresponds to an extension strain on one side of
the mid-surface and to a compressive strain on the other side. In the
case of fibrous reinforcements, the fibers are almost inextensible, but
there are slippages between the fibers that create bending.

Many experimental works have been carried out to measure flexure
of fibrous materials. Three main test families have been developed:
cantilever bending, Kawabata test (imposed curvature), and three-point
bending. Extensions of these tests at different temperatures and at dif-
ferent speeds are currently developed. Their objective is to identify
thermomechanical and viscoelastic flexural models (especially for
prepregs). Although the first tests, and in particular Peirce's test, are
almost a century old, the development of these experimental methods is
very active today.

Bending of fibrous reinforcements is not correctly modeled by
standard bending theories. What is needed is a theory for the bending of
fibrous reinforcements which would be for fibrous reinforcements what
the Kirchhoff and Mindlin models are for sheet metal. In the case of 3D
modeling it has been shown that standard Cauchy models cannot cor-
rectly describe the local bending stiffness of fibers. Generalized con-
tinuum mechanics models that are sufficiently simple and effective for
the simulation of the forming of textile reinforcements thus need to be
developed.

Appendix A

For an orthotropic material, the strain energy density function of a hyperelastic law is of the form [136]:

=w w I I I I I I I I I I I( , , , , , , , , , , )orth orth
1 2 3 41 42 43 412 423 51 52 53 (A.1)

where I I I, , ,1 2 3 are the invariants of the right Cauchy-green tensor C defined by:

=
= −

=

I Tr C

I Tr C Tr C

I Det C

( )

( ( ) ( ))

( )

1

2
1

2
2 2

3 (A.2)

and the mixed invariants (i and j= 1,3):

Fig. 23. Bending test on a multilayer reinforcement: (a) Experiment. (b) Simulation (c) Ahmad shell finite element.

Fig. 24. Three points bending tests on an interlock reinforcement:
Left: experiment, right: simulation [57].
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M1, M2 are the warp and weft directions and M3 is perpendicular to them. The structural tensors are defined for a material based on such M i vectors
(i ranges from 1 to 3):

= ⊗
= ⊗

= ⊗

M M M

M M M

M M M

,

and

1 1 1

2 2 2

3 3 3 (A.4)

The six strain invariants of the right Cauchy-Green tensor C, based on physical observations Ielong1, Ielong2, Icomp, Icp, Ict1, Ict2 and are function of the
invariants defined in Eqs. (A.2) and (A.3).

=
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The six strain energies of the hyperelastic model have been identified from tensile tests in the warp and weft directions, compaction test, bias
extension test (in-plane shear), and simple transverse shear tests. The corresponding identifications are detailed in Refs. [80,131].
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