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PRECISE LARGE DEVIATION ASYMPTOTICS FOR
PRODUCTS OF RANDOM MATRICES

HUI XIAO!, ION GRAMA'2 AND QUANSHENG LIU!

ABSTRACT. Let (gn)n>1 be a sequence of independent identically dis-
tributed d x d real random matrices with Lyapunov exponent ~. For
any starting point  on the unit sphere in R?, we deal with the norm
|Grz|, where Gy, := gn ...g1. The goal of this paper is to establish pre-
cise asymptotics for large deviation probabilities P(log |Grz| = n(q+1)),
where ¢ > « is fixed and [ is vanishing as n — co. We study both in-
vertible matrices and positive matrices and give analogous results for the
couple (X5, log|Grx|) with target functions, where X, = Gnz/|Gnz|.
As applications we improve previous results on the large deviation prin-
ciple for the matrix norm ||G,|| and obtain a precise local limit theorem
with large deviations.

1. INTRODUCTION

1.1. Background and main objectives. One of the fundamental results
in the probability theory is the law of large numbers. The large deviation
theory describes the rate of convergence in the law of large numbers. The
most important results in this direction are the Bahadur-Rao and the Petrov
precise large deviation asymptotics that we recall below for independent
and identically distributed (i.i.d.) real-valued random variables (X;);>1. Let
Sp = >, X;. Denote by I, the set of real numbers s > 0 such that
A(s) := logE[e**1] < 400 and by I} the interior of Iy. Let A* be the
Frenchel-Legendre transform of A. Assume that s € I and ¢ are related by
q = N(s). Set 02 = A”(s). From the results of Bahadur and Rao [1] and
Petrov [31] it follows that if the law of X is non-lattice, then the following

Université de Bretagne-Sud, LMBA UMR CNRS 6205, Vannes, France.

2Corresponding author: ion.grama@univ-ubs.fr

Date: July 3, 2019.

2010 Mathematics Subject Classification. Primary 60F10, 60B20; Secondary 60J05.

Key words and phrases. Product of random matrices; Random walk on the general
linear group; Random walk on the semigroup of positive matrices; spectral gap; large
deviation; Bahadur-Rao theorem.

1



2 HUI XIAO!, ION GRAMAL2, AND QUANSHENG LIU?

large deviation asymptotic holds true:

exp(—nA*(g +1))
sosV2mn

P(S, = n(qg+1)) ~ , M — 00, (1.1)

where A*(qg+1) = A*(q) + sl + % +O(1?) and [ is a vanishing perturbation
as n — oo. Bahadur and Rao [1] have established the equivalence (1.1)
with [ = 0. Petrov improved it by showing that (1.1) holds uniformly in
lI| <1, = 0 as n — oo. Actually, Petrov’s result is also uniform in ¢ and
is therefore stronger than Bahadur-Rao’s theorem even with [ = 0. The
relation (1.1) with [ = 0 and its extension to || < I, — 0 have multiple
implications in various domains of probability and statistics. The main
goal of the present paper is to establish an equivalence similar to (1.1) for
products of i.i.d. random matrices.

Let (gn)n>1 be a sequence of i.i.d. d x d real random matrices defined
on a probability space (£, F,P) with common law p. Denote by || - || the
operator norm of a matrix and by | - | the Euclidean norm in R?. Set
for brevity G, := gn...g1, n = 1. The study of asymptotic behavior of
the product G, attracted much attention, since the fundamental work of
Furstenberg and Kesten [15], where the strong law of large numbers for
log ||Gr,|| has been established. Under additional assumptions, Furstenberg
[14] extended it to log|Gpz|, for any starting point z on the unit sphere
S = {z € R?: |z| = 1}. A number of noteworthy results in this area can
be found in Kesten [28], Kingman [29], Le Page [30], Guivarc’h and Raugi
[22], Bougerol and Lacroix [5], Goldsheid and Guivarc’h [17], Hennion [24],
Furman [13], Hennion and Hervé [26], Guivarc’h [20], Guivarc’h and Le Page
[21], Benoist and Quint [2, 3] to name only a few.

In this paper we are interested in asymptotic behaviour of large deviation
probabilities for log |Gpx| where z € S41. Set I, = {s > 0 : E(||g1]]*) <

+o0}. For s € I, let k(s) = limy, o (EHGnHS)% . Define the convex function
A(s) =logk(s), s € I,,, and consider its Fenchel-Legendre transform A*(q) =
sup,es, {sq—A(s)}, ¢ € A'(1,). Our first objective is to establish the following
Bahadur-Rao type precise large deviation asymptotic:

%

P(log |G| > ng) ~ 7s(z) SR L o (1.2)

SOV 2mn

where g, > 0, 1y = % > 0, s and v, are, respectively, the unique up to a
constant eigenfunction and unique probability eigenmeasure of the transfer
operator Py corresponding to the eigenvalue k(s) (see Section 2.2 for precise
statements). In fact, to enlarge the area of applications in (1.2) it is useful
to add a vanishing perturbation for ¢. In this line we obtain the follow-
ing Petrov type large deviation expansion: under appropriate conditions,



LARGE DEVIATIONS FOR PRODUCTS OF RANDOM MATRICES 3

uniformly in |I| <, = 0 as n — oo,

exp (—nA* (g +1))
sosV 2T

P(log |Grx| = n(q+1)) ~ 75(x) , M — 00. (1.3)
As an consequence of (1.3) we are able to infer new results, such as large
deviation principles for log||Gy||, see Theorem 2.5. From (1.3) we also de-
duce a local large deviation asymptotic: there exists a sequence A, > 0
converging to 0 such that, uniformly in A € [A,, o(n)],

P(log |Grx| € [ng,ng+ A)) ~ Aﬂe_”[‘*(q), n — 0o. (1.4)
sosV2mn
Our results are established for both invertible matrices and positive ma-
trices. For invertible matrices, Le Page [30] has obtained (1.2) for s > 0
small enough under more restrictive conditions, such as the existence of ex-
ponential moments of ||g;|| and [|g;*||. The asymptotic (1.2) clearly implies
a large deviation result due to Buraczewski and Mentemeier [8] which holds
for invertible matrices and positive matrices: for ¢ = A’(s) and s € I, there
exist two constants 0 < ¢y < Cs < +00 such that

P(log |Gnz| > ng) P(log |Gpz| = nq)

¢s < liminf < limsu - < C. 1.5
5N S ﬁ e—nA*(q) o0 ﬁ e—nA*(q) s (15)
Consider the Markov chain X7 := G,x/|Gnx|. Our second objective is

to give precise large deviations for the couple (X7, log|Gpz|) with target
functions. We prove that for any Hoélder continuous target function ¢ on
XE and any target function ¢ on log|G,x| such that y — e *¥(y) is

directly Riemann integrable, it holds that

E[(X;)u(log|Gra| - n(g +1))]
exp (—nA*(g +1)

~ @) [y TG,

As a special case of (1.6) with [ = 0 and ¢ compactly supported we obtain
Theorem 3.3 of Guivarc’h [20]. With [ = 0, ¢ the indicator function of the
interval [0, 00) and ¢ = rg, we get the main result in [§].

Our third objective is to establish asymptotics for lower large deviation
probabilities: we prove that for ¢ = A’(s) with s < 0 sufficiently close to 0,
it holds, uniformly in |I| < I,,

n — 00. (1.6)

exp (—nA*(q+1))
—50sV 21N

This sharpens the large deviation principle established in [5, Theorem 6.1]
for invertible matrices. Moreover, we extend the large deviation asymptotic
(1.7) to the couple (X7, log|Gpz|) with target functions.

P(log |G| < n(q +1)) = 7ala) (L+o().  (L7)
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1.2. Proof outline. Our proof is different from the standard approach of
Dembo and Zeitouni [11] based on the Edgeworth expansion, which has been
employed for instance in [8]. In contrast to [8], we start with the identity

e (q+10)

Wp(log |G| = n(q+1))

_ enhSa)EQg(i/)s(logle —n(Q+l)))7 (1.8)

rs(X7)
where QY is the change of measure defined in Section 3 for the norm cocycle
log |G|, ¥s(y) = e 120y and hs(l) = A*(g+1) — A*(q) — sl. Usually the
expectation in the right-hand side of (1.8) is handled via the Edgeworth ex-

pansion for the distribution function Q% (%% < t); however, the pres-

ence of the multiplier r;(XZ)~! makes this impossible. Our idea is to replace
the function s with some upper and lower smoothed bounds using a tech-
nique from Grama, Lauvergnat and Le Page [18]. For simplicity we deal only
with the upper bound v < 1/);5 * p.2, where w;fg(y) = SUPy/.|y/ —y|<e »s(y'),
for some € > 0, and p.2 is a density function on the real line satisfying the
following properties: the Fourier transform .2 is supported on [—£72, 2]
has a continuous extension in the complex plane and is analytic in the do-
main {z € C: |2] < e72,32 # 0}, see Lemma 4.2. Let R;;; be the perturbed
operator defined by R :(v)(z) = Ege [p(X,)ettlloglorl=a)] for any Holder
continuous function ¢ on the unit sphere S¥~!. Using the inversion formula
we obtain the following upper bound:

(ws(log |Grz| —n(q + l)))
rs(X37)
1 —itln pn — 7 ~
<o LRI @I 00, (19)
™ JR
where R?,it is the n-th iteration of R, ;. The integral in the right-hand side
of (1.9) is decomposed into two parts:

et O [ [ e R, ) @) Wpa (0de (110)
lt<s  Jit|=6 ’ '

Since p.2 is compactly supported on R and p is non-arithmetic, the second
integral in (1.10) decays exponentially fast to 0. To deal with the first inte-
gral in (1.10), we make use of spectral gap decomposition for the perturbed
operator R ;i R, = A Ilg i + N, Snzt Taking into account the fact that

S,it S,it
the remainder term N;, decays exponentially fast to 0, the main difficulty

is to investigate the integral:

)

EQI

s

J )
e [ TN ) @) (52 (0
-5 ’ ’
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To find the exact asymptotic of this integral, we can apply the saddle point
method (see Fedoryuk [12]). This is possible, since by the analyticity of the
functions &js and p,2, one can apply Cauchy’s integral theorem to change
the integration path so that it passes through the saddle point zp = 2zp(l),
which is the unique solution of the saddle point equation log A5, = 2.

The lower bound of the integral in (1.8) is a little more delicate, but can
be treated in a similar way. The passage to the targeted version is done by
using approximation techniques.

We end this section by fixing some notation, which will be used through-
out the paper. We denote by ¢, C, eventually supplied with indices, absolute
constants whose values may change from line to line. By c¢o, Cy we mean
constants depending only on the index a. The interior of a set A is denoted
by A°. Let N = {1,2,...}. For any integrable function ¢ : R — C, define
its Fourier transform by ¢(t) = Jre Wi(y)dy, t € R. For a matrix g, its
transpose is denoted by ¢gT. For a measure v and a function ¢ we write

v(p) = [ pdv.

2. MAIN RESULTS

2.1. Notation and conditions. The space R? is equipped with the stan-
dard scalar product (-, -) and the Euclidean norm |-|. For d > 1, let M (d,R)
be the set of d x d matrices with entries in R equipped with the operator
norm ||g|| = sup,ega—1 |gz|, for g € M(d,R), where STt = {x € R?, |z| = 1}
is the unit sphere.

We shall work with products of invertible or positive matrices (all over
the paper we use the term positive in the wide sense, i.e. each entry is non-
negative). Denote by 4 = GL(d,R) the general linear group of invertible
matrices of M (d,R). A positive matrix g € M(d,R) is said to be allowable,
if every row and every column of ¢ has a strictly positive entry. Denote by
¢, the multiplicative semigroup of allowable positive matrices of M (d,R).
We write &7 for the subsemigroup of ¢, with strictly positive entries.

Denote by Sifl = {z > 0: |z| = 1} the intersection of the unit sphere
with the positive quadrant. To unify the exposition, we use the symbol S to
denote S?! in the case of invertible matrices, and Si_l in the case of positive
matrices. The space S is equipped with the metric d which we proceed to
introduce. For invertible matrices, the distance d is defined as the angular
distance (see [21]), i.e., for any z,y € S9!, d(z,y) = |sinf(z,y)|, where
O(x,y) is the angle between = and y. For positive matrices, the distance d is

the Hilbert cross-ratio metric (see [24]) defined by d(z,y) = %,

where m(z,y) = sup{\ > 0: Ay; < z;, Vi=1,...,d}, for any two vectors
x=(x1,...,2q) and y = (y1,...,yq) in Sfffl.



6 HUI XIAO!, ION GRAMAL2, AND QUANSHENG LIU?

Let C(S) be the space of continuous functions on S. We write 1 for the
identity function 1(z), z € S. Throughout this paper, let v > 0 be a fixed
small constant. For any ¢ € C(S), set

lp(x) — p(y)]
) = sup |plx and ©Olly == |lp + sup ——F—7—,
|| Hoo e ‘ ( )| H ”7 ” Hoo eyl d(x,y)7

and introduce the Banach space By := {¢ € C(S) : ||¢|ly < +o0}.
9

For g € M(d,R) and = € S, write g -z = ﬁ for the projective action
of gon S. For any g € M(d,R), set ¢(g) := inf,es |gz|. For both invertible
matrices and allowable positive matrices, it holds that ¢(g) > 0. Note that
for any invertible matrix g, we have «(g) = ||g~ ||~ .

Let (gn)n>1 be a sequence of i.i.d. random matrices of the same probability
law o on M(d,R). Set G, = gn, - .. g1, for n > 1. Our goal is to establish, un-
der suitable conditions, a large deviation equivalence similar to (1.1) for the
norm cocycle log |G, x| for invertible matrices and positive matrices. In both
cases, we denote by I', := [supp p] the smallest closed semigroup of M (d, R)
generated by supp p (the support of p), that is, I')y = Up2 {supp p}™.

Set

L= {s > 0: E(lg1]|*) < +o0}.
Applying Hélder’s inequality to E(||g1]|®), it is easily seen that I, is an
interval. We make use of the following exponential moment condition:

Al. There exist s € I, and o € (0,1) such that Efg[***¢(g1)™* < +o0.

For invertible matrices, we introduce the following strong irreducibility
and proximality conditions, where we recall that a matrix ¢ is said to be
prozimal if it has an algebraic simple dominant eigenvalue.

A2. (i)(Strong irreducibility) No finite union of proper subspaces of R? is
I, -invariant.
(ii) (Proximality) I', contains at least one proximal matriz.

The conditions of strong irreducibility and proximality are always satisfied
for d = 1. If g is proximal, denote by ), its dominant eigenvalue and by
vy the associated normalized eigenvector (|vy| = 1). In fact, g is proximal
iff the space R? can be decomposed as R? = R\, @ V' such that gV’ C V'
and the spectral radius of g on the invariant subspace V' is strictly less than
|Ag|. For invertible matrices, condition A2 implies that the Markov chain
X7 has a unique p-stationary measure, which is supported on

V(L) ={%v, € S¥1:g€el,, gis proximal}.
For positive matrices, introduce the following condition:

A3. (i) (Allowability) Every g € ', is allowable.
(ii) (Positivity) I', contains at least one matriz belonging to 947 .
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It can be shown (see [7, Lemma 4.3]) that for positive matrices, condition
A3 ensures the existence and uniqueness of the invariant measure for the
Markov chain X¥ supported on

V(L) ={v, € Si_l rgely,, ge9?}.

In addition, V'(I',,) is the unique minimal I',,-invariant subset (see [7, Lemma
4.2]). According to the Perron-Frobenius theorem, a strictly positive ma-
trix always has a unique dominant eigenvalue, so condition A3(ii) implies
condition A2(ii) for d > 1.

For any s € I,, for invertible matrices and for positive matrices, the
following limit exists (see [21] and [8]):

: syl
A(s) = lim (E[Gal)7

The function A = logx : I, — R is convex and analytic on I (it plays
the same role as the log-Laplace transform of Xj in the real i.i.d. case).
Introduce the Fenchel-Legendre transform of A by A*(q) = sup,e;, {sq —
A(s)}, ¢ € A'(1,). We have that A*(q) = sq — A(s) if ¢ = A'(s) for some

I,,, which implies A*(¢) > 0 on A’(I,) since A(0) = 0 and A(s) is convex
on I,.

We say that the measure p is arithmetic, if there exist ¢t > 0, 5 € [0, 27)
and a function ¥ : S — R such that for any g € I';, and any = € V(I',),
we have exp|itlog |gz| — i + i¥(g-x) — i¥(x)] = 1. For positive matrices, we
need the following condition:

A4. (Non-arithmeticity) The measure j is non-arithmetic.

A simple sufficient condition established in [28] for the measure p to
be non-arithmetic is that the additive subgroup of R generated by the set
{logAg: g€, g9} is dense in R (see [8, Lemma 2.7]).

Note that for positive matrices, condition A4 is used to ensure that

2 = A”’(s) > 0. For invertible matrices, condition A2 implies the non-
arithmeticity of the measure p, hence, o, is also strictly positive (for a proof
see Guivarc’h and Urban [23, Proposition 4.6]).

For any s € I, the transfer operator P, and the conjugate transfer oper-

ator PF are defined, for any ¢ € C(S) and = € S, by

Psp(z / lg12[°(g1-2)p(dgr), PSe(x / 91 z*e(g) -x)pu(dgr), (2.1)

which are bounded linear on C(S). Under condition A2 for invertible matri-
ces, or condition A3 for positive matrices, the operator Ps; has a unique
probability eigenmeasure vs on S corresponding to the eigenvalue k(s):
Psvs = k(s)vs. Similarly, the operator P has a unique probability eigen-
measure v} corresponding to the eigenvalue r(s): Piv} = k(s)v}. Set, for
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r €S,
n@ = [ eivid, ri@ = [ |@yld)

Then, r, is the unique, up to a scaling constant, strictly positive eigenfunc-
tion of Py: Psrs = Kk(S)rs; similarly ¥ is the unique, up to a scaling constant,
strictly positive eigenfunction of PX: Pfr’ = k(s)rk. We refer for details to
Section 3.

Below we shall also make use of normalized eigenfunction 7¢ defined by
Ts(z) = VT:((Z)), x € S, which is strictly positive and Hélder continuous on

the projective space S, see Proposition 3.1.

2.2. Large deviations for the norm cocycle. The following theorem
gives the exact asymptotic behavior of the large deviation probabilities for
the norm cocycle.

Theorem 2.1. Assume that u satisfies either conditions A1, A2 for in-
vertible matrices, or conditions A1, A3, A4 for positive matrices. Let
q = N(s), where s € I;. Then for any positive sequence (In)n>1 satisfy-
ing limy, 00 I, = 0, we have, as n — oo, uniformly in x € S and |l| < I,
exp (—nA* (¢ + 1))
SosV 2™
In particular, with 1 =0, as n — oo, uniformly in x € S,
exp (—nA*(q))
sosV2mn

The rate function A*(q+ 1) admits the following expansion: for ¢ = A’(s)
and [ in a small neighborhood of 0, we have

P(log|Gnz| = n(qg+1)) = 7s(x)

(1+o(1).  (2.2)

P(log|Gnz| > ng) = s(z) (1+o0(1)). (2.3)

A%( +l)—A*()+l+£—BC<L) (2.4)
1 I 202 03> \g, /)’ '
where (5(t) is the Cramér series, (5(t) = 3704 cs 5t 2 = % + O(t), with

A" (s) and oy defined in Proposition 3.3. We refer for details to Lemma
4.1, where the coefficients c, j, are given in terms of the cumulant generating
function A = log k.

For invertible matrices, a point-wise version of (2.3), without sup,cs and
with [ = 0, namely the asymptotic (1.2), has been first established by Le
Page [30, Theorem 8] for small enough s > 0 under a stronger exponential
moment condition. For positive matrices, the asymptotic (2.3) is new and
implies the large deviation bounds (1.5) established in Buraczewski and
Mentemeier [8, Corollary 3.2]. We note that there is a misprint in [8], where
¢4 should be replaced by e (@),

Now we consider the precise large deviations for the couple (X7, log |Gpz|)
with target functions ¢ and ¢ on X! := G,,-z and log |G, x|, respectively.
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Theorem 2.2. Assume the conditions of Theorem 2.1 and let ¢ = N (s)
for s € I,. Then, for any ¢ € By, any measurable function ¢ on R such
that y — e %Y (y) is directly Riemann integrable, and any positive sequence
(ln)n>1 satisfying lim, o0 I, = 0, we have, as n — oo, uniformly in x € S
and || < 1,

E[p(X5)y(log [Gaz| - n(g +1))]

= (o) SR ) [ e oritpay + o] (2

With ¢ = 1 and ¥(y) = 1y>0y for y € R, we obtain Theorem 2.1. For
invertible matrices and with [ = 0, Theorem 2.2 strengthens the point-wise
large deviation result stated in Theorem 3.3 of Guivarc’h [20], since we do
not assume the function ¥ to be compactly supported and our result is
uniform in z € §. By the way we would like to remark that in Theorem 3.3
of [20] x™(s) should be replaced by x~"(s), and vs(¢r; ') should be replaced

by %. For positive matrices, Theorem 2.2 is new. Since r; is a strictly

positive and Hoélder continuous function on S (see Proposition 3.1), taking
¢ =75 and ¥(y) = lg,>0), ¥y € R in Theorem 2.2, we get the main result of
[8] (Theorem 3.1).

Unlike the case of i.i.d. real-valued random variables, Theorems 2.1 and
2.2 do not imply the similar asymptotic for lower large deviation probabilities
P(log |Grx| < n(q+1)), where ¢ < A’(0). To formulate our results, we need
an exponential moment condition, as in Le Page [30]. For g € T, set
N(g) = max{|g]l, ()"}, which reduces to N(g) = max{|g], g} for
invertible matrices.

A5. There exists a constant n € (0,1) such that E[N(g1)"] < +o0.

Under condition A5, the functions s — x(s) and s — A(s) = log k(s) can
be extended analytically in a small neighborhood of 0 of the complex plane;
in this case the expansion (2.4) still holds and we have o, = A”(s) > 0 for
s < 0 small enough. We also need to extend the function 75 for small s < 0,
which is positive and Hoélder continuous on the projective space S, as in the
case of s > 0: we refer to Proposition 3.2 for details.

Theorem 2.3. Assume that p satisfies either conditions A2, A5 for invert-
ible matrices or conditions A3, A4, A5 for positive matrices. Then, there
exists ng < n such that for any s € (—no,0) and g = A'(s), for any positive
sequence (ly)p>1 satisfying lim, o l,, = 0, we have, as n — oo, uniformly
inz €S and |l| <y,

exp (—nA* (g +1))
—S0sV/ 21N

P(log |Gpz| < n(qg+1)) = 7s(x) (14 o0(1)).
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In particular, with 1 =0, as n — oo, uniformly in x € S,

exp (—nA*(q))
—s05\/2mn

For invertible matrices, this result sharpens the large deviation principle
established in [5]. For positive matrices, our result is new, even for the large
deviation principle.

More generally, we also have the precise large deviations result for the
couple (XZ, log |Gpz|) with target functions.

P(log |Gpz| < ng) = 7s(x) (1+0(1)).

Theorem 2.4. Assume the conditions of Theorem 2.3. Then, there exists
no < 1 such that for any s € (—no,0) and ¢ = A'(s), for any ¢ € By, any
measurable function ¥ on R such that y — e~ %Y(y) is directly Riemann
integrable, and any positive sequence (Ip)pn>1 satisfying limy, o0 b, = 0, we
have, as n — oo, uniformly in x € S and |l| < I,

E[(X7)¢(log |Gaz| - (g +1))]

= 7o(2) 22 (;n\;\%Jr V) [vs(9) /R e (y)dy + o(1)].

With ¢ =1 and ¥(y) = 1{,<o) for y € R, we obtain Theorem 2.3.

2.3. Applications to large deviation principle for the matrix norm.
We use Theorems 2.1 and 2.3 to deduce large deviation principles for the
matrix norm ||Gy||. Our first result concerns the upper tail and the second
one deals with lower tail.

Theorem 2.5. Assume the conditions of Theorem 2.1. Let ¢ = N'(s), where
s € I,. Then, for any positive sequence (In)n>1 with 1, — 0 as n — oo, we
have, uniformly in |l| < l,,

1
A —log P(log [|Gull = n(q +1)) = —A%(q)-

For invertible matrices, with [ = 0, Theorem 2.5 improves the large devi-
ation bounds in Benoist and Quint [3, Theorem 14.19], where the authors
consider general groups, but without giving the rate function. For positive
matrices, the result is new for [ =0 and [ = O(l,,).

Theorem 2.6. Assume the conditions of Theorem 2.3. Then, there exists
no < m such that for any s € (—no,0) and ¢ = A'(s), for any positive
sequence (lp)n>1 with I, — 0 as n — oo, we have, uniformly in || < I,

1
Aim. —log P(log || Gnll < n(q +1)) = —A"(q)-

This result is new for both invertible matrices and positive matrices.
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2.4. Local limit theorems with large deviations. Local limit theo-
rems and large and moderate deviations for sums of i.i.d. random variables
have been studied by Gnedenko [16], Sheep [34], Stone [35], Breuillard [6],
Borovkov and Borovkov [4]. Moderate deviation results in the local limit
theorem for products of invertible random matrices have been obtained in
[3, Theorems 17.9 and 17.10].

Taking ¢ =1 and ¢ = 14 44 A], Where a € R and A > 0 do not depend on
n, it is easy to understand that Theorem 2.2 becomes, in fact, a statement on
large deviations in the local limit theorem. It turns out that with the Petrov
type extension (2.5) we can derive the following more general statement
where A can increase with n.

Theorem 2.7. Assume conditions of Theorem 2.1 and let ¢ = N'(s). Then
there exists a sequence A, > 0 converging to 0 as n — oo such that, for any
¢ € By, for any positive sequence (l)n>1 with I, — 0 as n — oo and any
fized a € R, we have, as n — oo, uniformly in A € [A,,0(n)], z € S and
1] < I,

E[@(X2) T {tog [Gralen(a+) +{a.a+ )}

€_SA) exp(s_o-ni*z(%—i_ l)) [VS(SO) + 0(1):|

Taking ¢ = 1, as n — oo, uniformly in A € [A,,0(n)], z € S and || < Iy,
P(log |Guz| € n(g +1) +[a,a + A))

= —sa —sAy &X (_nA*( +l))
= ru(a)ee (1 — e ) BEEE D1 o))

=rs(x)e (1 -

We can compare this result with Theorem 3.3 in [20], from which the
above equivalence can be deduced for [ = 0 and A fixed.

It is easy to see that, under additional assumption A5, the assertion of
Theorem 2.7 remains true for s < 0 small enough. This can be deduced
from Theorem 2.4: the details are left to the reader.

3. SPECTRAL GAP THEORY FOR THE NORM

3.1. Properties of the transfer operator. Recall that the transfer op-
erator Ps and the conjugate operator P are defined by (2.1). Below P,v;
stands for the measure on S such that Psvs(¢) = vs(Psyp), for continuous
functions ¢ on S, and P;v} is defined similarly. The following result was

proved in [7, 8] for positive matrices, and in [21] for invertible matrices.

Proposition 3.1. Assume that p satisfies either conditions A1, A2 for
invertible matrices, or conditions A1, A3 for positive matrices. Let s € I,.
Then the spectral radii o(Ps) and o(PX) are both equal to k(s), and there
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exist a unique, up to a scaling constant, strictly positive Hélder continuous
function rs and a unique probability measure vs on S such that

Psrs = H(S)TS7 Psvg = H(S)VS'

Similarly, there exist a unique strictly positive Hélder continuous function
ry and a unique probability measure v on S such that

Pirg =k(s)rs,  Plvg =k(s)vf.

Moreover, the functions rs and r} are given by
n@= [, @ = [ lelnd), aes
It is easy to see that the family of kernels ¢3(z,g) = ,L%I(LS) Tﬁi‘é’;ﬁ), n>1
satisfies the following cocycle property:

0 (2, 91) 0 (912, 92) = Gy (5 9291)- (3.1)

The equation Psrs = k(s)rs implies that, for any € S and s € I,,, the prob-

ability measures Q5 ,,(dg1,- - -, dgn) = (T, gn-.-g1)p(dgr)...p(dgn), n = 1,

form a projective system on M (d, R)N. By the Kolmogorov extension theo-

rem, there is a unique probability measure Q% on M (d,R)N, with marginals
sn; denote by Eqs the corresponding expectation.

If (gn)nen denotes the coordinate process on the space of trajectories
M (d,R)N, then the sequence (g, )n>1 is i.i.d. with the common law g under
Qf- However, for any s € I, and x € S, the sequence (gn)n>1 is Markov-
dependent under the measure Q%. Let

Xg=z, X;,=Gpzxz, n=>1

By the definition of Q?, for any bounded measurable function f on (S xR)",
it holds that

1 x S x x
WE[TS(XnﬂGnﬂ f(XT,log |Ghal, .., X7, log| Gl

= Eqe {f(Xf,log |G|, ..., X}, log \an\)} (3.2)
Under the measure Q¥, the process (XZ),en is a Markov chain with the
transition operator given by
1 1
= — ) = Sp(g- . dg).
Quple) = Ly Plora)@) = s [ laaolo-airalo-autd)

It has been proved in [7] for positive matrices, and in [21] for invertible
matrices, that (J; has a unique invariant probability measure 7; supported
on V(T',) and that, for any ¢ € C(S),

(3.3)

. n
nh—>rgo Qs ¥ = 7-(—3(90)? Where WS(QD) Vs(rs)
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Moreover, letting Qs = [ QZ7ms(dz), from the results of [7, 21], it follows
that, under the assumptions of Theorem 2.1, for any s € I,, we have

limy, 00 %ﬂ = A'(s), Qs-a.s. and Q%-a.s., where A'(s) = ':((j)).
When s € (—n0,0) for small enough 7y > 0, define the transfer operator

P; as follows: for any ¢ € C(S),

Pyp(x) :/F lg1z*e(g1-2)u(dgr), =z €S,
I

which is well-defined under condition A5. The following proposition is
proved in [36].

Proposition 3.2. Assume that u satisfies either conditions A2, A5 for
invertible matrices, or conditions A3, A5 for positive matrices. Then there
exists no < n such that for any s € (—no,0), the spectral radius o(Ps) of
the operator Ps is equal to k(s). Moreover there exist a unique, up to a
scaling constant, strictly positive Hélder continuous function rs and a unique
probability measure vy on S such that

Psrg = H(S)TS) Psvs = ’Q(S)VS'

Based on Proposition 3.2, in the same way as for s > 0, one can define
the measure Q7 for negative values s < 0 sufficiently close to 0, and one can
extend the change of measure formula (3.2) to s < 0. Under the measure

' the process (X7 )nen is a Markov chain with the transition operator Qs
and the assertion (3.3) holds true. We refer to [36] for details.

3.2. Spectral gap of the perturbed operator. Recall that the Banach
space B, consists of all y-Holder continuous function on S, where v > 0 is
a fixed small constant. Denote by L£(B,,B,) the set of all bounded linear
operators from B, to B, equipped with the operator norm |||z _,5 . For
s € I, and z € C with s + Rz € [, define a family of perturbed operators
R, . as follows: for any ¢ € B,,

Ry zp(x) = Eq; [ sl97-00(x7)], wes. (3.4)
It follows from the cocycle property (3.1) that
RYp(x) = Bog [IolGl-mo(x1)] 28

The following proposition collects useful assertions that we will use in the
proofs of our results. Denote Bs(0) := {z € C: |z| < ¢}.

Proposition 3.3. Assume that u satisfies either conditions A1, A2 for
tnvertible matrices, or conditions A1, A8 for positive matrices. Then, there
exists 6 > 0 such that for any z € Bs(0),

R?,z = AZZHS,Z + NI, n>1. (35)

8,29
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Moreover, for any s € I, the following assertions hold:
(i) IIs . is a rank-one projection for |z| < 0, with so(p)(x) = m5(p)
forany p € By, andx € S, lI; N, . = N, 1l . =0 and
_gz k(8 + 2
Asz =€ qZ(ﬁ(s)), for z € Bs(0). (3.6)
For any fized k > 1, there exist s € (0,1) and cs such that
LN s, o, < ooy > 1
sup ||=— cex, =1
\z|<p5 Aok 7 By—=By X CsXs
In addition, the mappings z — Il , : B5(0) — L(B,,By) and z —
N . : Bs(0) = L(B,, By) are analytic in the strong operator sense.
(ii) For any compact set K C R\{0}, there exists a constant Cx > 0
such that for any n > 1 and ¢ € B, we have

supsup | Ry jy0(2)] < e sup [p(z)].
teK z€8 €S

(iii) The mapping z — As . : Bs(0) — C is analytic, and

2 A
sz =1+ %22 + 6(8)23 +0(2%) as z—0,
where
o1
02 =A'(s) = Jim_ EE@S(log |G| — ng)?
and

1
N (s) = lim ﬁ]EQS (log |G| — ng)®.

In addition, if the measure i is non-arithmetic, then the asymptotic

variance Ug is strictly positive.

The assertions (i), (ii), (iii) of Proposition 3.3, except (3.6), have been
proved in [8] for imaginary-valued z € (—id, ), based on the perturbation
theory (see [25]). The assertions (i), (iii) can be extended to the complex-
valued z € B;s(0) without changes in the proof in [8].

The identity (3.6) is not proved in [8], but can be obtained by using
the arguments from [36]. By the perturbation theory, the operator Py and
its spectral radius x(s) can be extended to Psy, and the eigenvalue k(s +
z), respectively, with z in the small neighborhood of 0, see [21]. By the
definitions of R, , and P, using the change of measure (3.2), we obtain for
any ¢ € By, n > 1, s € I; and z € Bs(0),

— 1(s) Ps- (QOTS)
n _ ,—nzN(s) stz
Ri.(p)=e n(s)rs (3.7)
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Since rg is uniformly bounded, using (3.7) and the fact that (s + z) is the
unique eigenvalue of P, ., we deduce (3.6).

For negative values s < 0 sufficiently close to 0, we can define the per-
turbed operator R; . as in (3.4). The following spectral gap property of Ry ,
is established in [36].

Proposition 3.4. Assume that p satisfies conditions A2, A5 for invertible
matrices, or conditions A3, A5 for positive matrices. Then, there exist
no <mn and § > 0 such that for any s € (—no,0) and z € B;(0),

Ry, =Ag s+ Ny n > 1.
Moreover, for any s € (—no,0), the assertions (i), (it), (iii) of Proposition
3.3 hold true.

4. PROOF OF THEOREMS 2.1 AND 2.3

4.1. Auxiliary results. We need some preliminary statements. Following
Petrov [32], under the changed measure Q?, define the Cramér series (s by

VsdVs2 — 3Ves . Vs5Vao — 10754753752 + 15733
t+ e t

2473, 1207,

7s,3
Cs(t): 33/2+ + ...,
$,2

6
where 7, . = A¥)(s) and A(s) = log x(s). The following lemma gives a full
expansion of A*(q + 1) in terms of power series in [ in a neighborhood of 0,
for ¢ = A’(s) and s € I; U (1o, 0), where 7q is from Proposition 3.4.

Lemma 4.1. Assume conditions of Theorem 2.1 or Theorem 2.3. Let q =
N (s). Then, there exists 6 > 0 such that, for any || <0,

A (g +1) = A(q) + sl + hs(D),

where hg is linked to the Cramér series (s by the identity

hs(l e e l 4.1

N ] (4.1)
Proof. Let (A')~! be the inverse function of A’. With the notation I; =
(A)"L(q+1) — s, we have A’(s +I5) = q + . By the definition of A*, it
follows that A*(¢ +1) = (s +ls)(¢ +1) — A(s + I5). This, together with
A*(q) = sq — A(s) and Taylor’s formula, gives

* * - A(k)(s) k
he(l) == A*(q +1) — A*(q) — sl :zsszz_:z o s
From A'(s+1s) = g+ 1 and A'(s) = ¢, we deduce that I = A'(s+1s) — A'(s),
so that, by Taylor’s formula,

(4.2)

0 A(k+1)(s) L
1=> s (4.3)

k=1
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The rest of the proof is similar to that in Petrov [32] (chapter VIII, section
2). For [l| small enough, the equation (4.3) has a unique solution s given
by

L AOs) ,  AD(s)02 3A()2

s = o2 200 6010
Together with (4.2) and (4.3), this implies
= k—1 12 3 l
hs(l) = > AW F=_ - =G(—).
0= AT = 0 Gl

0

Let us fix a non-negative Schwartz function p on R with [p p(y)dy = 1,
whose Fourier transform p is supported on [—1,1] and has a continuous
extension in the complex plane. Moreover, p is analytic in the domain
D :={z € C: |z] < 1,3z # 0}. Such a function can be constructed as

follows. On the real line define o(t) — e =2 if ¢ € [~1,1], and ¢ = 0
elsewhere. The function ¢ is compactly supported and has finite derivatives
of all orders. Its inverse Fourier transform ¢, however, is not non-negative.
Let pg = ¢* < be the convolution of ¢ with itself. It is supported by [—2, 2]
and its inverse Fourier transform pg satisfies pg = 27¢? > 0. We show
below that py has a continuous extension in the complex plane, and py is
analytic in the domain D. Finally we rescale and renormalize pg by setting

p(y) = po(y/2)/[2p0(0)] for y € R.

Lemma 4.2. py has a continuous extension in the complex plane, and po
s analytic in the domain D.

Proof. The function ¢ can be extended to the complex plane as follows:

1
N e =2 |zl <1, zeC
S(2) =
0 |z| > 1, z € C.

It is easily verified that ¢ is continuous in the interior of the unit disc and
outside it, but is not continuous at any point on the unit circle |z| = 1. Note
also that < is uniformly bounded on C. Recall that the function pg = % ¢
is defined on the real line. We extend it to the complex plane by setting
po(z) = J1 S)(z - t)1{2—<13dt. The latter integral is well defined for
any z € C, since ¢ is bounded. We are going to show that ¢ is continuous in
C. For any fixed z € C and h € C with |h| small, we write

1

oz + ) — Bo(2)| g/_16<t)\6(z—t+h>—6(z—t)\dt. (4.4)

The set T, = {t : |z — t| = 1} of points of discontinuity of the function
t +— S(z—1) consists of at most two points. For any t € [—1,1], t & T, by the
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definition of ¢, we have that [S(z —t+h) —S(z—t)| — 0 as |h| — 0. Since the
Lebesgue measure of T, is 0, applying the Lebesgue dominated convergence
theorem and taking into account the boundedness of the function ¢ on C,
we see that pg is continuous in the complex plane.

We next show that pp is analytic in the domain D = {2/ € C : || <
1,32 # 0}. Fix 2 € D. Let ¢ = S2/2 € (0, 5). Denote D(e) =: {z’ € D :
|| > €}. One can verify that the derivative ¢'(z) exists and is uniformly
bounded by 5 on the domain D(e). For any h € C with |h| small enough,
we have

P0(2+h)—00(2):/ ezt h) —Se—t)
[-LINT:

h h

1
— /[_1 1]\T g(t) </0 ?(Z —1 + 9h)1{|2t+9h|<1}d0> dt

Since for any t € [—1, 1] and 0 € [0, 1], we have |S(z —t+0h)| > & uniformly
in |h| < e. This implies that z — ¢t + 6h € D(e) and thus {'(z — ¢t + 6h) is
bounded, uniformly in |h| < € and t € [—1, 1]. Applying twice the Lebesgue
dominated convergence theorem, we obtain that pj(z) exists and is given by
Po(2) = Ji_1ap 7, S(t)S (2 — t)dt. Hence py is analytic in the domain D. [

For any € > 0, define the density p.(y) = %p(%), y € R, whose Fourier
transform has a compact support in [—e~!,e71] and is analytically extend-
able in a neighborhood of 0. For any non-negative integrable function ),
following the paper [19], we introduce two modified functions related to
1 and establish some two-sided bounds. For any ¢ > 0 and y € R, set
Be(y) ={y' €R: |y —y| < e} and

Vi(y)= sup ¥(y) and YI(y)= inf P(y). (4.5)
y' €Be(y) y'€Be (y)
Lemma 4.3. Suppose that v is a non-negative integrable function and that
v and - are measurable for any € > 0, then for sufficiently small e, there
exists a positive constant Cy(e) with Cy(e) — 0 as e — 0, such that, for any
zeR,

Ve xpe(x) — . b (@ = y)p2 (y)dy < () < (14 Cp(e))dh *pe2(2).

The proof of the above lemma, being similar to that of Lemma 5.2 in [18],
will not be detailed here.

The next assertion is the key point in establishing Theorem 2.1. Its proof
is based on the spectral gap properties of the perturbed operator Ry . (see
Proposition 3.3) and on the saddle point method, see Daniels [10], Richter
[33], Ibragimov and Linnik [27] and Fedoryuk [12]. Let us introduce the
necessary notation. In the following, let ¢ be a y-Ho6lder continuous function
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on S. Assume that ¢ : R — C is a continuous function with compact support
in R, and moreover, ¥ has a continuous extension in some neighborhood of
0 in the complex plane and can be extended analytically to the domain
Ds :={z€ C: |z| < 6,3z # 0} for some small § > 0. Recall that 7, is the
invariant measure of the Markov chain X under the changed measure QZ,
see (3.3).

Proposition 4.4. Assume conditions of Theorem 2.1. Let ¢ = N'(s), where
s € I). Then, for any positive sequence (In)n>1 satisfying l, — 0 as n — oo,
we have, uniformly in v € S, || <1, and ¢ € B,

Vi g ® [ R o) (@)d(e)dt ~ VRO ()

R
logn

< Cllelh (~ = + o).

Proof. Denote c;(1)) = \{rifw(O)ws(go). Taking sufficiently small 6 > 0, we
write k

Vi et [ et (o) @it — e )]
<Jvmen® [ gy o) @)t

It]>6

|V et ® | et Rr () @) (t)dt — ()]

[t|]<d
= I(n)+ J(n). (4.6)
For I(n), since 1 is bounded and compactly supported on the real line,
taking into account Proposition 3.3 (ii), the fact |e~*"| = 1 and equality
(4.1), we get
sup sup |1(n)] < Cse=5"|gll,. (4.7)
z€S |y

For J(n), by Proposition 3.3 (i), we have

R (@) (@) = AL nlls it () (2) + Na(0) ().
Set for brevity 1, ,(t) = ILs it () (2)1(t). It follows that

n) < ‘\/ﬁenhs(l)/ 7Ztln>\?1t1/15,x(t)dt_Cs(w)‘

[t|<d
Hm e [N e

= Ji(n) + Jo(n). (4.8)
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For the second term .J2(n), applying Proposition 3.3 (i), we get that there
exist constants ¢s > 0 and s € (0, 1) such that

sup sup [N7;;(¢)(z)] < sup || Nz
z€S |t|<6 [t|<d

18,-8, l¢lly < cs" ol

Combining this with the continuity of the function ¢ at the point 0 and the
fact |e~#"| = 1, we obtain that, uniformly in || < l,, * € S and ¢ € B,,

Ja(n) < Cse” "]y (4.9)
For the first term Jj(n), we shall use the method of steepest descends to
derive a precise asymptotic expansion. We make a change of variable z = it
to rewrite Ji(n) as an integral over the complex interval Lo = (—id,9) :

70
Jl (’I’L) = ’ —i/n enhS(l) en(KS(Z)_Zl)ws,x(_iz)dz - Cs(w) ) (4'10)

—1id

where K(z) = log As . (we choose the branch where K,(0) = 0), which is
an analytic function for |z| < 0 by Proposition 3.3 (iii). Since the function
z + e"FKs()=2) g analytic in the neighborhood of 0, and the function
z + )5 (—iz) has an analytic extension in the domain D5 := {z € C: |z] <
5,3z # 0} and has a continuous extension in the domain Ds := {z € C :
|z| < 6}, by Cauchy’s integral theorem we can choose a special path of the
integration which passes through the saddle point of the function K;(z)— zl.
From (3.6), we have

Ks(z) = —qz + log k(s + z) — log k(s),
which implies that for |z] < §,

o0 k
z

K(z) = Z%,ky, (4.11)
k=2 ’

where v, = A¥)(s) and A(s) = log s(s). From this Taylor’s expansion and
the fact that A®)(s) = o2 > 0, it follows that the function K,(z) — 2l is
convex in the neighborhood of 0. Consider the saddle point equation

K!(z) =1 =0. (4.12)

An equivalent formulation of (4.12) is [ = Y 729 757k%, which by simple
series inversion techniques gives the following solution:

L s dsa¥s2 — s

— - Pt (4.13)
Vs,2 27?,2 6%572

zZ0 = Zo(l) =

From (4.13), it follows that the solution zyp = zp(l) is real for sufficiently
small [ and that zgp = zo(l) — 0 as [ — 0. Moreover, zp > 0 for sufficiently
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small [ > 0, and 2y < 0 for sufficiently small [ < 0. By Cauchy’s integral
theorem, Ji(n) can be rewritten as

Jl(n) = ’ - 'L\/ﬁ enhs(l){/L +/L +/L }en(KS(Z)_Zl)¢s,x(_iz)dZ - Cs(¢)

where L1 = (—id,29 — i), Lo = (20 — 0,20 + i) and L3 = (2o + 10, 9).
By (4.11), we get K,(it) = —202t? + O(t%), which implies that |enHsit)| <
e~39"° when ¢ is sufficiently small. Combining this with (4.13) and the
continuity of Ks(z) in the neighborhood of 0 yields that, for sufficiently

)

small [, [e"Fs(?)| < 6_%‘7?52, for any z € L1 U Ls. Since, for sufficiently small
I, lzg > 0, we get that, for z € Ly U Lg, |e”™%| = |e™™%| < 1. Moreover,
using the continuity of the function z +— 1, ;(—iz) in a small neighborhood
of 0 in the complex plane, there exists a constant Cs > 0 such that, on L4
and L3, we have sup,cgs |¥s2(—i2)| < Csll¢lly. Therefore, we obtain, for n
sufficiently large, uniformly in |I| <[, and x € S,

‘_‘ivqie”hsﬂ){]/ + [ JertD -y (iz)dz| < O(e 87 gl
Ly Ls
It follows that

hn) < | =i et © [

20—10

z0+16
0 en(Ks(Z)—Zl)@/)S’m(—iz)dZ — Cs(w))

_n 252
+0(e =7 )lell-

Without loss of generality, assume that n > 3. Making a change of variable
z = 2o + it gives

4
Ji(n) < ’\/ﬁ enhs(l)/

eIt =Gotilly, (1 — izg)dt — co(¥)
-6

_n 252
+0(e =7 )llelly

en[Ks(zoJrit)*(ZO*it)”zp (t — Z'Zo)dt‘

S,z

<|vment [

1
n~ 2 logn<|t|<d

+W%mw/

. en[KS(Z0+it)7(ZQ+it)l]1/}871‘(t . ’LZO)dt . cs(w)’
[t|]<n™ 2 logn

n

_ng 252
+0(e7 57|l (4.14)

From (4.12) and (4.13), we have K(zp) = l. By Taylor’s formula, we get
that for |t| < d,

K ¢
Ks(ZO + Zt) — (ZO =+ ’Lt)l = KS(ZO) — Zol + Z (Z('))(Z)
k=2 :
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Using K(z9) =1 and (4.11), it follows that

k-1
Ks(20) — 20l = Ks(20) — 20K%(20) = — Z — kz§
k=2

Combining this with (4.13) and Lemma 4.1 gives K (z09) — 2ol = —hs(l).
Thus

K(z0 +it) — (20 + it)l = ) + Z ! )k. (4.15)

Since K (20) = 02 + O(z9) > 302, for small enough z, § and [, we obtain
(k .

that R(> 52 %W) < —£02t%. Therefore, using (4.15) and the fact

that umformly in z € S, the function z — 1 (z) is continuous in a neigh-

borhood of 0 in the complex plane, we obtain that, uniformly in z € § and

1] < ln,

‘ Jr enhs ) / ) en[Ks(20+it)*(20+it)lhpm(t—z’zo)dt‘
n~ 2 logn<|t|<§

<avn | | 5"t ol = O~ ™) gl
n~ 2 log n<|t|<d

This, together with (4.14)-(4.15), implies

J1( sup‘f/
€S [t|<n™ 210gn
+O0(e™ " M) o) .

Noting that IIs o(¢)(z) = m5(p) and ¥, .(0) = ¥(0)7s(p), we write

&) (z0) (it  no? t2
Ji(n) < sup\f/ (en S T e Yyt — iz
[t|<n™ 210gn

€S

nzoo K(k)(zo)(zt)k

Vot = iz0)dt — ()|

2,2

no't

—i—sup‘\/ﬁ/ o (95,2 (t —i20) — s 2(0 dt’
z€S [t|l<n™ 2 10gn

e —cC 1o, 2Tl

FVOm@) [ -+ 0
[t|I=n"2 logn

= Ju(n) + J12(n) + J1a(n) + O(e™% )] . (4.16)

We give a control of Jy1(n). Note that 1), (t —izo)| is bounded by Csl¢]|~,

uniformly in [¢t| < n~zlogn. Note also that for lt] < n~2logn and for

o KR (g)ank 4
large enough n, we have \emRZk-:s ! | < et
inequality |e* — 1| < €™|z] yields

no'gt2 C
Jii(n) < C N e~ 2 nltPdt < =2 .
) <ol [y e i< el

< C. Hence using the

(4.17)
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Now we control Ji2(n). Recalling that zo = zo(l) < ¢slp, using the fact that
uniformly with respect to z € S, the map z — )5 ,(2) is continuous in the

neighborhood of 0 in the complex plane, we get that for |¢| < n"s log n,
D [ta{t = i20) = Yo O)] < es(n” 2 logn+ )l
We then obtain
Jia(n) < cs(n” 7 logn + 1) o]l

It is easy to see that Jiz(n) < C||pll e log?n  This, together with (4.16)-
lo

(4.17), proves that Ji(n) < ¢s(n —3 gn+l,)|¢|ly. The desired result follows
by combining this with (4.6)-(4.9). O

Assume that the functions ¢ and 1 satisfy the same properties as in
Proposition 4.4. The following result, for s < 0 small enough, will be used
to prove Theorem 2.3.

Proposition 4.5. Assume conditions of Theorem 2.3. Then, there exists
no < n such that for any s € (—n,0), ¢ = N (s) and for any positive
sequence (Ip)n>1 satisfying l, — 0 as n — oo, we have, uniformly in x € S,
]| <1y and ¢ € B,,

Vi gue O [ &R (o) @) )t - VERU(O)ms (i)

< Cllglh (<2 +12).

Proof. Using Propositions 3.2 and 3.4, the proof of Proposition 4.5 can be
carried out as the proof of Proposition 4.4. We omit the details. U

4.2. Proof of Theorem 2.1. Recall that ¢ = A'(s), A*(¢+1) = A*(q) +
sl+hs(l), z € S, and |I| < I, — 0, as n — oo. Taking into account that
e (9) = 597 /i (5) and using the change of measure (3.2), we write

* 1
Ap(x,1) := v2mn sose™ @)~ _P(log |G| = n(q+1))

rs()
1 _
:V27Tn5056"816"h5(l)68an@§(me Sloglan']1{1og\Gn:c|>n(q+l)})' (4.18)
n

Setting T}y = log |G| — ng and ¥s(y) = e=*¥1,>0), from (4.18) we get

1
TS(X%)

Ap(z,l) = V2mn sase"hS(l)EQé” < Ys(T — nl)) . (4.19)
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Upper bound. Let € € (0,1) and 91 _(y) = sup,ep, () ¥s(y) be defined as in
(4.5) but with 14 instead of ¥. Using Lemma 4.3 leads to

L (W) (T — i)

rs(XE)
=: B (x,1). (4.20)

Ap(z,l) < (14 Cp(e))V2mn sasenh‘g(l)EQg {

n

Denote by 12;"5 the Fourier transform of wj,g. Elementary calculations give

~ ~ € oo 142
sup [0, (0] < 0.0 = [ ay+ [ e ay = 25 )
&€ 3

— S

By the inversion formula, for any y € R,
1 o~ N
Vi) = 5= [ DL 05 0.
Substituting y = T}y —nl, taking expectation with respect to Ege, and using
Fubini’s theorem, we get

1 1 . ~ N
EQ? [Ts (XTJL;) (w;:a*psz)(T?f - nl)} - /Re_ltlnR?,it (7’5_1)(1})1/);:5 (t)pEQ (t)dt,

T om

where

|
n —1 itT)
s,zt(rs )(l‘) Q2 {6 rs( Xﬁ)}

Note that 12;6552 is compactly supported in R since p.2 has a compact

support. One can verify that 15;"5 has an analytic extension in a neigh-
borhood of 0. By Lemma 4.2, we see that the function p,2 has a contin-
uous extension in the complex plane, and has an analytic in the domain
D, :={z € C: |z| <&?,32z # 0}. Using Proposition 4.4 with ¢ = r;! and
¥ =1} p.2, it follows that

lim sup sup ’B;{(m‘, l)—(1+ Cp(c‘f))ﬂs(?’;l)s{ﬁ\;fe([))ﬁgz(0)’ =0. (4.23)

n—=0 18 [1|<ln

Since p.2(0) = 1, from (4.19)-(4.23), we have that for sufficiently small
e (0,1),

limsupsup sup Ay (1) < (1+ Cy())sm(rs )L (0)5(0)

n—oo  zeS |l|<iy
< (1+Cy(e)) (1 + 2s8)ms(ry h).
Letting ¢ — 0 and noting that C,(e) — 0, we obtain the upper bound:
1
-1

lim sup sup sup Ay, (z,l) < ws(ry ") = . (4.24)
n—00 z€S |l|<ln vs(rs)
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Lower bound. For ¢ € (0,1), let ;. (y) = infycp, () ¥s(y’) be defined as in
(4.5) with 14 instead of ¥. From (4.19) and Lemma 4.3, we get

1
Ap(z,l) = V2mn sase"hs(l)EQg [T(Xm)(d};a*pgz)(ij - nl)]

1
—V27n s e”hs(l)/ Ez{_Tx—nl— } d
s Os e Q2 rs(X%)%,a( n y) Pe2 (y) Yy

= B, (z,l) — C,, (z,1). (4.25)
For the first term B,, (z,[), applying (4.22) with zpsfapsz replaced by 9 _p.2,
we get

- n n —itln pn - - -~
B 1) =[5 s [ e ) @) (0705 ()

In the same way as for the upper bound, using 12;8 (0) = 67858 and Propo-

sition 4.4 with ¢ = ;! and ¢ = 1,2;6,682 (one can check that the functions
¢ and v satisfy the required conditions in Proposition 4.4), we obtain the
lower bound:

_ 1

H=—. (4.26)

lim inf B~ l >
1m 111 sup sup n($7 ) WS(T ys(v"s)

N0 2eS II<in
For the second term C,, (z,1), noting that ¢, . < 95 and applying Lemma
4.3 to s, we get ;. < s < (1 +Cp(5))w;*p52. We use the same argument
as in (4.22) to obtain

C, (z,1) < (1+Cy(e))V2mn soges)

1 n ’
X /y|>s EQ? [M(ws,a * p€2)(Tn —nl— y):| Pe2 (y)dy

— n nhs (1)
(1+Cp(5))\/; SO g€
> / N (/R e—z‘t(ln+y)Rgit(rs—l)(g;)@Z;fE(t)ﬁsg (t)dt> pe2(y)dy.
y|=€

Notice that, from Lemma 4.1, for any fixed y € R, it holds, uniformly
in [ satisfying |I| < [,, that eths=nhs(4+3) 5 1 as n — oco. Applying
Proposition 4.4 again with ¢ = 1, ¢ = @jeﬁsz, and using the Lebesgue
dominated convergence theorem, we obtain 7

~

limsup sup sup C,, (z,1) < (1+ Cp(e))sms(ry ) (0)p2(0) pe2(y)dy

o0 zeS i<l lyl>

= (14 Cp(e))me(rTH) (1 + 235)/ p(y)dy — 0, ase—0,

ly|>1
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since p is integrable on R. This, together with (4.25)-(4.26), implies the
lower bound:

) P (4.27)

lim inf sup sup A, (z,1) > m4(r
N0 4eS |II<in

as required. We conclude the proof of Theorem 2.1 by combining (4.24) and
(4.27).

4.3. Proof of Theorem 2.3. Since the change of measure formula can be
extended for small s < 0, under the conditions of Theorem 2.3, we have,
similar to (4.18),

* 1
= oo 2mn ey og Gl < na + D)
Ts(X
1

1 _nhs(l —slog|Gn
= — 505V 2mn "M WM Eg, (me L g Gl 0} )
Applying Proposition 4.5, we can follow the proof of Theorem 2.1 to show
Theorem 2.3. We omit the details.

5. PROOF OF THEOREMS 2.2 AND 2.4

We first establish the following assertion which will be used to prove
Theorem 2.2, but which is of independent interest. Let ¢ be a measurable
function on R and € > 0. Denote, for brevity, ¥s(y) = e Y4 (y) and

Ui) = sup es(y), Yi(y)= inf Y(y).
y'€Be(y) y'€B:(y)

Introduce the following condition: for any s € I;; and € > 0, the functions

T d}jﬁ (y) and y + 9, (y) are measurable and

e—0t e—0t

lim /w;fg(y)dyz lim w;a(y)dyz/e‘syw(y)dy<+00- (5.1)
R R R

Theorem 5.1. Suppose the assumptions of Theorem 2.1 hold true. Let
q=N(s), where s € I;,. Assume that ¢ is a Holder continuous function on
S and Y is a measurable function on R satisfying condition (5.1). Then, for
any positive sequence (l,)n>1 satisfying lim, o 1, = 0, we have

lim sup sup
n=X0 zes [|<ln

Vamn o™ IR (X 7)u(log |Gaz| - n(g +1))|

—@m(e) [ emdy =0, (52)
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Before proceeding with the proof of this theorem, let us give some exam-
ples of functions satisfying condition (5.1). It is easy to see that (5.1) holds
for increasing non-negative functions v satisfying [p e Y9 (y)dy < 400, in
particular, for the indicator function ¥(y) = lyy>c), y € R, where c € R is
a fixed constant. Another example for which (5.1) holds true is when 1) is
non-negative, continuous and there exists € > 0 such that

/Re’syw:(y)dy < 400, (5.3)

where the function ¢ (y) = supycp_ () ¥(y') is assumed to be measurable.

Proof of Theorem 5.1. Without loss of generality, we assume that both ¢
and 1) are non-negative (otherwise, we decompose the functions ¢ = ot —p~
and ¢ = T — 7). Let T* = log|Gnx| — ng. Since e (@) = e [k (s),
using the change of measure (3.2), we have
. 1
Ap(2,1) = V2mn g5 (qH)TE[cP(Xﬁ)w(log (G| = (g +1)]
re(x

= Vamn oyl Ot By [(ory ) (X)e % e y (T — i)
= Vamn o, O [(ory N(XD)e T Dy(Ts — nl)]
For brevity, set ®5(z) = (pr;t) (z), z € S, and VUy(y) = e~ ¥ (y), y € R.
Then,
An(z,1) = V210 o5 OUEqs [04(XT) W (T2 — nl)] . (5.4)

Upper bound. We wish to write the expectation in (5.4) as an integral of
the Fourier transform of W, which, however, may not belong to the space
LY(R). As in the proof of Theorem 2.1 (see Section 4.2), we make use of the
convolution technique to overcome this difficulty. Applying Lemma 4.3 to
W, one has, for sufficiently small € > 0,

An(x,1) < (14 Cy(e)V2mn e OBge [@,(X7) (UL xpe2) (T — nl)]
‘= By(z,1), (5.5)

where ‘lljs(y) = SUDy/cB. (y) Us(y'), y € R. Using the same arguments as for
deducing (4.22), we have

Os n —itln pn T ~
Bl ) = (1 Cole) T 0 [ Ry () )0 01
(5.6)

where R, ®s(z) = Eqs [e”T;f D, (X;f)} and \lea is the Fourier transform of
\II;CE. Note that &, is strictly positive and «-Hdélder continuous function on

S, and U7 p.2 has a compact support in R. Applying Proposition 4.4 with

S,
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=5 and P = \,I};taﬁg (one can verify that the functions ¢ and ¢ satisfy
the required conditions in Proposition 4.4), we obtain

lim sup sup By (x,1) = (1 + Cy(e))ms(25) ¥ (0)5-2(0).

0 eS8 i<l

Since \leE(O) = Jr SUPy B, (y) e 1p(y')dy and p.2(0) = 1, letting & go to 0,
using the condition (5.1) and the fact that C,(e) — 0 as € — 0, we get the
upper bound:

lim supsup sup A, (z,l) < ws(fbs)/ e (y)dy. (5.7)
R

n—oo  z€S |l|<ly

Lower bound. Denote ¥ _(y) = inf,/cp_(,) Ys(y'). From (5.4), using Lemma
4.3, we get

Ane,1) > V2 o OBas [04(X7) (W, orpa) (T3 = )|

— V2 gy /I 5. e (Do (X0) U (T7 = nl = )| pea(y)dy
y /8
— B (2,1) — O (1), (5.8)

For B, (x,1), we proceed as for (5.5) and (5.6), with W] replaced by W _.
Using Proposition 4.4, with ¢ = &, and ¥ = \T/;Eﬁez, and the fact that
p-2(0) =1 and @8_6(0) = Jpinfycp, (y) e*Y'1)(y')dy, in an analogous way as
in (5.7), we obtain that

lim sup sup B, (z,!)

N0 28 |i|<in

= 778(7"8_1)/ inf e_syw(y)dzﬁws(rgl)/ e (y)dy, as e — 0, (5.9)
R y€B:(2) R

where the last convergence is due to the condition (5.1). For C}, (x,1), noting

I
~

l
that U < Uy, applying Lemma 4.3 to ¥ we get W < (1+Cp(5))\112:8ﬁ52.

5,6

Similarly to (5.6), we show that

O (2,0) < (14 Cp(e))y/ e oiehe®
2m
<[ ([ Ry @)@ T 05 0dt) pa(w)iy
lyl>e \JR ’ ’

From Lemma 4.1, for any fixed y € R, it holds that enths(D—nhs(I43) _y 1,
uniformly in |I| < I, as n — oo. Applying Proposition 4.4 with ¢ = &, and
P = \Ilj,sﬁaz, it follows, from the Lebesgue dominated convergence theorem,
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that
limsupsup sup C,, (z,1)
n—oo z€§ i<l
< (14 Gy m(@) T 07200) [ palyiy -0
y|=z€

as ¢ = 0. Combining this with (5.8)-(5.9), we get the lower bound

lim inf sup sup A,(z,1) > 7TS(<I>8)/ e (y)dy. (5.10)

n=o0 eS8 i<l R

Putting together (5.7) and (5.10), and noting that 74(®s) = ms(pr;!) =

5:((72 )), the result follows. 0

In the sequel, we deduce Theorem 2.2 from Theorem 5.1 using approxi-
mation techniques.

Proof of Theorem 2.2. Without loss of generality, we assume that ¢ > 0
and ¢ > 0. Let ¥4(y) = e Y (y), y € R. We construct two step functions
as follows: for any n € (0,1), m € Z and y € [mn, (m + 1)n), set
Ui,y)= sup  Uy(y) and W, (y)=  inf = Wy(y).
ye[mn,(m+1)n) y€[mn,(m+1)n)
By the definition of the direct Riemann integrability, the following two limits
exist and are equal:

. + o . —
Jmf Ui, (y)dy = Jm [ U (y)dy. (5.11)

Since W, is directly Riemann integrable, we have M := sup,cg ¥s(y) <
+o00. Let € € (0,Mn) be fixed. Denote I, = [(m — 1)n,mn), I, =

m
(mn — spmr>mn), and Lf = [mn,mn + gpmr), m € L. Set ki =

M4lml
M4lml ‘P?,n(mn)—‘lfin((m—l)n) jn’
€ )

borhood of every possible discontinuous point mn, m € Z, if \IIIn(mn) >
U, ((m—1)n), then for any y € I, U Ipy1, m € Z, we define

, m € Z. For the step function ¥, in the neigh-

E,((m—1)n), y € In\ 1,
\I’;Cme(y) = \P;n((m —1)n) + kiﬁ (?/ —mn + Mjm) , yel,
\I]In(mn)v y € Iyt
It ‘I’In(mn) < \I/jn((m — 1)n), then we define
\I];n((m - 1)”7)3 y € Ip
Ul c(y) = S WE, ((m = 1)) + ki (y —mm), y € I,

Wy (mn), Y € L1 \ I
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From thls construction, the non-negative continuous function W e satisfies

Ul < Ui and R[WF (y) — 9T, (y)ldy < e Similarly, for the step
functlon W, one can construct a non-negative continuous function W e
which satisfies W7, - < W and [R[V7, (y) -V, .(y)]dy < . Consequently,

in view of (5.11), we obtain that, for n small enough,

LW e0) = V5 ldy < 3= (512)

For brevity, set cs;, = V211 ose™V @+ and 1, = log |G| —n(q+1).
Recalling that W4(y) = e Y9 (y), we write

cutnB [PXDUTE)] ~ Fuhn(e) [ ety

< Cs,l,nIE {@(Xﬁ)QSTg’l [\IIS( 7:7,8,1) - \Ijjn 8( sl)} H
Heann [P T (32)] - Rlealo) [0 0)dy
+lr@m(ers) [ W)y - @ne) [ Py

=J1+ Jo+ Js. (5.13)

To control Jy, we shall verify the conditions of Theorem 5.1. Noting that
the function y — e“”y\IIj77 -(y) is non-negative and continuous, it remains to

check the condition (5.3). By the construction of \Iﬁn one can verify that
there exists a constant £; € (0, min{Mmn,n/3}) such that

[osw i hdy<2 Y s W)
Ry’ €Be, (y) mez YE[mn,(m+1)n)
=2 Z sup U,(y) < 400, (5.14)
mez YEmn,(m+1)n)

where the series is finite since the function Uy is directly Riemann integrable.
Hence, applying Theorem 5.1 to y — YU T _(y), we get

5775

lim sup sup Jo = 0. (5.15)

N0 2eS |l|<in

For Js(z), recall that W, . < W, < ¥, . Using (5.12) and the fact that
rs is uniformly bounded on S, we get that there exists a constant Cs > 0

such that

sup Jg < Cse. (5.16)
€S
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For Ji, note that e®¥WU_, _(y) < e¥¥(y) < eV¥T, (y), y € R. Combining

sna sna

this with the positivity of ¢, it holds that
1] < JesinB {o(XD)e T [, (T2) = w5, (T3] }]

< Cs,l,nIE [QD(X;:) 1\112‘77 E(Tnl)} 77‘5 VS / \II ,775 ‘

+eatn [T ()] - Tuhnle) [ 05, )]

Hr@nte) [ Wy - @) [ ¥,
= Ji + Jiz+ Ji3.

Using (5.15), it holds that, as n — oo, Ji1 — 0, uniformly in x € S and
l] < l. For Jiz, note that the function y — e®W_, (y) is non-negative
and continuous. By the construction of W, _, similarly to (5.14), one can
verify that there exists e2 > 0 such that [ sup, g, (y) Vo (y)dy < +oo.
We deduce from Theorem 5.1 that Ji2 — 0 as n — oo, uniformly in x € S
and [I| < l,,. For Jiz, we use (5.12) to get that Ji3 < Cse. Consequently,
we obtain that, as n — oo, J; < Cse, uniformly in « € S and || < I,,. This,
together with (5.13), (5.15)-(5.16), implies that

CoanB [P (XTI = o)) [ Walw)dy| < Cue

lim sup sup
N0 1S |i|<in

Since £ > 0 is arbitrary, we conclude the proof of Theorem 2.2. ]

Proof of Theorem 2.. Following the proof of Theorem 5.1, one can verify
that the asymptotic (5.2) holds true for s < 0 small enough and for ¢
satisfying condition (5.1). The passage to a directly Riemann integrable
function ¢ can be done by using the same approximation techniques as in
the proof of Theorem 2.2. ]

6. PROOF OF THEOREMS 2.5, 2.6 AND 2.7

Proof of Theorems 2.5 and 2.6. We first give a proof of Theorem 2.5. Since
log |Gpz| < log||Gy| and the function 7 is strictly positive and uniformly
bounded on S, applying Theorem 2.1 we get the lower bound:

liminf inf flog]P’(log |Grnll = n(g+1)) = —A*(q). (6.1)

n—oo |[|<

For the upper bound, since all matrix norms are equivalent, there exists a
positive constant C' which does not depend on the product G,, such that
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log ||Gr|| < maxjgicqlog|Gre;| + C, where (e;)1<i<q is the canonical or-
thonormal basis in R?. From this inequality, we deduce that

d
P(og [|Gall = n(q +1)) < 3 P(log|Gueil > n(q+1—C/n)).
=1

Using Lemma 4.1, we see that there exists a constant Cs > 0 such that
AT (@ H=C/n)=A"(a+D] < Oy, uniformly in |I| < I, and n > 1. Again by
Theorem 2.1, we obtain the upper bound:
1
limsup sup —logP(log |G, || = n(qg+1)) < —A*(q).
n

n—oo |l‘<ln

This, together with (6.1), proves Theorem 2.5. Using Theorem 2.3, the proof
of Theorem 2.6 can be carried out in the same way. O

Proof of Theorem 2.7. Without loss of generality, we assume that the func-
tion ¢ is non-negative. From Theorem 2.2, we deduce that there exists a
sequence (7y,)n>1, determined by the matrix law p such that r, — 0 as
n — oo and, uniformly in z € S, |I| <[, and 0 < A < o(n), it holds that

E {@(Xﬁ) L1og |an|>n(q+l)+a+A}}

Ts (CL‘) —nA*(q+I+ “+A)
= ——— n S ni- 6.2
P s @)+l (62)

Taking the difference of (6.2) with A = 0 and with A > 0, we get, as n — oo,
E [@(Xﬁ)ﬂ{log |an|en(q+n+[a,a+m}}
= IA (n)&e_njx*(q—"l) |:VS(SD) _.l_ Tn:l ,
sosV2mn

where
In(n) := A (g H)—nA™ (g +1+3) enA*(q+l)—n/\*(q+l+%)_

An elementary analysis using Lemma 4.1 shows that
In(n) ~ e7%4(1 — e™52),

uniformly in [I| < I, and A,, < A < o(n), for any (A,),>1 converging to
0 slowly enough (A,! = o(r;!)). This concludes the proof of Theorem
2.7. ]
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