
HAL Id: hal-02173756
https://hal.science/hal-02173756v1

Submitted on 4 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The generalized Gelfand–Graev characters of GLn(Fq)
Scott Andrews, Nathaniel Thiem

To cite this version:
Scott Andrews, Nathaniel Thiem. The generalized Gelfand–Graev characters of GLn(Fq). 28-th Inter-
national Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University,
Jul 2016, Vancouver, Canada. �10.46298/dmtcs.6406�. �hal-02173756�

https://hal.science/hal-02173756v1
https://hal.archives-ouvertes.fr


FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 49–60

The generalized Gelfand–Graev characters of
GLn(Fq) (extended abstract)

Scott Andrews1† and Nathaniel Thiem2‡

1Boise State University
2University of Colorado Boulder

Abstract. Introduced by Kawanaka in order to find the unipotent representations of finite groups of Lie type, gener-
alized Gelfand–Graev characters have remained somewhat mysterious. Even in the case of the finite general linear
groups, the combinatorics of their decompositions has not been worked out. This paper re-interprets Kawanaka’s def-
inition in type A in a way that gives far more flexibility in computations. We use these alternate constructions to show
how to obtain generalized Gelfand–Graev representations directly from the maximal unipotent subgroups. We also
explicitly decompose the corresponding generalized Gelfand–Graev characters in terms of unipotent representations,
thereby recovering the Kostka–Foulkes polynomials as multiplicities.

Résumé. Introduits par Kawanaka pour trouver des représentations unipotentes de groupes finis de type Lie, les
caractères généralisés de Gelfand–Graev sont restés en quelque sorte mystérieux. Même dans le cas des groupes
généraux linéaires finis, la combinatoire de leurs décompositions n’a pas été étudiée. Cet article réinterprète la
définition de Kawanaka en type A d’une façon qui offre bien plus de flexibilité pour les calculs. Nous utilisons ces
constructions alternatives pour montrer comment obtenir les représentations de Gelfand–Graev directement depuis les
sous-groupes unipotents maximaux. Nous décomposons aussi explicitement les caractères généralisés de Gelfand–
Graev correspondants en termes de représentations unipotentes, et retrouvons ainsi comme multiplicités les polynômes
de Kostka–Foulkes.

Keywords. unipotent representation, supercharacter, Kostka polynomial

1 Introduction
There has been considerable progress in recent years on the combinatorial representation theory of finite
unipotent groups. For example, the representation theory of the maximal unipotent subgroup UTn(Fq)
of the finite general linear group GLn(Fq) has developed from a wild problem to a combinatorial theory
based on set partitions [And95, Yan10]. Furthermore, by gluing together these theories we get a Hopf
structure analogous to the representation theory of the symmetric groups Sn (where we replace the sym-
metric functions of Sn with symmetric functions in non-commuting variables for UTn(Fq)) [AAB+12].
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An underlying philosophy of this paper is that the Bruhat decomposition of a finite group of Lie type

G =
⊔
w∈W
t∈T

UtwU

gives a factorization into a maximal unipotent U -part, a torus T -part , and a Weyl group W -part. The tra-
ditional approach to studying the representation theory of these groups has been to tease out the influence
of the representation theory of W and T . With the representation theory of U well-known to be wild, this
approach seemed natural and eventually led to Lusztig’s classification of the irreducible representations
of G [Lus84].

Lusztig’s indexing, however, is not overly constructive. In particular, we would like combinatorial
constructions of the unipotent representations of G, and here the representation theory of U has untapped
potential. The most natural way to find unipotent representations of G is to induce representations from
U . There are a number of known approaches:

(GG) The Gelfand–Graev representation is obtained by inducing a linear representation of U in general
position;

(DGG) The degenerate Gelfand–Graev representations generalize the GG representations by inducing
arbitrary linear representations of U ;

(GGG) The generalized Gelfand–Graev representations provide a different generalization by instead in-
ducing certain linear representations in general position from specified subgroups of U .

The GG representations were introduced to find cuspidal representations of G, and it was hoped that
the DGG representations could identify all of the unipotent representations of G. While this works for
GLn(Fq) [Zel81], in general the DGG representations are insufficient. Kawanaka introduced the GGG
representations [Kaw85] as a more effective method; the trade-off is that they appear to be more difficult
to work with. Even for GLn(Fq) these representations are not particularly well-understood, and this paper
hopes to develop this example as a model for tackling other types.

Each GGG representation Ind
GLn(Fq)
U ′ (γ) is induced from a linear representation γ of a subgroup U ′ ⊆

UTn(Fq). The construction given by Kawanaka uses the root combinatorics of the corresponding Lie
algebra to identify U ′ and γ; however, inducing makes these specific choices somewhat artificial. Our
main result of Section 3 gives a more direct method of choosing the pairs (γ, U ′) that induce to GGG
representations.

An alternative approach is to identify representations of UTn(Fq) that induce to GGG representations;
that is, are there choices for (γ, U ′) such that we already know the UTn(Fq)-module Ind

UTn(Fq)
U ′ (γ)? Our

main results of Section 4 (Corollaries 4.3 and 4.4) show that these induced representations may in fact
be chosen so that they afford supercharacters of a natural supercharacter theory [DI08] of UTn(Fq); this
supercharacter theory, which is built on non-nesting set partitions, is described by Andrews in [And15a].
From this point of view, we could conduct all our constructions using known monomial representations
of UTn(Fq).

Given our understanding of GGG representations from the previous sections, we decompose the corre-
sponding characters into unipotent characters of GLn(Fq) using Green’s symmetric function description
[Gre55, Mac95]. Our main result of Section 5 (Theorem 5.1) is that the multiplicities of the unipotent
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characters are given exactly by Kostka–Foulkes polynomials; this effectively makes the GGG characters
q-analogues of the DGG characters, and gives another representation theoretic interpretation for these
polynomials.

We consider this paper to be the first steps in a larger program of constructing unipotent modules for
finite groups of Lie type. In [And15b], Andrews uses the constructions of this paper to explicitly construct
the unipotent modules for GLn(Fq). However, for other types there is more work to do. For type C we
have an idea of what the analogues of Corollaries 4.3 and 4.4 should be, but even for type B there is again
more work. We hope this paper can give a road map for future constructions.

2 Preliminaries
This section introduces some of the background topics for the paper. In particular, we give brief introduc-
tions to the representation theory of the finite general linear groups, our set partition combinatorics, the
unipotent subgroups of greatest interest, and the notion of a supercharacter theory.

2.1 The combinatorial representation theory of GLn(Fq)
In this section we present an indexing of the irreducible characters of GLn(Fq) and describe these char-
acters in terms of symmetric functions. This result is initially due to Green [Gre55] and is also found in
[Mac95].

If n = mk, ϕ ∈ Hom(F×
qk
,C×), and x ∈ F×qn , define an injective homomorphism

Hom(F×
qk
,C×) −→ Hom(F×qn ,C×)

ϕ 7→ ϕ ◦NFqn/Fqk
where

NFqn/Fqk : Fqn −→ Fqk
t 7→ t1+qm+q2m+···+q(k−1)m

.

With these identifications, let ˆ̄F×q =
⋃
n≥1 Hom(F×qn ,C×). Let σ : F̄×q → F̄×q be the Frobenius map

defined by σ(x) = xq , and let

Θ = {〈σ〉-orbits in ˆ̄F×q } and Φ = {〈σ〉-orbits in F̄×q }.

If P is the set of integer partitions and X is a set, define the set of X -partitions PX to be the set

PX =

{
λ : X −→ P

ϕ 7→ λ(ϕ)

}
.

For X ∈ {Θ,Φ}, the size of λ ∈ PX is |λ| =
∑
ϕ∈X |ϕ||λ(ϕ)|.

Theorem 2.1 ([Gre55, Theorem 14]) The complex irreducible characters of GLn(Fq) are indexed by
the functions λ ∈ PΘ such that |λ| = n, and the conjugacy classes of GLn(Fq) are indexed by the
functions µ ∈ PΦ such that |µ| = n.

The C-vector space

cf(GL) =
⊕
n≥1

cf(GLn), where cf(GLn) = {class functions of GLn(Fq)},

has a graded commutative C-algebra structure with multiplication given by parabolic induction.
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For each f ∈ Φ, let X(f) = {X(f)
1 , X

(f)
2 , . . .} be a countably infinite set of variables. We define

Sym(GL) =
⊗
f∈Φ

Sym(X(f)), where Sym(X(f)) is theC-algebra of symmetric functions in the variables

X(f).
For λ = (λ1, . . . , λ`) a partition of k andX an infinite set of variables, define P̃λ(X; q) = q−n(λ)Pλ(X; q−1),

where n(λ) =
∑`
i=1(i − 1)λi and Pλ(X; q) is the Hall–Littlewood symmetric function. For µ ∈ PΦ,

define P̃µ(X; q) =
∏
f∈Φ

P̃µ(f)(X(f); q|f |).

Each µ ∈ PΦ corresponds to a conjugacy class of GL|µ|(Fq); we define the indicator functions δµ :
GL|µ|(Fq)→ C by

δµ(g) =

{
1 if g has conjugacy type µ,
0 otherwise.

Theorem 2.2 ([Mac95, IV.4.1]) The characteristic function

ch : cf(GL) −→ Sym(GL)

δµ 7→ P̃µ(X; q).

is an isomorphism of graded C-algebras.

To describe the images of the irreducible characters of GLn(Fq) under the characteristic map, we
introduce a new set of variables. For each ϕ ∈ Θ, let Y (ϕ) = {Y (ϕ)

1 , Y
(ϕ)
2 , . . .} be the countably infinite

set of variables completely determined by

pk(Y (ϕ)) = (−1)k|ϕ|−1
∑
f∈Φ

f⊆F
qk|ϕ|

(∑
x∈f

ϕ(x)

)
p k|ϕ|
|f|

(X(f)), for k ∈ Z≥1. (2.1)

For λ a partition of n, let sλ(Y ) denote the Schur function. For ν ∈ PΘ, let sν =
∏
ϕ∈Θ

sν(ϕ)(Y (ϕ)).

Theorem 2.3 ([Mac95, IV.6.8]) The set {ch−1(sν) | ν ∈ P, |ν| = n} is exactly the set of irreducible
characters of GLn(Fq).

2.2 Set partition combinatorics
In this section we introduce some background and terminology regarding set partitions. A set partition η
of {1, 2, . . . , n} is a subset

η ⊆ {i _ j | 1 ≤ i < j ≤ n}
such that if i _ k, j _ l ∈ η, then i = j if and only if k = l. Let

Sn = {set partitions of {1, 2, . . . , n}}. (2.2)

We can represent these set partitions by an arc diagram where we line up n nodes and connect the ith
to the jth if i _ j ∈ η. For example,

•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8

= {1 _ 4, 3 _ 6, 6 _ 8} ∈ S8.
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We say that a set partition is nonnesting if it contains no pair of arcs i _ l, j _ k with i < j < k < l.
In other words, the relative positioning of arcs

• • • •
i j k l

never occurs in the arc diagram of the set partition. Let

Snn
n = {η ∈ Sn | η nonnesting}. (2.3)

We often will be interested in the integer partition consisting of the block sizes of a set partition η,
which we will denote bl(η).

2.3 Unipotent subgroups of GLn(Fq)
A unipotent subgroup U ⊆ GLn(Fq) is a subgroup that is conjugate to a subgroup of the group of
unipotent upper-triangular matrices

UTn(Fq) = {g ∈ GLn(Fq) | (g − Id)ij 6= 0 implies i < j}.

Since every char(Fq)-group is isomorphic to a unipotent subgroup of GLn(Fq) for some n, these sub-
groups can get quite messy. We will therefore focus on the set of normal pattern subgroups

Un = {U E UTn(Fq) | Tn ⊆ NGLn(Fq)(U)},

where Tn ⊆ GLn(Fq) is the subgroup of diagonal matrices. Note that UTn(Fq) ∈ Un.
The following special cases will be of particular importance.

Integer compositions. For a composition α = (α1, . . . , α`) of n, let

Uα =


Idα1 ∗ · · · ∗

0 Idα2

. . .
...

...
. . . . . . ∗

0 · · · 0 Idα`

 ⊆ UTn(Fq).

Set partitions. For a non-nesting set partition η ∈ Snn
n , let

Uη = {u ∈ UTn(Fq) | ujk = 0 if i ≤ j < k ≤ l with i_l ∈ η − {j_k}}.

We will be particularly interested in the case where Uη ⊆ Ubl(η)′ .

2.4 Supercharacter theories
The notion of a supercharacter theory for a finite group G was introduced by Diaconis–Isaacs in [DI08].
The basic idea is to treat linear combinations of irreducible characters as the “irreducible characters” of
the theory, and have a corresponding partition of G whose blocks (called superclasses) are unions of
conjugacy classes. From a slightly different point of view, this gives us a Schur ring [Hen12], and we will
define a supercharacter theory from that point of view.

A supercharacter theory scf(G) of a finite group G is a subspace scf(G) of the C-space of class func-
tions cf(G) such that scf(G) is a subalgebra of cf(G) with respect to the ring structures
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(R1) (χ� ψ)(g) = χ(g)ψ(g), for χ, ψ ∈ cf(G), g ∈ G; and

(R2) (χ ◦ ψ)(g) =
∑
h∈G

χ(h)ψ(h−1g), for χ, ψ ∈ cf(G), g ∈ G.

Each ring structure gives rise to aC-basis of orthogonal idempotents, one consisting of orthogonal char-
acters (with respect to (R2)) and the other consists of set identifier functions that identify the superclasses
(with respect to (R1)).

3 Generalized Gelfand–Graev representation construction and char-
acterization

This section gives the definition and construction of the generalized Gelfand–Graev representations and
presents a characterization of the generalized Gelfand–Graev characters.

3.1 A combinatorial version of Kawanaka’s construction
The generalized Gelfand–Graev representations were introduced by Kawanaka [Kaw85] as a source for
cuspidal representations of finite groups of Lie type. In the case of GLn(Fq), the GGG characters form a
basis for the space of class functions of unipotent support

cfun
supp(GL) ∼= Sym(X(1)) (in the notation of Section 2.1).

It follows that the GGG representations are indexed by integer partitions; Kawanaka constructs them
from the nilpotent GLn(Fq)-orbits of the corresponding Lie algebra gln(Fq). In this section we present a
different construction that is more combinatorial in nature.

Given an integer partition λ ` n, we construct a unipotent subgroup Uctr(λ′) ⊆ UTn(Fq) and a linear
representation γλ : Uctr(λ′) → GL1(C) such that the generalized Gelfand–Graev representation Γλ is
given by

Γλ = Ind
GLn(Fq)
Uctr(λ′)

(γλ).

3.1.1 The unipotent subgroup Uctr(λ′)

Fix an integer partition λ = (λ1, . . . , λ`). We define a permutation ctr ∈ Sλ1
by

ctr(j) =

{
bλ1/2 + 1c+ j−1

2 if j /∈ 2Z,
dλ1/2 + 1e − j/2 if j ∈ 2Z.

That is, ctr pushes all of the odd elements to the end and the even ones to the beginning; the odd elements
stay in the same relative order and the even ones get placed in reverse order. We will use ctr to permute
the parts of λ′ (or equivalently the columns of the Ferrers diagram of λ).

We are interested in three Ferrers shapes corresponding to this partition:

(F0) the usual left-justified Ferrers shape,

(F1) the shape obtained by centering the rows of (F0),

(F2) the shape obtained by applying ctr to the columns of (F0) to get nearly centered rows without
offsets.
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For example, if λ = (4, 3, 2, 2, 1), then we write

(F0) = , (F1) = , and (F2) = .

We will need (F1) to define γλ; the composition ctr(λ′) determined by the columns of (F2) gives us the
subgroup Uctr(λ′) (as in Section 2.3).

Remark 3.1 The group Uctr(λ′) is the group U1.5 in Kawanaka [Kaw85]. There are some choices to be
made in the construction of U1.5, and our choice of column permutation to get (F2) makes these choices.

3.1.2 Γλ from the linear representation γλ
Consider the column reading tableau on (F1) obtained by numbering in order down consecutive half-
columns. Let Cλ be the corresponding tableau of shape (F2) by viewing (F2) as a row shift from (F1). In
our example,

7

5 10

4 9

2 6 11

1 3 8 12

becomes Cλ =

7

5 10

4 9

2 6 11

1 3 8 12

.

Given λ ` n, we obtain a set-partition

ggg(λ) = {i_j | i < j are in the same row and consecutive columns of Cλ},

whose block sizes are the parts of λ. In our running example,

ggg(λ) = •
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12

.

Fix a nontrivial homomorphism ϑ : F+
q → GL1(C). Define

γλ : Uctr(λ′) −→ GL1(C)

u 7→
∏

i_j∈ggg(λ)

ϑ(uij) .

Note that the commutator subgroup of Uctr(λ′) is given by

[Uctr(λ′), Uctr(λ′)] =

{
u ∈ UTn(Fq)

∣∣∣∣ (u− Idn)ij 6= 0 implies i is at least
two columns left of j in Cλ

}
.

Since [Uctr(λ′), Uctr(λ′)] ⊆ ker(γλ), the function γλ is a representation.
Define the generalized Gelfand–Graev representation (or GGG representation) corresponding to the

integer partition λ ` n to be the induced representation

Γλ = Ind
GLn(Fq)
Uctr(λ′)

(γλ).

Remark 3.2 There are a number of choices made in this construction, but none of them matter once we
induce to GLn(Fq).
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3.2 A characterization of generalized Gelfand-Graev characters
Using our construction, we obtain an elementary proof for a known characterization of the generalized
Gelfand–Graev characters.

Theorem 3.3 (Geck–Hézard [GH08]) Suppose that f ∈ cfun
supp(GLn) and λ ` n. Then f satisfies

(G1) 〈f, χµ(1)〉 = 0 unless µ � λ, and

(G2) f(uµ) = 0 unless µ � λ,

if and only if f = cΓλ for some constant c ∈ C. In particular, {Γλ | λ ` n} is a basis for the space of
unipotently supported class functions of GLn(Fq).

4 GGG characters from non-nesting supercharacters of UTn(Fq)
Since UTn(Fq) ⊆ GLn(Fq) contains all of the subgroups that we are inducing from, it is natural to try
to classify the representations of UTn(Fq) that induce to GGG characters. This sections shows that even
though the representation theory of UTn(Fq) is wild, we already know the representations that induce to
GGG characters from the study of supercharacters.

We fix a nontrivial homomorphism
ϑ : F+

q → C×.

4.1 A supercharacter theory from non-nesting set partitions
Retaining the notation from Section 2.3, for a non-nesting set partition η ∈ Snn

n , the group

Uη = {u ∈ UTn(Fq) | ujk = 0 if there exists i_l ∈ η − {j_k} with i ≤ j < k ≤ l},

has an associated nilpotent Fq-algebra uη = Uη − Idn. For any function

η× : η −→ F×q
i _ j 7→ ηij ,

we define a linear character γη× of Uη by

γη×(u) =
∏

i_j∈η
ϑ(ηijuij).

Define
χη
×

nn = Ind
UTn(Fq)
Uη

(γη×).

These characters are in fact the supercharacters of a supercharacter theory of UTn(Fq) [And15a], which
we will refer to as the non-nesting supercharacter theory of UTn(Fq).

Theorem 4.1 ([And15a, Theorem 5.4]) The subspace

scfnn(UTn(Fq)) = C-span{χη
×

nn | η ∈ Snn
n , η× : η → F×q } ⊆ cf(UTn(Fq))

is a supercharacter theory of UTn(Fq).
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Remark 4.2 In relating these supercharacters to GGG characters, our choice of η× becomes immaterial;
that is, we might as well send all of the arcs to 1 ∈ F×q . Therefore, we will use the convention that for
η ∈ Snn

n ,
γη(u) =

∏
i_j∈η

ϑ(uij).

4.2 From non-nesting supercharacters to GGG characters
Let α � n be a composition. An α-column tableau T is a filling of the Ferrers shape with ordered column
lengths α, such that

(T1) Each number {1, . . . , n} appears exactly once,

(T2) For 1 ≤ i < j ≤ `(α), the entries of column i are strictly less than the entries of column j,

(T3) If row i and row j in T have the same length, then i < j implies the first entry of row i is less than
the first entry of row j.

Let
Tα = {α-column tableaux}.

We can obtain set partitions from such tableaux by letting the rows give the connected components; more
formally, we have a map

sp : Tα −→ S|α|
T 7→

⋃
row (i1, . . . , ir)

of T

{i1 _ i2, i2 _ i3, . . . , ir−1 _ ir}.

For example,

sp


12

6 9

3 10

1 4 7

2 5 8 11

 = •
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12
.

Let
T nn
α = {T ∈ Tα | sp(T ) ∈ Snn

|α|}.

For T ∈ T nn
α , let UT = VT o Usp(T ), where

VT =

{
u ∈ UTn(Fq)

∣∣∣∣ (u− Idn)ij 6= 0 implies i_k ∈ sp(T ) with
i < j < k, i strictly North of j in T

}
.

Note that while UT � Uα, it will follow from the proof of Corollary 4.3 that |UT | = |Uα|.
The following result allows us to obtain generalized Gelfand–Graev characters from the supercharacters

χ
sp(T )
nn .
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Corollary 4.3 Let µ ` n, α � n be a rearrangement of µ′ and T ∈ T nn
α . Then

Ind
GLn(Fq)
UTn(Fq)(χ

sp(T )
nn ) = |VT |Γµ.

Note that if α = µ′, then we may set T equal to the column reading tableau to satisfy the hypotheses
of the corollary. From this we can conclude that we get all the generalized Gelfand–Graev characters by
inducing from non-nesting supercharacters.

Corollary 4.4 Let µ ` n and T be the column reading tableau of the standard Ferrer diagram. Then

1

|VT |
χsp(T )

nn

is a character of UTn(Fq) that induces to Γµ (without scaling).

5 Symmetric functions
In this section we study the images of the generalized Gelfand–Graev characters under the characteris-
tic map. In particular, we calculate the multiplicities of the irreducible characters of GLn(Fq) in the
generalized Gelfand–Graev characters.

5.1 The multiplicities of the unipotent characters
We first use our construction to calculate the multiplicities of the irreducible unipotent characters of
GLn(Fq) in the generalized Gelfand–Graev characters.

Theorem 5.1 We have that
〈Γλ, χµ

(1)

〉 = Kµλ(q),

where χµ
(1)

is the unipotent character of GLn(Fq) corresponding to the partition µ.

As a corollary, we determine the image of Γλ under the characteristic map.

Corollary 5.2 For λ ∈ P , we have that

ch(Γλ) = (−1)|λ|Qλ(X(1); q),

where the Qλ(X(1); q) are the Hall-Littlewood symmetric functions [Mac95, III.2.11].

5.2 Multiplicities of the irreducible characters of GLn(Fq)
By Theorem 5.1, we have that for χν a unipotent character,

〈Γλ, χν〉 = Kνλ(q).

A class function with unipotent support is uniquely determined by the multiplicities of the unipotent
characters, thus we can use the above result to determine a formula for the multiplicities of arbitrary
irreducible characters of GLn(Fq) in Γλ.
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For µ ∈ PΘ, we define ss(µ),un(µ) ∈ PΘ by

ss(µ)(ϕ) =
(

1|µ
(ϕ)|
)

and un(µ)(ϕ) =


⋃
ϕ∈Θ

|ϕ|µ(ϕ) if ϕ = {1},

∅ otherwise.

For µ and λ partitions of n, let ψλµ be the value of the irreducible character ψλ of Sn on the conjugacy
class Cµ, and let zµ be the size of the centralizer of an element of Cµ. Then

sλ =
∑
µ`n

ψλµ
zµ
pµ and pµ =

∑
λ`n

ψλµsλ.

For ν, µ ∈ PΘ with ss(ν) = ss(µ), define

ψνµ =
∏
ϕ∈Θ

ψν
(ϕ)

µ(ϕ) and zµ =
∏
ϕ∈Θ

zµ(ϕ) .

Proposition 5.3 For ν ∈ PΘ,

〈Γλ, χν〉 =
∑
µ∈PΘ

ss(µ)=ss(ν)

ψνµ
zµ
Xλ

un(µ)(q),

where Xλ
un(µ)(q) is as in [Mac95, III.7.1].

When the irreducible character is a product of cuspidal characters, this equation simplifies nicely.

Corollary 5.4 If |ν(ϕ)| ≤ 1 for all ϕ ∈ Θ, then

〈Γλ, χν〉 = Xλ
un(ν)(q).

In particular, if λ is cuspidal, then [Mac95, III.7.E2] gives the following result.

Corollary 5.5 If ν ∈ PΘ
N satisfies ν(ϕ) = (1) for some ϕ ∈ Θ with |ϕ| = N , then

〈Γλ, χν〉 = qn(λ)

`(λ)−1∏
i=1

(1− q−i).

We can also consider the opposite extreme, where ν ∈ PΘ satisfies ν(ϕ) = ∅ for |ϕ| > 1. Recall that if
µ and ν are partitions, the Littlewood–Richardson coefficients cλµν are defined by

sµsν =
∑
λ`n

cλµνsλ,

as in [Mac95, I.9.1]. For ν ∈ PΘ with ν(ϕ) = ∅ for |ϕ| > 1, we define cµν by∏
ϕ∈Θ

sν(ϕ) =
∑
µ`|ν|

cµνsµ.

Proposition 5.6 If ν ∈ PΘ satisfies ν(ϕ) = ∅ for |ϕ| > 1, then

〈Γλ, χν〉 =
∑
µ`|λ|

cµνKµλ(q).
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[AAB+12] M. Aguiar, C. André, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson,

S. Hsiao, I. M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li,
K. Magaard, E. Marberg, J.-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J.-Y. Thibon, N. Thiem,
V. Venkateswaran, C. R. Vinroot, N. Yan, and M. Zabrocki. Supercharacters, symmetric
functions in noncommuting variables, and related Hopf algebras. Adv. Math., 229(4):2310–
2337, 2012.
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