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n 1 be a sequence of independent identically distributed d × d real random matrices with Lyapunov exponent γ. For any starting point x on the unit sphere in R d , we deal with the norm |Gnx|, where Gn := gn . . . g1. The goal of this paper is to establish precise asymptotics for large deviation probabilities P(log |Gnx| n(q +l)), where q > γ is fixed and l is vanishing as n → ∞. We study both invertible matrices and positive matrices and give analogous results for the couple (X x n , log |Gnx|) with target functions, where X x n = Gnx/|Gnx|. As applications we improve previous results on the large deviation principle for the matrix norm Gn and obtain a precise local limit theorem with large deviations.

1. Introduction 1.1. Background and main objectives. One of the fundamental results in the probability theory is the law of large numbers. The large deviation theory describes the rate of convergence in the law of large numbers. The most important results in this direction are the Bahadur-Rao and the Petrov precise large deviation asymptotics that we recall below for independent and identically distributed (i.i.d.) real-valued random variables (X i ) i 1 . Let S n = n i=1 X i . Denote by I Λ the set of real numbers s 0 such that Λ(s) := log E[e sX 1 ] < +∞ and by I • Λ the interior of I Λ . Let Λ * be the Frenchel-Legendre transform of Λ. Assume that s ∈ I • Λ and q are related by q = Λ (s). Set σ 2 s = Λ (s). From the results of Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] and Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] it follows that if the law of X 1 is non-lattice, then the following large deviation asymptotic holds true:

P(S n n(q + l)) ∼ exp(-nΛ * (q + l)) sσ s √ 2πn , n → ∞, (1.1) 
where Λ * (q + l) = Λ * (q) + sl + l 2 2σ 2 s + O(l 3 ) and l is a vanishing perturbation as n → ∞. Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] have established the equivalence (1.1) with l = 0. Petrov improved it by showing that (1.1) holds uniformly in |l| l n → 0 as n → ∞. Actually, Petrov's result is also uniform in q and is therefore stronger than Bahadur-Rao's theorem even with l = 0. The relation (1.1) with l = 0 and its extension to |l| l n → 0 have multiple implications in various domains of probability and statistics. The main goal of the present paper is to establish an equivalence similar to (1.1) for products of i.i.d. random matrices.

Let (g n ) n 1 be a sequence of i.i.d. d × d real random matrices defined on a probability space (Ω, F, P) with common law µ. Denote by • the operator norm of a matrix and by | • | the Euclidean norm in R d . Set for brevity G n := g n . . . g 1 , n

1. The study of asymptotic behavior of the product G n attracted much attention, since the fundamental work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the strong law of large numbers for log G n has been established. Under additional assumptions, Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] extended it to log |G n x|, for any starting point x on the unit sphere S d-1 = {x ∈ R d : |x| = 1}. A number of noteworthy results in this area can be found in Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], Goldsheid and Guivarc'h [START_REF] Goldsheid | Zariski closure and the dimension of the Gaussian law of the product of random matrices[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], Furman [START_REF] Furman | Random walks on groups and random transformations[END_REF], Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF], Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF] to name only a few.

In this paper we are interested in asymptotic behaviour of large deviation probabilities for log |G n x| where x ∈ S d-1 . Set I µ = {s 0 : E( g 1 s ) < +∞}. For s ∈ I µ , let κ(s) = lim n→∞ (E G n s )

1 n . Define the convex function Λ(s) = log κ(s), s ∈ I µ , and consider its Fenchel-Legendre transform Λ * (q) = sup s∈Iµ {sq-Λ(s)}, q ∈ Λ (I µ ). Our first objective is to establish the following Bahadur-Rao type precise large deviation asymptotic:

P(log |G n x| nq) ∼ rs (x) exp (-nΛ * (q)) sσ s √ 2πn , n → ∞, (1.2) 
where σ s > 0, rs = rs νs(rs) > 0, r s and ν s are, respectively, the unique up to a constant eigenfunction and unique probability eigenmeasure of the transfer operator P s corresponding to the eigenvalue κ(s) (see Section 2.2 for precise statements). In fact, to enlarge the area of applications in (1.2) it is useful to add a vanishing perturbation for q. In this line we obtain the following Petrov type large deviation expansion: under appropriate conditions, uniformly in |l| l n → 0 as n → ∞, P(log |G n x| n(q + l)) ∼ rs (x) exp (-nΛ * (q + l)) sσ s √ 2πn , n → ∞.

(1.3)

As an consequence of (1.3) we are able to infer new results, such as large deviation principles for log G n , see Theorem 2.5. From (1.3) we also deduce a local large deviation asymptotic: there exists a sequence ∆ n > 0 converging to 0 such that, uniformly in ∆ ∈ [∆ n , o(n)], q) , n → ∞.

P(log |G n x| ∈ [nq, nq + ∆)) ∼ ∆ rs (x) sσ s √ 2πn e -nΛ * (
(1.4)

Our results are established for both invertible matrices and positive matrices. For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] has obtained (1.2) for s > 0 small enough under more restrictive conditions, such as the existence of exponential moments of g 1 and g -1
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. The asymptotic (1.2) clearly implies a large deviation result due to Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] which holds for invertible matrices and positive matrices: for q = Λ (s) and s ∈ I • µ , there exist two constants 0 < c s < C s < +∞ such that c s lim inf C s . (1.5) Consider the Markov chain X x n := G n x/|G n x|. Our second objective is to give precise large deviations for the couple (X x n , log |G n x|) with target functions. We prove that for any Hölder continuous target function ϕ on X x n , and any target function ψ on log |G n x| such that y → e -sy ψ(y) is directly Riemann integrable, it holds that E ϕ(X x n )ψ(log |G n x| -n(q + l))

∼ rs (x)ν s (ϕ) R e -sy ψ(y)dy exp (-nΛ * (q + l))

σ s √ 2πn , n → ∞. (1.6) 
As a special case of (1.6) with l = 0 and ψ compactly supported we obtain Theorem 3.3 of Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF]. With l = 0, ψ the indicator function of the interval [0, ∞) and ϕ = r s , we get the main result in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

Our third objective is to establish asymptotics for lower large deviation probabilities: we prove that for q = Λ (s) with s < 0 sufficiently close to 0, it holds, uniformly in |l| l n ,

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) -sσ s √ 2πn (1 + o(1)). (1.7)
This sharpens the large deviation principle established in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Theorem 6.1] for invertible matrices. Moreover, we extend the large deviation asymptotic (1.7) to the couple (X x n , log |G n x|) with target functions.

1.2. Proof outline. Our proof is different from the standard approach of Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] based on the Edgeworth expansion, which has been employed for instance in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]. In contrast to [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], we start with the identity

e nΛ * (q+l) r s (x) P log |G n x| n(q + l) = e nhs(l) E Q x s ψ s (log |G n x| -n(q + l)) r s (X x n ) , ( 1.8) 
where Q x s is the change of measure defined in Section 3 for the norm cocycle log |G n x|, ψ s (y) = e -sy 1 {y 0} and h s (l) = Λ * (q + l) -Λ * (q) -sl. Usually the expectation in the right-hand side of (1.8) is handled via the Edgeworth expansion for the distribution function Q x s log |Gnx|-nq √ nσs t ; however, the presence of the multiplier r s (X x n ) -1 makes this impossible. Our idea is to replace the function ψ s with some upper and lower smoothed bounds using a technique from Grama, Lauvergnat and Le Page [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. For simplicity we deal only with the upper bound ψ s ψ + s,ε * ρ ε 2 , where ψ + s,ε (y) = sup y :|y -y| ε ψ s (y ), for some ε > 0, and ρ ε 2 is a density function on the real line satisfying the following properties: the Fourier transform

ρ ε 2 is supported on [-ε -2 , ε -2 ],
has a continuous extension in the complex plane and is analytic in the do-

main {z ∈ C : |z| < ε -2 , z = 0}, see Lemma 4.2. Let R s,it be the perturbed operator defined by R s,it (ϕ)(x) = E Q x s [ϕ(X 1 )e it(log |g 1 x|-q)
], for any Hölder continuous function ϕ on the unit sphere S d-1 . Using the inversion formula we obtain the following upper bound:

E Q x s ψ s (log |G n x| -n(q + l)) r s (X x n ) 1 2π R e -itln R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt, (1.9) 
where R n s,it is the n-th iteration of R s,it . The integral in the right-hand side of (1.9) is decomposed into two parts:

e nhs(l) |t|<δ + |t| δ e -itln R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt. (1.10)
Since ρ ε 2 is compactly supported on R and µ is non-arithmetic, the second integral in (1.10) decays exponentially fast to 0. To deal with the first integral in (1.10), we make use of spectral gap decomposition for the perturbed operator R s,it : R n s,it = λ n s,it Π s,it + N n s,it . Taking into account the fact that the remainder term N n s,it decays exponentially fast to 0, the main difficulty is to investigate the integral:

e nhs(l) δ -δ e -itln λ n s,it Π s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt.
To find the exact asymptotic of this integral, we can apply the saddle point method (see Fedoryuk [START_REF] Fedoryuk | Asymptotic, Integrals and Series[END_REF]). This is possible, since by the analyticity of the functions ψ + s,ε and ρ ε 2 , one can apply Cauchy's integral theorem to change the integration path so that it passes through the saddle point z 0 = z 0 (l), which is the unique solution of the saddle point equation log λ s,z = zl.

The lower bound of the integral in (1.8) is a little more delicate, but can be treated in a similar way. The passage to the targeted version is done by using approximation techniques.

We end this section by fixing some notation, which will be used throughout the paper. We denote by c, C, eventually supplied with indices, absolute constants whose values may change from line to line. By c α , C α we mean constants depending only on the index α. The interior of a set A is denoted by A • . Let N = {1, 2, . . .}. For any integrable function ψ : R → C, define its Fourier transform by ψ(t) = R e -ity ψ(y)dy, t ∈ R. For a matrix g, its transpose is denoted by g T . For a measure ν and a function ϕ we write ν(ϕ) = ϕdν. We shall work with products of invertible or positive matrices (all over the paper we use the term positive in the wide sense, i.e. each entry is nonnegative). Denote by G = GL(d, R) the general linear group of invertible matrices of M (d, R). A positive matrix g ∈ M (d, R) is said to be allowable, if every row and every column of g has a strictly positive entry. Denote by G + the multiplicative semigroup of allowable positive matrices of M (d, R). We write G • + for the subsemigroup of G + with strictly positive entries. Denote by S d-1 + = {x 0 : |x| = 1} the intersection of the unit sphere with the positive quadrant. To unify the exposition, we use the symbol S to denote S d-1 in the case of invertible matrices, and
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S d-1
+ in the case of positive matrices. The space S is equipped with the metric d which we proceed to introduce. For invertible matrices, the distance d is defined as the angular distance (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), i.e., for any x, y ∈ S d-1 , d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and y. For positive matrices, the distance d is the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) defined by d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{λ > 0 : λy i x i , ∀i = 1, . . . , d}, for any two vectors x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d-1 + .

Let C(S) be the space of continuous functions on S. We write 1 for the identity function 1(x), x ∈ S. Throughout this paper, let γ > 0 be a fixed small constant. For any ϕ ∈ C(S), set

ϕ ∞ := sup x∈S |ϕ(x)| and ϕ γ := ϕ ∞ + sup x,y∈S |ϕ(x) -ϕ(y)| d(x, y) γ ,
and introduce the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}.

For g ∈ M (d, R) and x ∈ S, write g • x = gx |gx| for the projective action of g on S. For any g ∈ M (d, R), set ι(g) := inf x∈S |gx|. For both invertible matrices and allowable positive matrices, it holds that ι(g) > 0. Note that for any invertible matrix g, we have ι(g) = g -1 -1 .

Let (g n ) n 1 be a sequence of i.i.d. random matrices of the same probability law µ on M (d, R). Set G n = g n . . . g 1 , for n 1. Our goal is to establish, under suitable conditions, a large deviation equivalence similar to (1.1) for the norm cocycle log |G n x| for invertible matrices and positive matrices. In both cases, we denote by

Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by supp µ (the support of µ), that is, Γ µ = ∪ ∞ n=1 {supp µ} n . Set I µ = {s 0 : E( g 1 s ) < +∞}.
Applying Hölder's inequality to E( g 1 s ), it is easily seen that I µ is an interval. We make use of the following exponential moment condition: A1. There exist s ∈ I • µ and α ∈ (0, 1) such that E g 1 s+α ι(g 1 ) -α < +∞.

For invertible matrices, we introduce the following strong irreducibility and proximality conditions, where we recall that a matrix g is said to be proximal if it has an algebraic simple dominant eigenvalue.

A2. (i)(Strong irreducibility) No finite union of proper subspaces of

R d is Γ µ -invariant.
(ii)(Proximality) Γ µ contains at least one proximal matrix.

The conditions of strong irreducibility and proximality are always satisfied for d = 1. If g is proximal, denote by λ g its dominant eigenvalue and by v g the associated normalized eigenvector (|v g | = 1). In fact, g is proximal iff the space R d can be decomposed as R d = Rλ g ⊕ V such that gV ⊂ V and the spectral radius of g on the invariant subspace V is strictly less than |λ g |. For invertible matrices, condition A2 implies that the Markov chain X x n has a unique µ-stationary measure, which is supported on

V (Γ µ ) = {±v g ∈ S d-1 : g ∈ Γ µ , g is proximal}.
For positive matrices, introduce the following condition:

A3. (i) (Allowability) Every g ∈ Γ µ is allowable. (ii) (Positivity) Γ µ contains at least one matrix belonging to G • + .
It can be shown (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.3]) that for positive matrices, condition A3 ensures the existence and uniqueness of the invariant measure for the Markov chain X x n supported on

V (Γ µ ) = {v g ∈ S d-1 + : g ∈ Γ µ , g ∈ G • + }.
In addition, V (Γ µ ) is the unique minimal Γ µ -invariant subset (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.2]). According to the Perron-Frobenius theorem, a strictly positive matrix always has a unique dominant eigenvalue, so condition A3(ii) implies condition A2(ii) for d > 1.

For any s ∈ I µ , for invertible matrices and for positive matrices, the following limit exists (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]):

κ(s) = lim n→∞ (E G n s ) 1 n .
The function Λ = log κ : I µ → R is convex and analytic on I • µ (it plays the same role as the log-Laplace transform of X 1 in the real i.i.d. case). Introduce the Fenchel-Legendre transform of Λ by Λ * (q) = sup s∈Iµ {sq -Λ(s)}, q ∈ Λ (I µ ). We have that Λ * (q) = sq -Λ(s) if q = Λ (s) for some s ∈ I µ , which implies Λ * (q) 0 on Λ (I µ ) since Λ(0) = 0 and Λ(s) is convex on I µ .

We say that the measure µ is arithmetic, if there exist t > 0, β ∈ [0, 2π) and a function ϑ : S → R such that for any g ∈ Γ µ and any x ∈ V (Γ µ ), we have exp[it log |gx| -iβ + iϑ(g•x) -iϑ(x)] = 1. For positive matrices, we need the following condition: A4. (Non-arithmeticity) The measure µ is non-arithmetic.

A simple sufficient condition established in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] for the measure µ to be non-arithmetic is that the additive subgroup of R generated by the set {log λ g : [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 2.7]). Note that for positive matrices, condition A4 is used to ensure that σ 2 s = Λ (s) > 0. For invertible matrices, condition A2 implies the nonarithmeticity of the measure µ, hence, σ s is also strictly positive (for a proof see Guivarc'h and Urban [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF]Proposition 4.6]).

g ∈ Γ µ , g ∈ G • + } is dense in R (see
For any s ∈ I µ , the transfer operator P s and the conjugate transfer operator P * s are defined, for any ϕ ∈ C(S) and x ∈ S, by

P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), P * s ϕ(x) = Γµ |g T 1 x| s ϕ(g T 1 •x)µ(dg 1 ), (2.1)
which are bounded linear on C(S). Under condition A2 for invertible matrices, or condition A3 for positive matrices, the operator P s has a unique probability eigenmeasure ν s on S corresponding to the eigenvalue κ(s): P s ν s = κ(s)ν s . Similarly, the operator P * s has a unique probability eigenmeasure ν * s corresponding to the eigenvalue κ(s):

P * s ν * s = κ(s)ν * s . Set, for x ∈ S, r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy).
Then, r s is the unique, up to a scaling constant, strictly positive eigenfunction of P s : P s r s = κ(s)r s ; similarly r * s is the unique, up to a scaling constant, strictly positive eigenfunction of P * s : P * s r * s = κ(s)r * s . We refer for details to Section 3.

Below we shall also make use of normalized eigenfunction rs defined by rs (x) = rs (x) νs(rs) , x ∈ S, which is strictly positive and Hölder continuous on the projective space S, see Proposition 3.1.

Large deviations for the norm cocycle.

The following theorem gives the exact asymptotic behavior of the large deviation probabilities for the norm cocycle.

Theorem 2.1. Assume that µ satisfies either conditions A1, A2 for invertible matrices, or conditions A1, A3, A4 for positive matrices. Let q = Λ (s), where s ∈ I • µ . Then for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) sσ s √ 2πn (1 + o(1)). (2.2)
In particular, with l = 0, as n → ∞, uniformly in x ∈ S,

P log |G n x| nq = rs (x) exp (-nΛ * (q)) sσ s √ 2πn (1 + o(1)). ( 2.3) 
The rate function Λ * (q + l) admits the following expansion: for q = Λ (s) and l in a small neighborhood of 0, we have

Λ * (q + l) = Λ * (q) + sl + l 2 2σ 2 s - l 3 σ 3 s ζ s l σ s , ( 2.4) 
where

ζ s (t) is the Cramér series, ζ s (t) = ∞ k=3 c s,k t k-3 = Λ (s) 6σ 3 s + O(t)
, with Λ (s) and σ s defined in Proposition 3.3. We refer for details to Lemma 4.1, where the coefficients c s,k are given in terms of the cumulant generating function Λ = log κ.

For invertible matrices, a point-wise version of (2.3), without sup x∈S and with l = 0, namely the asymptotic (1.2), has been first established by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 8] for small enough s > 0 under a stronger exponential moment condition. For positive matrices, the asymptotic (2.3) is new and implies the large deviation bounds (1.5) established in Buraczewski and Mentemeier [8,Corollary 3.2]. We note that there is a misprint in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], where e nsq should be replaced by e Λ * (q) . Now we consider the precise large deviations for the couple (X x n , log |G n x|) with target functions ϕ and ψ on X x n := G n •x and log |G n x|, respectively.

Theorem 2.2. Assume the conditions of Theorem 2.1 and let q = Λ (s) for s ∈ I • µ . Then, for any ϕ ∈ B γ , any measurable function ψ on R such that y → e -sy ψ(y) is directly Riemann integrable, and any positive sequence

(l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n , E ϕ(X x n )ψ(log |G n x| -n(q + l)) = rs (x) exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ) R e -sy ψ(y)dy + o(1) . (2.5)
With ϕ = 1 and ψ(y) = 1 {y 0} for y ∈ R, we obtain Theorem 2.1. For invertible matrices and with l = 0, Theorem 2.2 strengthens the point-wise large deviation result stated in Theorem 3.3 of Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], since we do not assume the function ψ to be compactly supported and our result is uniform in x ∈ S. By the way we would like to remark that in Theorem 3.3 of [20] κ n (s) should be replaced by κ -n (s), and ν s (ϕr -1 s ) should be replaced by νs (ϕ) νs(rs) . For positive matrices, Theorem 2.2 is new. Since r s is a strictly positive and Hölder continuous function on S (see Proposition 3.1), taking ϕ = r s and ψ(y) = 1 {y 0} , y ∈ R in Theorem 2.2, we get the main result of [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] (Theorem 3.1).

Unlike the case of i.i.d. real-valued random variables, Theorems 2.1 and 2.2 do not imply the similar asymptotic for lower large deviation probabilities P(log |G n x| n(q + l)), where q < Λ (0). To formulate our results, we need an exponential moment condition, as in Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. For g ∈ Γ µ , set N (g) = max{ g , ι(g) -1 }, which reduces to N (g) = max{ g , g -1 } for invertible matrices.

A5. There exists a constant η ∈ (0, 1) such that E[N (g 1 ) η ] < +∞.

Under condition A5, the functions s → κ(s) and s → Λ(s) = log κ(s) can be extended analytically in a small neighborhood of 0 of the complex plane; in this case the expansion (2.4) still holds and we have σ s = Λ (s) > 0 for s < 0 small enough. We also need to extend the function r s for small s < 0, which is positive and Hölder continuous on the projective space S, as in the case of s > 0: we refer to Proposition 3.2 for details. Theorem 2.3. Assume that µ satisfies either conditions A2, A5 for invertible matrices or conditions A3, A4, A5 for positive matrices. Then, there exists η 0 < η such that for any s ∈ (-η 0 , 0) and q = Λ (s), for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) -sσ s √ 2πn (1 + o(1)).
In particular, with l = 0, as n → ∞, uniformly in x ∈ S,

P log |G n x| nq = rs (x) exp (-nΛ * (q)) -sσ s √ 2πn (1 + o(1)).
For invertible matrices, this result sharpens the large deviation principle established in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. For positive matrices, our result is new, even for the large deviation principle.

More generally, we also have the precise large deviations result for the couple (X x n , log |G n x|) with target functions. Theorem 2.4. Assume the conditions of Theorem 2.3. Then, there exists η 0 < η such that for any s ∈ (-η 0 , 0) and q = Λ (s), for any ϕ ∈ B γ , any measurable function ψ on R such that y → e -sy ψ(y) is directly Riemann integrable, and any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

E ϕ(X x n )ψ(log |G n x| -n(q + l)) = rs (x) exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ) R e -sy ψ(y)dy + o(1) .
With ϕ = 1 and ψ(y) = 1 {y 0} for y ∈ R, we obtain Theorem 2.3.

Applications to large deviation principle for the matrix norm.

We use Theorems 2.1 and 2.3 to deduce large deviation principles for the matrix norm G n . Our first result concerns the upper tail and the second one deals with lower tail.

Theorem 2.5. Assume the conditions of Theorem 2.1. Let q = Λ (s), where s ∈ I • µ . Then, for any positive sequence (l n ) n 1 with l n → 0 as n → ∞, we have, uniformly in |l| l n ,

lim n→∞ 1 n log P log G n n(q + l) = -Λ * (q).
For invertible matrices, with l = 0, Theorem 2.5 improves the large deviation bounds in Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 14.19], where the authors consider general groups, but without giving the rate function. For positive matrices, the result is new for l = 0 and l = O(l n ). Theorem 2.6. Assume the conditions of Theorem 2.3. Then, there exists η 0 < η such that for any s ∈ (-η 0 , 0) and q = Λ (s), for any positive sequence

(l n ) n 1 with l n → 0 as n → ∞, we have, uniformly in |l| l n , lim n→∞ 1 n log P log G n n(q + l) = -Λ * (q).
This result is new for both invertible matrices and positive matrices.

2.4.

Local limit theorems with large deviations. Local limit theorems and large and moderate deviations for sums of i.i.d. random variables have been studied by Gnedenko [START_REF] Gnedenko | On a local limit theorem of the theory of probability[END_REF], Sheep [START_REF] Sheep | A local limit theorem[END_REF], Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distribution functions[END_REF], Breuillard [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF], Borovkov and Borovkov [START_REF] Borovkov | Asymptotic analysis of random walks[END_REF]. Moderate deviation results in the local limit theorem for products of invertible random matrices have been obtained in [3, Theorems 17.9 and 17.10].

Taking ϕ = 1 and ψ = 1 [a,a+∆] , where a ∈ R and ∆ > 0 do not depend on n, it is easy to understand that Theorem 2.2 becomes, in fact, a statement on large deviations in the local limit theorem. It turns out that with the Petrov type extension (2.5) we can derive the following more general statement where ∆ can increase with n.

Theorem 2.7. Assume conditions of Theorem 2.1 and let q = Λ (s). Then there exists a sequence ∆ n > 0 converging to 0 as n → ∞ such that, for any ϕ ∈ B γ , for any positive sequence (l n ) n 1 with l n → 0 as n → ∞ and any fixed a ∈ R, we have, as

n → ∞, uniformly in ∆ ∈ [∆ n , o(n)], x ∈ S and |l| l n , E ϕ(X x n )1 {log |Gnx|∈n(q+l)+[a,a+∆)} = rs (x)e -sa 1 -e -s∆ exp(-nΛ * (q + l)) sσ s √ 2πn ν s (ϕ) + o(1)
.

Taking ϕ = 1, as n → ∞, uniformly in ∆ ∈ [∆ n , o(n)], x ∈ S and |l| l n , P log |G n x| ∈ n(q + l) + [a, a + ∆) = rs (x)e -sa 1 -e -s∆ exp(-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) .
We can compare this result with Theorem 3.3 in [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], from which the above equivalence can be deduced for l = 0 and ∆ fixed.

It is easy to see that, under additional assumption A5, the assertion of Theorem 2.7 remains true for s < 0 small enough. This can be deduced from Theorem 2.4: the details are left to the reader.

3. Spectral gap theory for the norm 3.1. Properties of the transfer operator. Recall that the transfer operator P s and the conjugate operator P * s are defined by (2.1). Below P s ν s stands for the measure on S such that P s ν s (ϕ) = ν s (P s ϕ), for continuous functions ϕ on S, and P * s ν * s is defined similarly. The following result was proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices. 

r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy), x ∈ S.
It is easy to see that the family of kernels q s n (x, g)

= |gx| s κ n (s) rs(g•x)
rs(x) , n 1 satisfies the following cocycle property:

q s n (x, g 1 )q s m (g 1 •x, g 2 ) = q s n+m (x, g 2 g 1 ). (3.1)
The equation P s r s = κ(s)r s implies that, for any x ∈ S and s ∈ I µ , the probability measures Q x s,n (dg 1 , . . . , dg n ) = q s n (x, g n ...g 1 )µ(dg 1 )...µ(dg n ), n 1, form a projective system on M (d, R) N . By the Kolmogorov extension theorem, there is a unique probability measure

Q x s on M (d, R) N , with marginals Q x s,n ; denote by E Q x s the corresponding expectation. If (g n ) n∈N denotes the coordinate process on the space of trajectories M (d, R) N , then the sequence (g n ) n 1 is i.i.d. with the common law µ under Q x 0 . However, for any s ∈ I • µ and x ∈ S, the sequence (g n ) n 1 is Markov- dependent under the measure Q x s . Let X x 0 = x, X x n = G n •x, n 1. By the definition of Q x s , for any bounded measurable function f on (S ×R) n , it holds that 1 κ n (s)r s (x) E r s (X x n )|G n x| s f X x 1 , log |G 1 x|, ..., X x n , log |G n x| = E Q x s f X x 1 , log |G 1 x|, ..., X x n , log |G n x| . (3.
2) Under the measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator given by

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x) = 1 κ(s)r s (x) Γµ |gx| s ϕ(g•x)r s (g•x)µ(dg).
It has been proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices, that Q s has a unique invariant probability measure π s supported on V (Γ µ ) and that, for any ϕ ∈ C(S),

lim n→∞ Q n s ϕ = π s (ϕ), where π s (ϕ) = ν s (ϕr s ) ν s (r s ) . (3.3)
Moreover, letting Q s = Q x s π s (dx), from the results of [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], it follows that, under the assumptions of Theorem 2.1, for any s ∈ I µ , we have lim n→∞ log |Gnx| n = Λ (s), Q s -a.s. and Q x s -a.s., where Λ (s) = κ (s) κ(s) . When s ∈ (-η 0 , 0) for small enough η 0 > 0, define the transfer operator P s as follows: for any ϕ ∈ C(S),

P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), x ∈ S,
which is well-defined under condition A5. The following proposition is proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Proposition 3.2. Assume that µ satisfies either conditions A2, A5 for invertible matrices, or conditions A3, A5 for positive matrices. Then there exists η 0 < η such that for any s ∈ (-η 0 , 0), the spectral radius (P s ) of the operator P s is equal to κ(s). Moreover there exist a unique, up to a scaling constant, strictly positive Hölder continuous function r s and a unique probability measure ν s on S such that

P s r s = κ(s)r s , P s ν s = κ(s)ν s .
Based on Proposition 3.2, in the same way as for s > 0, one can define the measure Q x s for negative values s < 0 sufficiently close to 0, and one can extend the change of measure formula (3.2) to s < 0. Under the measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator Q s and the assertion (3.3) holds true. We refer to [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for details. 

R s,z ϕ(x) = E Q x s e z(log |g 1 x|-q) ϕ(X x 1 ) , x ∈ S. (3.4) 
It follows from the cocycle property (3.1) that

R n s,z ϕ(x) = E Q x s e z(log |Gnx|-nq) ϕ(X x n ) , x ∈ S.
The following proposition collects useful assertions that we will use in the proofs of our results. Denote B δ (0) := {z ∈ C : |z| δ}. Proposition 3.3. Assume that µ satisfies either conditions A1, A2 for invertible matrices, or conditions A1, A3 for positive matrices. Then, there exists δ > 0 such that for any z ∈ B δ (0),

R n s,z = λ n s,z Π s,z + N n s,z , n 1. (3.5)
Moreover, for any s ∈ I • µ , the following assertions hold: (i) Π s,z is a rank-one projection for |z| δ, with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ S, Π s,z N s,z = N s,z Π s,z = 0 and

λ s,z = e -qz κ(s + z) κ(s) , for z ∈ B δ (0). (3.6)
For any fixed k 1, there exist κ s ∈ (0, 1) and c s such that

sup |z|<δ d k dz k N n s,z Bγ →Bγ c s κ n s , n 1.
In addition, the mappings z → Π s,z : (iii) The mapping z → λ s,z : B δ (0) → C is analytic, and

B δ (0) → L(B γ , B γ ) and z → N s,z : B δ (0) → L(B γ , B γ )
λ s,z = 1 + σ 2 s 2 z 2 + Λ (s) 6 z 3 + o(z 3 ) as z → 0, where 
σ 2 s = Λ (s) = lim n→∞ 1 n E Qs (log |G n x| -nq) 2 and 
Λ (s) = lim n→∞ 1 n E Qs (log |G n x| -nq) 3 .
In addition, if the measure µ is non-arithmetic, then the asymptotic variance σ 2 s is strictly positive. The assertions (i), (ii), (iii) of Proposition 3.3, except (3.6), have been proved in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for imaginary-valued z ∈ (-iδ, iδ), based on the perturbation theory (see [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]). The assertions (i), (iii) can be extended to the complexvalued z ∈ B δ (0) without changes in the proof in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

The identity (3.6) is not proved in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], but can be obtained by using the arguments from [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. By the perturbation theory, the operator P s and its spectral radius κ(s) can be extended to P s+z and the eigenvalue κ(s + z), respectively, with z in the small neighborhood of 0, see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. By the definitions of R s,z and P z using the change of measure (3.2), we obtain for

any ϕ ∈ B γ , n 1, s ∈ I • µ and z ∈ B δ (0), R n s,z (ϕ) = e -nzΛ (s) P n s+z (ϕr s ) κ n (s)r s . (3.7)
Since r s is uniformly bounded, using (3.7) and the fact that κ(s + z) is the unique eigenvalue of P s+z , we deduce (3.6). For negative values s < 0 sufficiently close to 0, we can define the perturbed operator R s,z as in (3.4). The following spectral gap property of R s,z is established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Proposition 3.4. Assume that µ satisfies conditions A2, A5 for invertible matrices, or conditions A3, A5 for positive matrices. Then, there exist η 0 < η and δ > 0 such that for any s ∈ (-η 0 , 0) and z ∈ B δ (0),

R n s,z = λ n s,z Π s,z + N n s,z , n 1.
Moreover, for any s ∈ (-η 0 , 0), the assertions (i), (ii), (iii) of Proposition 3.3 hold true. 

t 2 + . . . ,
where γ s,k = Λ (k) (s) and Λ(s) = log κ(s). The following lemma gives a full expansion of Λ * (q + l) in terms of power series in l in a neighborhood of 0, for q = Λ (s) and s ∈ I • µ ∪ (η 0 , 0), where η 0 is from Proposition 3.4. Lemma 4.1. Assume conditions of Theorem 2.1 or Theorem 2.3. Let q = Λ (s). Then, there exists δ > 0 such that, for any |l| δ,

Λ * (q + l) = Λ * (q) + sl + h s (l),
where h s is linked to the Cramér series ζ s by the identity

h s (l) = l 2 2σ 2 s - l 3 σ 3 s ζ s ( l σ s ). (4.1)
Proof. Let (Λ ) -1 be the inverse function of Λ . With the notation l s = (Λ ) -1 (q + l) -s, we have Λ (s + l s ) = q + l. By the definition of Λ * , it follows that Λ * (q + l) = (s + l s )(q + l) -Λ(s + l s ). This, together with Λ * (q) = sq -Λ(s) and Taylor's formula, gives

h s (l) := Λ * (q + l) -Λ * (q) -sl = l s l - ∞ k=2 Λ (k) (s) k! l k s . (4.2)
From Λ (s + l s ) = q + l and Λ (s) = q, we deduce that l = Λ (s + l s ) -Λ (s), so that, by Taylor's formula,

l = ∞ k=1 Λ (k+1) (s) k! l k s . (4.
3)

The rest of the proof is similar to that in Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] (chapter VIII, section 2). For |l| small enough, the equation ( 4.3) has a unique solution l s given by

l s = l σ 2 s - Λ (3) (s) 2σ 6 s l 2 - Λ (4) (s)σ 2 s -3(Λ (3) (s)) 2 6σ 10 s l 3 + • • • .
Together with (4.2) and (4.3), this implies

h s (l) = ∞ k=2 Λ (k) (s) k -1 k! l k s = l 2 2σ 2 s - l 3 σ 3 s ζ s ( l σ s ).
Let us fix a non-negative Schwartz function ρ on R with R ρ(y)dy = 1, whose Fourier transform ρ is supported on [-1, 1] and has a continuous extension in the complex plane. Moreover, ρ is analytic in the domain D := {z ∈ C : |z| < 1, z = 0}. Such a function can be constructed as follows. On the real line define

ς(t) = e -1 1-t 2 if t ∈ [-1, 1]
, and ς = 0 elsewhere. The function ς is compactly supported and has finite derivatives of all orders. Its inverse Fourier transform ς, however, is not non-negative. Let ρ 0 = ς * ς be the convolution of ς with itself. It is supported by [-2, 2] and its inverse Fourier transform ρ 0 satisfies ρ 0 = 2πς 2 0. We show below that ρ 0 has a continuous extension in the complex plane, and ρ 0 is analytic in the domain D. Finally we rescale and renormalize ρ 0 by setting ρ(y) = ρ 0 (y/2)/[2 ρ 0 (0)] for y ∈ R. Lemma 4.2. ρ 0 has a continuous extension in the complex plane, and ρ 0 is analytic in the domain D.

Proof. The function ς can be extended to the complex plane as follows:

ς(z) =    e -1 1-z 2 |z| < 1, z ∈ C 0 |z| 1, z ∈ C.
It is easily verified that ς is continuous in the interior of the unit disc and outside it, but is not continuous at any point on the unit circle |z| = 1. Note also that ς is uniformly bounded on C. Recall that the function ρ 0 = ς * ς is defined on the real line. We extend it to the complex plane by setting ρ 0 (z) = 1 -1 ς(t) ς(z -t)1 {|z-t|<1} dt. The latter integral is well defined for any z ∈ C, since ς is bounded. We are going to show that ς is continuous in C. For any fixed z ∈ C and h ∈ C with |h| small, we write

| ρ 0 (z + h) -ρ 0 (z)| 1 -1 ς(t)| ς(z -t + h) -ς(z -t)|dt. (4.4)
The set T z = {t : |z -t| = 1} of points of discontinuity of the function t → ς(z -t) consists of at most two points. For any t ∈ [-1, 1], t ∈ T z , by the definition of ς, we have that | ς(z -t + h) -ς(z -t)| → 0 as |h| → 0. Since the Lebesgue measure of T z is 0, applying the Lebesgue dominated convergence theorem and taking into account the boundedness of the function ς on C, we see that ρ 0 is continuous in the complex plane. We next show that ρ 0 is analytic in the domain

D = {z ∈ C : |z | < 1, z = 0}. Fix z ∈ D. Let ε = z/2 ∈ (0, 1 2 ). Denote D(ε) =: {z ∈ D : | z | > ε}.
One can verify that the derivative ς (z) exists and is uniformly bounded by c ε 4 on the domain D(ε). For any h ∈ C with |h| small enough, we have 

ρ 0 (z + h) -ρ 0 (z) h = [-1,1]\Tz ς(t) ς(z -t + h) -ς(z -t) h dt = [-1,1]\Tz ς(t)
ρ 0 (z) = [-1,1]\Tz ς(t) ς (z -t)dt. Hence ρ 0 is analytic in the domain D.
For any ε > 0, define the density ρ ε (y) = 1 ε ρ( y ε ), y ∈ R, whose Fourier transform has a compact support in [-ε -1 , ε -1 ] and is analytically extendable in a neighborhood of 0. For any non-negative integrable function ψ, following the paper [START_REF] Grama | Bounds in the local limit theorem for a random walk conditioned to stay positive[END_REF], we introduce two modified functions related to ψ and establish some two-sided bounds. For any ε > 0 and y ∈ R, set Lemma 4.3. Suppose that ψ is a non-negative integrable function and that ψ + ε and ψ - ε are measurable for any ε > 0, then for sufficiently small ε, there exists a positive constant C ρ (ε) with C ρ (ε) → 0 as ε → 0, such that, for any x ∈ R,

ψ - ε * ρ ε 2 (x) - |y| ε ψ - ε (x -y)ρ ε 2 (y)dy ψ(x) (1 + C ρ (ε))ψ + ε * ρ ε 2 (x).
The proof of the above lemma, being similar to that of Lemma 5.2 in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], will not be detailed here.

The next assertion is the key point in establishing Theorem 2.1. Its proof is based on the spectral gap properties of the perturbed operator R s,z (see Proposition 3.3) and on the saddle point method, see Daniels [START_REF] Daniels | Saddlepoint approximations in statistics[END_REF], Richter [START_REF] Richter | Local limit theorems for large deviations[END_REF], Ibragimov and Linnik [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF] and Fedoryuk [START_REF] Fedoryuk | Asymptotic, Integrals and Series[END_REF]. Let us introduce the necessary notation. In the following, let ϕ be a γ-Hölder continuous function on S. Assume that ψ : R → C is a continuous function with compact support in R, and moreover, ψ has a continuous extension in some neighborhood of 0 in the complex plane and can be extended analytically to the domain D δ := {z ∈ C : |z| < δ, z = 0} for some small δ > 0. Recall that π s is the invariant measure of the Markov chain X x n under the changed measure Q x s , see (3.3). 

√ n σ s e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2πψ(0)π s (ϕ) C ϕ γ log n √ n + l n . Proof. Denote c s (ψ) = √ 2π
σs ψ(0)π s (ϕ). Taking sufficiently small δ > 0, we write For J(n), by Proposition 3.3 (i), we have

√ n e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt -c s (ψ) √ n e nhs(l) |t| δ e -itln R n s,it (ϕ)(x)ψ(t)dt + √ n e nhs(l) |t|<δ e -itln R n s,it (ϕ)(x)ψ(t)dt -c s (ψ) = I(n) + J(n). ( 4 
R n s,it (ϕ)(x) = λ n s,it Π s,it (ϕ)(x) + N n s,it (ϕ)(x).
Set for brevity ψ s,x (t) = Π s,it (ϕ)(x)ψ(t). It follows that

J(n) √ n e nhs(l) |t|<δ e -itln λ n s,it ψ s,x (t)dt -c s (ψ) + √ n e nhs(l) |t|<δ e -itln N n s,it (ϕ)(x)ψ(t)dt = J 1 (n) + J 2 (n). (4.8)
For the second term J 2 (n), applying Proposition 3.3 (i), we get that there exist constants c δ > 0 and κ ∈ (0, 1) such that

sup x∈S sup |t|<δ |N n s,it (ϕ)(x)| sup |t|<δ N n s,it Bγ →Bγ ϕ γ c δ κ n ϕ γ .
Combining this with the continuity of the function ψ at the point 0 and the fact |e -itln | = 1, we obtain that, uniformly in |l| l n , x ∈ S and ϕ ∈ B γ ,

J 2 (n) C δ e -c δ n ϕ γ . (4.9)
For the first term J 1 (n), we shall use the method of steepest descends to derive a precise asymptotic expansion. We make a change of variable z = it to rewrite J 1 (n) as an integral over the complex interval L 0 = (-iδ, iδ) : which implies that for |z| < δ,

J 1 (n) = -i √ n e nhs(l) iδ -iδ e n(Ks(z)-zl) ψ s,x (-iz)dz -c s (ψ) , ( 4 
K s (z) = ∞ k=2 γ s,k z k k! , ( 4.11) 
where γ s,k = Λ (k) (s) and Λ(s) = log κ(s). From this Taylor's expansion and the fact that Λ (2) (s) = σ 2 s > 0, it follows that the function K s (z) -zl is convex in the neighborhood of 0. Consider the saddle point equation

K s (z) -l = 0. (4.12) An equivalent formulation of (4.12) is l = ∞ k=2 γ s,k z k-1
(k-1)! , which by simple series inversion techniques gives the following solution:

z 0 = z 0 (l) := l γ s,2 - γ s,3 2γ 3 s,2 l 2 - γ s,4 γ s,2 -3γ 2 s,3 6γ 5 s,2 l 3 + • • • . (4.13)
From (4.13), it follows that the solution z 0 = z 0 (l) is real for sufficiently small l and that z 0 = z 0 (l) → 0 as l → 0. Moreover, z 0 > 0 for sufficiently small l > 0, and z 0 < 0 for sufficiently small l < 0. By Cauchy's integral theorem, J 1 (n) can be rewritten as

J 1 (n) = -i √ n e nhs(l) L 1 + L 2 + L 3 e n(Ks(z)-zl) ψ s,x (-iz)dz -c s (ψ) ,
where L 1 = (-iδ, z 0 -iδ), L 2 = (z 0 -iδ, z 0 + iδ) and L 3 = (z 0 + iδ, iδ). By (4.11), we get K s (it) = -1 2 σ 2 s t 2 + O(t 3 ), which implies that |e nKs(it) | e -n 3 σ 2 s t 2 , when t is sufficiently small. Combining this with (4.13) and the continuity of K s (z) in the neighborhood of 0 yields that, for sufficiently small l, |e nKs(z) | e -n 4 σ 2 s δ 2 , for any z ∈ L 1 ∪ L 3 . Since, for sufficiently small l, lz 0 > 0, we get that, for z

∈ L 1 ∪ L 3 , |e -nzl | = |e -nlz 0 |
1. Moreover, using the continuity of the function z → ψ s,x (-iz) in a small neighborhood of 0 in the complex plane, there exists a constant C s > 0 such that, on L 1 and L 3 , we have sup x∈S |ψ s,x (-iz)| C s ϕ γ . Therefore, we obtain, for n sufficiently large, uniformly in |l| l n and x ∈ S,

-i √ n e nhs(l) L 1 + L 3 e n(Ks(z)-zl) ψ s,x (-iz)dz O(e -n 5 σ 2 s δ 2 ) ϕ γ .
It follows that

J 1 (n) -i √ n e nhs(l) z 0 +iδ z 0 -iδ e n(Ks(z)-zl) ψ s,x (-iz)dz -c s (ψ) + O(e -n 5 σ 2 s δ 2 ) ϕ γ .
Without loss of generality, assume that n 3. Making a change of variable z = z 0 + it gives

J 1 (n) √ n e nhs(l) δ -δ e n[Ks(z 0 +it)-(z 0 +it)l] ψ s,x (t -iz 0 )dt -c s (ψ) + O(e -n 5 σ 2 s δ 2 ) ϕ γ √ n e nhs(l) n -1 2 log n |t|<δ e n[Ks(z 0 +it)-(z 0 +it)l] ψ s,x (t -iz 0 )dt + √ ne nhs(l) |t|<n -1 2 log n e n[Ks(z 0 +it)-(z 0 +it)l] ψ s,x (t -iz 0 )dt -c s (ψ) + O(e -n 5 σ 2 s δ 2 ) ϕ γ . ( 4.14) 
From (4.12) and (4.13), we have K s (z 0 ) = l. By Taylor's formula, we get that for |t| < δ,

K s (z 0 + it) -(z 0 + it)l = K s (z 0 ) -z 0 l + ∞ k=2 K (k) s (z 0 )(it) k k! .
Using K s (z 0 ) = l and (4.11), it follows that

K s (z 0 ) -z 0 l = K s (z 0 ) -z 0 K s (z 0 ) = - ∞ k=2 k -1 k! γ s,k z k 0 .
Combining this with (4.13) and Lemma 4.1 gives K s (z 0 ) -z 0 l = -h s (l). Thus

K s (z 0 + it) -(z 0 + it)l = -h s (l) + ∞ k=2 K (k) s (z 0 )(it) k k! . (4.15) Since K s (z 0 ) = σ 2 s + O(z 0 ) > 1 2 σ 2
s , for small enough z 0 , δ and l, we obtain that (

∞ k=2 K (k) s (z 0 )(it) k k! ) < -1 8 σ 2 s t 2 .
Therefore, using (4.15) and the fact that uniformly in x ∈ S, the function z → ψ s,x (z) is continuous in a neighborhood of 0 in the complex plane, we obtain that, uniformly in x ∈ S and

|l| l n , √ n e nhs(l) n -1 2 log n |t|<δ e n[Ks(z 0 +it)-(z 0 +it)l] ψ s,x (t -iz 0 )dt c 1 √ n n -1 2 log n |t|<δ e -1 8 nσ 2 s t 2 dt ϕ γ = O(e -c log 2 n ) ϕ γ .
This, together with (4.14)-(4.15), implies

J 1 (n) sup x∈S √ n |t|<n -1 2 log n e n ∞ k=2 K (k) s (z 0 )(it) k k! ψ s,x (t -iz 0 )dt -c s (ψ) + O(e -c log 2 n ) ϕ γ .
Noting that Π s,0 (ϕ)(x) = π s (ϕ) and ψ s,x (0) = ψ(0)π s (ϕ), we write

J 1 (n) sup x∈S √ n |t|<n -1 2 log n e n ∞ k=2 K (k) s (z 0 )(it) k k! -e -nσ 2 s t 2 2 ψ s,x (t -iz 0 )dt + sup x∈S √ n |t|<n -1 2 log n e -nσ 2 s t 2 2 ψ s,x (t -iz 0 ) -ψ s,x (0) dt + √ nψ(0)π s (ϕ) |t| n -1 2 log n e -nσ 2 s t 2 2 dt + O(e -c log 2 n ) ϕ γ = J 11 (n) + J 12 (n) + J 13 (n) + O(e -c log 2 n ) ϕ γ . (4.16)
We give a control of

J 11 (n). Note that |ψ s,x (t -iz 0 )| is bounded by C s ϕ γ , uniformly in |t| < n -1 2 log n. Note also that for |t| < n -1 2 log n and for large enough n, we have |e n ∞ k=3 K (k) (z 0 )(it) k k!
| e cnt 4 C. Hence using the inequality |e z -1| e z |z| yields

J 11 (n) C s ϕ γ √ n |t|<n -1 2 log n e -nσ 2 s t 2 2 n|t| 3 dt C s √ n ϕ γ . ( 4.17) 
Now we control J 12 (n). Recalling that z 0 = z 0 (l) c s l n , using the fact that uniformly with respect to x ∈ S, the map z → ψ s,x (z) is continuous in the neighborhood of 0 in the complex plane, we get that for |t| n -1 2 log n,

sup x∈S |ψ s,x (t -iz 0 ) -ψ s,x (0)| < c s (n -1 2 log n + l n ) ϕ γ .
We then obtain

J 12 (n) c s (n -1 2 log n + l n ) ϕ γ .
It is easy to see that J 13 (n) C ϕ γ e -cs log 2 n . This, together with (4.16)-(4.17), proves that

J 1 (n) c s (n -1 2 log n+l n ) ϕ γ .
The desired result follows by combining this with (4.6)-(4.9).

Assume that the functions ϕ and ψ satisfy the same properties as in Proposition 4.4. The following result, for s < 0 small enough, will be used to prove Theorem 2.3. Proposition 4.5. Assume conditions of Theorem 2.3. Then, there exists η 0 < η such that for any s ∈ (-η 0 , 0), q = Λ (s) and for any positive sequence

(l n ) n 1 satisfying l n → 0 as n → ∞, we have, uniformly in x ∈ S, |l| l n and ϕ ∈ B γ , √ n σ s e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2πψ(0)π s (ϕ) C ϕ γ log n √ n + l n .
Proof. Using Propositions 3.2 and 3.4, the proof of Proposition 4.5 can be carried out as the proof of Proposition 4.4. We omit the details.

Proof of Theorem 2.1.

Recall that q = Λ (s), Λ * (q + l) = Λ * (q) + sl + h s (l), x ∈ S, and |l| l n → 0, as n → ∞. Taking into account that e nΛ * (q) = e sqn /κ n (s) and using the change of measure (3.2), we write

A n (x, l) := √ 2πn sσ s e nΛ * (q+l) 1 r s (x) P(log |G n x| n(q + l)) = √ 2πn sσ s e nsl e nhs(l) e sqn E Q x s 1 r s (X x n ) e -s log |Gnx| 1 {log |Gnx| n(q+l)} . (4.18)
Setting T x n = log |G n x| -nq and ψ s (y) = e -sy 1 {y 0} , from (4.18) we get

A n (x, l) = √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) ψ s (T x n -nl) . (4.19)
Upper bound. Let ε ∈ (0, 1) and ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ) be defined as in (4.5) but with ψ s instead of ψ. Using Lemma 4.3 leads to

A n (x, l) (1 + C ρ (ε)) √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl) =: B + n (x, l). ( 4.20) 
Denote by ψ + s,ε the Fourier transform of ψ + s,ε . Elementary calculations give

sup t∈R | ψ + s,ε (t)| ψ + s,ε (0) = ε -ε dy + +∞ ε e -s(y-ε) dy = 1 + 2sε s . ( 4.21) 
By the inversion formula, for any y ∈ R,

ψ + s,ε * ρ ε 2 (y) = 1 2π R e ity ψ + s,ε (t) ρ ε 2 (t)dt.
Substituting y = T x n -nl, taking expectation with respect to E Q x s , and using Fubini's theorem, we get

E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl) = 1 2π R e -itln R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt, (4.22) 
where

R n s,it (r -1 s )(x) = E Q x s e itT x n 1 r s (X x n )
.

Note that ψ + s,ε ρ ε 2 is compactly supported in R since ρ ε 2 has a compact support. One can verify that ψ + s,ε has an analytic extension in a neighborhood of 0. By Lemma 4.2, we see that the function ρ ε 2 has a continuous extension in the complex plane, and has an analytic in the domain D 

B + n (x, l) -(1 + C ρ (ε))π s (r -1 s )s ψ + s,ε (0) ρ ε 2 (0) = 0. (4.23) Since ρ ε 2 (0) = 1,
A n (x, l) (1 + C ρ (ε))sπ s (r -1 s ) ψ + s,ε (0) ρ ε (0) (1 + C ρ (ε))(1 + 2sε)π s (r -1 s
). Letting ε → 0 and noting that C ρ (ε) → 0, we obtain the upper bound:

lim sup n→∞ sup x∈S sup |l| ln A n (x, l) π s (r -1 s ) = 1 ν s (r s ) . ( 4 

.24)

Lower bound. For ε ∈ (0, 1), let ψ - s,ε (y) = inf y ∈Bε(y) ψ s (y ) be defined as in (4.5) with ψ s instead of ψ. From (4.19) and Lemma 4.3, we get

A n (x, l) √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) (ψ - s,ε * ρ ε 2 )(T x n -nl) - √ 2πn sσ s e nhs(l) |y| ε E Q x s 1 r s (X x n ) ψ - s,ε (T x n -nl -y) ρ ε 2 (y)dy := B - n (x, l) -C - n (x, l). (4.25)
For the first term B - n (x, l), applying (4.22) with ψ + s,ε ρ ε 2 replaced by ψ - s,ε ρ ε 2 , we get

B - n (x, l) = n 2π sσ s e nhs(l) R e -itln R n s,it (r -1 s )(x) ψ - s,ε (t) ρ ε 2 (t)dt.
In the same way as for the upper bound, using ψ - s,ε (0) = e -2sε s and Proposition 4.4 with ϕ = r -1 s and ψ = ψ - s,ε ρ ε 2 (one can check that the functions ϕ and ψ satisfy the required conditions in Proposition 4.4), we obtain the lower bound:

lim inf n→∞ sup x∈S sup |l| ln B - n (x, l) π s (r -1 s ) = 1 ν s (r s ) . ( 4.26) 
For the second term C - n (x, l), noting that ψ - s,ε ψ s and applying Lemma 4.3 to ψ s , we get ψ - s,ε

ψ s (1+C ρ (ε))ψ + s,ε * ρ ε 2 .
We use the same argument as in (4.22) to obtain We first establish the following assertion which will be used to prove Theorem 2.2, but which is of independent interest. Let ψ be a measurable function on R and ε > 0. Denote, for brevity, ψ s (y) = e -sy ψ(y) and Before proceeding with the proof of this theorem, let us give some examples of functions satisfying condition (5.1). It is easy to see that (5.1) holds for increasing non-negative functions ψ satisfying R e -sy ψ(y)dy < +∞, in particular, for the indicator function ψ(y) = 1 {y c} , y ∈ R, where c ∈ R is a fixed constant. Another example for which (5.1) holds true is when ψ is non-negative, continuous and there exists ε > 0 such that R e -sy ψ + ε (y)dy < +∞, (5.3) where the function ψ + ε (y) = sup y ∈Bε(y) ψ(y ) is assumed to be measurable. Proof of Theorem 5.1. Without loss of generality, we assume that both ϕ and ψ are non-negative (otherwise, we decompose the functions ϕ = ϕ + -ϕ - and ψ = ψ + -ψ -). Let T x n = log |G n x| -nq. Since e nΛ * (q) = e sqn /κ n (s), using the change of measure (3.2), we have

C - n (x, l) (1 + C ρ (ε)) √ 2πn sσ s e nhs(l) × |y| ε E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl -y) ρ ε 2 (y)dy = (1 + C ρ (ε)) n 2π sσ s e nhs(l) × |y| ε R e -it(ln+y) R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)
C - n (x, l) (1 + C ρ (ε))sπ s (r -1 s ) ψ + s,ε (0) ρ ε 2 (0) |y| ε ρ ε 2 (y)dy = (1 + C ρ (ε))π s (r -1 s )(1 + 2sε) |y| 1 ε ρ(y)dy → 0, as ε → 0, since ρ is integrable on R.
A n (x, l) := √ 2πn σ s e nΛ * (q+l) 1 r s (x) E ϕ(X x n )ψ(log |G n x| -n(q + l)) = √ 2πn σ s e nsl e nhs(l) e sqn E Q x s (ϕr -1 s )(X x n )e -s log |Gnx| ψ(T x n -nl) = √ 2πn σ s e nhs(l) E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n -nl) .
For brevity, set Φ s (x) = ϕr -1 s (x), x ∈ S, and Ψ s (y) = e -sy ψ(y), y ∈ R. Then,

A n (x, l) = √ 2πn σ s e nhs(l) E Q x s [Φ s (X x n )Ψ s (T x n -nl)] .
(5.4)

Upper bound. We wish to write the expectation in (5.4) as an integral of the Fourier transform of Ψ s , which, however, may not belong to the space L 1 (R). As in the proof of Theorem 2.1 (see Section 4.2), we make use of the convolution technique to overcome this difficulty. Applying Lemma 4.3 to Ψ s , one has, for sufficiently small ε > 0,

A n (x, l) (1 + C ρ (ε)) √ 2πn σ s e nhs(l) E Q x s Φ s (X x n )(Ψ + s,ε * ρ ε 2 )(T x n -nl) := B n (x, l), ( 5.5) 
where Ψ + s,ε (y) = sup y ∈Bε(y) Ψ s (y ), y ∈ R. Using the same arguments as for deducing (4.22), we have 

B n (x, l) = (1 + C ρ (ε)) σ s √ 2π √ n e nhs(l) R e -itln R n s,it Φ s (x) Ψ + s,ε (t) ρ ε 2 (t)dt, ( 5 
B n (x, l) = (1 + C ρ (ε))π s (Φ s ) Ψ + s,ε (0) ρ ε 2 (0).
Since Ψ + s,ε (0) = R sup y ∈Bε(y) e -sy ψ(y )dy and ρ ε 2 (0) = 1, letting ε go to 0, using the condition (5.1) and the fact that C ρ (ε) → 0 as ε → 0, we get the upper bound: (5.7)

Lower bound. Denote Ψ - s,ε (y) = inf y ∈Bε(y) Ψ s (y ). From (5.4), using Lemma 4.3, we get

A n (x, l) √ 2πn σ s e nhs(l) E Q x s Φ s (X x n )(Ψ - s,ε * ρ ε 2 )(T x n -nl) - √ 2πn σ s e nhs(l) |y| ε E Q x s Φ s (X x n )Ψ - s,ε (T x n -nl -y) ρ ε 2 (y)dy := B - n (x, l) -C - n (x, l). ( 5.8) 
For B - n (x, l), we proceed as for (5.5) and (5.6), with Ψ + s,ε replaced by Ψ - s,ε . Using Proposition 4.4, with ϕ = Φ s and ψ = Ψ - s,ε ρ ε 2 , and the fact that ρ ε 2 (0) = 1 and Ψ - s,ε (0) = R inf y ∈Bε(y) e -sy ψ(y )dy, in an analogous way as in (5.7), we obtain that

lim n→∞ sup x∈S sup |l| ln B - n (x, l) = π s (r -1 s ) R inf y∈Bε(z)
e -sy ψ(y)dz → π s (r -1 s ) R e -sy ψ(y)dy, as ε → 0, (5.9)

where the last convergence is due to the condition (5.1). For C 

- n (x, l), noting that Ψ - s,ε Ψ s , applying Lemma 4.3 to Ψ s we get Ψ - s,ε (1 + C ρ (ε)) Ψ + s,ε ρ ε 2 . Similarly to (5.6), we show that C - n (x, l) (1 + C ρ (ε)) n 2π σ s e nhs(l) × |y| ε R e -it(ln+y) R n s,it (Φ s )(x) Ψ + s,ε (t) ρ ε 2 (t)
C - n (x, l) (1 + C ρ (ε))π s (Φ s ) Ψ + s,ε (0) ρ ε 2 (0) |y| ε ρ ε 2 (y)
(Φ s ) = π s (ϕr -1 s ) = νs(ϕ)
νs(rs) , the result follows.

In the sequel, we deduce Theorem 2.2 from Theorem 5.1 using approximation techniques.

Proof of Theorem 2.2. Without loss of generality, we assume that ϕ 0 and ψ 0. Let Ψ s (y) = e -sy ψ(y), y ∈ R. We construct two step functions as follows: for any η ∈ (0, 1), m ∈ Z and y ∈ [mη, (m + 1)η), set

Ψ + s,η (y) = sup y∈[mη,(m+1)η) Ψ s (y) and Ψ - s,η (y) = inf y∈[mη,(m+1)η) Ψ s (y).
By the definition of the direct Riemann integrability, the following two limits exist and are equal: 

I + m = mη, mη + ε M 4 |m| , m ∈ Z. Set k + m := M 4 |m| Ψ + s,η (mη)-Ψ + s,η ((m-1)η) ε
, m ∈ Z. For the step function Ψ + s,η , in the neighborhood of every possible discontinuous point mη, m ∈ Z, if Ψ + s,η (mη) Ψ + s,η ((m -1)η), then for any y ∈ I m ∪ I m+1 , m ∈ Z, we define

Ψ + s,η,ε (y) =        Ψ + s,η ((m -1)η), y ∈ I m \ I - m Ψ + s,η ((m -1)η) + k + m y -mη + ε M 4 |m| , y ∈ I - m Ψ + s,η (mη), y ∈ I m+1 . If Ψ + s,η (mη) < Ψ + s,η ((m -1)η), then we define Ψ + s,η,ε (y) =        Ψ + s,η ((m -1)η), y ∈ I m Ψ + s,η ((m -1)η) + k + m (y -mη), y ∈ I + m Ψ + s,η (mη), y ∈ I m+1 \ I + m .
From this construction, the non-negative continuous function Ψ Using (5.15), it holds that, as n → ∞, J 11 → 0, uniformly in x ∈ S and |l| l n . For J 12 , note that the function y → e sy Ψ - s,η,ε (y) is non-negative and continuous. By the construction of Ψ - s,η,ε , similarly to (5.14), one can verify that there exists ε 2 > 0 such that R sup y ∈Bε 2 (y) Ψ - s,η,ε (y )dy < +∞. We deduce from Theorem 5.1 that J 12 → 0 as n → ∞, uniformly in x ∈ S and |l| l n . For J 13 , we use (5.12) to get that J 13 C s ε. Consequently, we obtain that, as n → ∞, J 1 C s ε, uniformly in x ∈ S and |l| l n . This, together with (5.13), ( 5 Since ε > 0 is arbitrary, we conclude the proof of Theorem 2.2.

Proof of Theorem 2.4. Following the proof of Theorem 5.1, one can verify that the asymptotic (5.2) holds true for s < 0 small enough and for ψ satisfying condition (5.1). The passage to a directly Riemann integrable function ψ can be done by using the same approximation techniques as in the proof of Theorem 2.2. Taking the difference of (6.2) with ∆ = 0 and with ∆ > 0, we get, as n → ∞, 

  n→∞ P(log |G n x| nq) 1 √ n e -nΛ * (q) lim sup n→∞ P(log |G n x| nq) 1 √ n e -nΛ * (q)

2. 1 .

 1 Notation and conditions. The space R d is equipped with the standard scalar product •, • and the Euclidean norm | • |. For d 1, let M (d, R) be the set of d × d matrices with entries in R equipped with the operator norm g = sup x∈S d-1 |gx|, for g ∈ M (d, R), where S d-1 = {x ∈ R d , |x| = 1} is the unit sphere.

3. 2 .

 2 Spectral gap of the perturbed operator. Recall that the Banach space B γ consists of all γ-Hölder continuous function on S, where γ > 0 is a fixed small constant. Denote by L(B γ , B γ ) the set of all bounded linear operators from B γ to B γ equipped with the operator norm • Bγ →Bγ . For s ∈ I • µ and z ∈ C with s + z ∈ I µ , define a family of perturbed operators R s,z as follows: for any ϕ ∈ B γ ,

  are analytic in the strong operator sense. (ii) For any compact set K ⊆ R\{0}, there exists a constant C K > 0 such that for any n 1 and ϕ ∈ B γ , we have sup t∈K sup x∈S |R n s,it ϕ(x)| e -nC K sup x∈S |ϕ(x)|.

  B ε (y) = {y ∈ R : |y -y| ε} and ψ + ε (y) = sup y ∈Bε(y) ψ(y ) and ψ - ε (y) = inf y ∈Bε(y)

Proposition 4 . 4 .

 44 Assume conditions of Theorem 2.1. Let q = Λ (s), where s ∈ I • µ . Then, for any positive sequence (l n ) n 1 satisfying l n → 0 as n → ∞, we have, uniformly in x ∈ S, |l| l n and ϕ ∈ B γ ,

. 6 )

 6 For I(n), since ψ is bounded and compactly supported on the real line, taking into account Proposition 3.3 (ii), the fact |e -itln | = 1 and equality (4.1), we get sup x∈S sup |l| ln |I(n)| C δ e -c δ n ϕ γ . (4.7)

  .10) where K s (z) = log λ s,z (we choose the branch where K s (0) = 0), which is an analytic function for |z| δ by Proposition 3.3 (iii). Since the function z → e n(Ks(z)-zl) is analytic in the neighborhood of 0, and the function z → ψ s,x (-iz) has an analytic extension in the domain D δ := {z ∈ C : |z| < δ, z = 0} and has a continuous extension in the domain D δ := {z ∈ C : |z| δ}, by Cauchy's integral theorem we can choose a special path of the integration which passes through the saddle point of the function K s (z)-zl. From (3.6), we have K s (z) = -qz + log κ(s + z) -log κ(s),

ε 2 :

 2 = {z ∈ C : |z| < ε 2 , z = 0}. Using Proposition 4.4 with ϕ = r -1 s and ψ = ψ + s,ε ρ ε 2 , it follows that lim n→∞ sup x∈S sup |l| ln

. 1 ) 5 . 1 .

 151 ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ), ψ - s,ε (y) = inf y ∈Bε(y) ψ s (y ).Introduce the following condition: for any s ∈ I • µ and ε > 0, the functions y → ψ + s,ε (y) and y → ψ - s,ε (y) are measurable and limε→0 + R ψ + s,ε (y)dy = lim ε→0 + R ψ - s,ε (y)dy = R e -sy ψ(y)dy < +∞. (5Theorem Suppose the assumptions of Theorem 2.1 hold true. Let q = Λ (s), where s ∈ I • µ . Assume that ϕ is a Hölder continuous function on S and ψ is a measurable function on R satisfying condition (5.1). Then, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we havelim n→∞ sup x∈S sup |l| ln √ 2πn σ s e nΛ * (q+l) E ϕ(X x n )ψ(log |G n x| -n(q + l))rs (x)ν s (ϕ) R e -sy ψ(y)dy = 0.(5.2)

  n (x, l) π s (Φ s ) R e -sy ψ(y)dy.

  is directly Riemann integrable, we have M := sup y∈R Ψ s (y) < +∞. Let ε ∈ (0, M η) be fixed. Denote I m = [(m -1)η, mη), I - m = mη -ε M 4 |m| , mη , and

  .15)-(5.16), implies that lim n→∞ sup x∈S sup |l| lnc s,l,n E ϕ(X x n )ψ(T x n,l ) -rs (x)ν s (ϕ) R Ψ s (y)dy C s ε.

E ϕ(X x n ) 1

 1 {log |Gnx|∈n(q+l)+[a,a+∆)} = I ∆ (n) rs (x) sσ s √ 2πn e -nΛ * (q+l) ν s (ϕ) + r n ,whereI ∆ (n) := e nΛ * (q+l)-nΛ * (q+l+ a n ) -e nΛ * (q+l)-nΛ * (q+l+ a+∆ n ) .An elementary analysis using Lemma 4.1 shows thatI ∆ (n) ∼ e -sa (1 -e -s∆ ), uniformly in |l| l n and ∆ n ∆ o(n), for any (∆ n ) n 1 converging to 0 slowly enough (∆ -1 n = o(r -1 n )). This concludes the proof of Theorem 2.7.

4 .

 4 Proof of Theorems 2.1 and 2.3 4.1. Auxiliary results. We need some preliminary statements. Following Petrov[START_REF] Petrov | Sums of independent random variables[END_REF], under the changed measure Q x s , define the Cramér series ζ s by

	ζ s (t) =	γ s,3 6γ 3/2 s,2	+	γ s,4 γ s,2 -3γ 2 s,3 24γ 3 s,2	t +	γ s,5 γ 2 s,2 -10γ s,4 γ s,3 γ s,2 + 15γ 3 s,3 9/2 120γ s,2

  dt ρ ε 2 (y)dy.

	Notice that, from Lemma 4.1, for any fixed y ∈ R, it holds, uniformly in l satisfying |l| l n , that e nhs(l)-nhs(l+ y n ) → 1 as n → ∞. Applying
	Proposition 4.4 again with ϕ = r -1 s , ψ = ψ + s,ε ρ ε 2 , and using the Lebesgue
	dominated convergence theorem, we obtain
	lim sup	sup	sup
	n→∞	x∈S	|l| ln

  . Note that Φ s is strictly positive and γ-Hölder continuous function on S, and Ψ + s,ε ρ ε 2 has a compact support in R. Applying Proposition 4.4 with ϕ = Φ s and ψ = Ψ + s,ε ρ ε 2 (one can verify that the functions ϕ and ψ satisfy the required conditions in Proposition 4.4), we obtain

	.6) s,ε is the Fourier transform of n ) and Ψ + n Φ s (X x s e itT x s,it Φ s (x) = E Q x where R n Ψ + s,ε lim sup sup n→∞ x∈S |l| ln

  dt ρ ε 2 (y)dy.

	that		
	lim sup	sup	sup
	n→∞	x∈S	|l| ln
	From Lemma 4.1, for any fixed y ∈ R, it holds that e nhs(l)-nhs(l+ y n ) → 1,
	uniformly in |l| l n as n → ∞. Applying Proposition 4.4 with ϕ = Φ s and
	ψ = Ψ + s,ε ρ ε 2 , it follows, from the Lebesgue dominated convergence theorem,

  Ψ +s,η,ε and R [Ψ + s,η,ε (y) -Ψ + s,η (y)]dy < ε. Similarly, for the step function Ψ - s,η , one can construct a non-negative continuous function Ψ - (y)]dy < ε. Consequently, in view of(5.11), we obtain that, for η small enough, For brevity, set c s,l,n = √ 2πn σ s e nΛ * (q+l) and T x n,l = log |G n x| -n(q + l). Recalling that Ψ s (y) = e -sy ψ(y), we writec s,l,n E ϕ(X x )ψ(T x n,l ) -rs (x)ν s (ϕ)To control J 2 , we shall verify the conditions of Theorem 5.1. Noting that the function y → e sy Ψ + s,η,ε (y) is non-negative and continuous, it remains to check the condition(5.3). By the construction of Ψ + s,η,ε one can verify that there exists a constant ε 1 ∈ (0, min{M η, η/3}) such that where the series is finite since the function Ψ s is directly Riemann integrable. Hence, applying Theorem 5.1 to y → e sy Ψ + s,η,ε (y), we get . Using (5.12) and the fact that r s is uniformly bounded on S, we get that there exists a constant C s > 0 For J 1 , note that e sy Ψ - s,η,ε (y) e sy Ψ s (y) e sy Ψ + s,η,ε (y), y ∈ R. Combining this with the positivity of ϕ, it holds that J 11 + J 12 + J 13 .

						+ s,η,ε satisfies
	Ψ + s,η				
	s,η,ε (5.12) s,η,ε (y)dy s,η,ε (y)dy Ψ + n,l ) s,η,ε (T x n,l ) -Ψ -s,η (y)-Ψ -s,η and R [Ψ -Ψ -c s,l,n E ϕ(X x which satisfies Ψ -s,η,ε |J 1 | n )e sT x n,l Ψ + s,η,ε (T x c s,l,n E ϕ(X x n )e sT x n,l Ψ + s,η,ε (T x n,l ) -rs (x)ν s (ϕ) R s,η,ε R |Ψ + s,η,ε (y) -Ψ -s,η,ε (y)|dy < 3ε. + c s,l,n E ϕ(X x n )e sT x n,l Ψ -s,η,ε (T x n,l ) -rs (x)ν s (ϕ) Ψ -
						R
		+ rs (x)ν s (ϕ)	Ψ + s,η,ε (y)dy -rs (x)ν s (ϕ)	Ψ -s,η,ε (y)dy
			R			R
	=				
						Ψ s (y)dy
						R
		c s,l,n E ϕ(X x n )e sT x n,l Ψ s (T x n,l ) -Ψ + s,η,ε (T x n,l )
		+ c s,l,n E ϕ(X x n )e sT x n,l Ψ + s,η,ε (T x n,l ) -rs (x)ν s (ϕ)
		sup	Ψ + s,η,ε (y )dy 2η	sup	Ψ + s,η (y)
	R	y ∈Bε 1 (y)			m∈Z	y∈[mη,(m+1)η)
				= 2η	sup	Ψ s (y) < +∞,	(5.14)
					m∈Z	y∈[mη,(m+1)η)
				lim n→∞	x∈S sup	|l| ln sup	J 2 = 0.	(5.15)
	For J 3 (x), recall that Ψ -s,η,ε s,η,ε such that Ψ s Ψ +
				sup	J 3 C s ε.	(5.16)
				x∈S

R Ψ + s,η,ε (y)dy + r s (x)π s (ϕr -1 s ) R Ψ + s,η,ε (y)dyrs (x)ν s (ϕ) R Ψ s (y)dy = J 1 + J 2 + J 3 .

(5.13)
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 6 Proof of Theorems 2.5, 2.6 and 2.7 Proof of Theorems 2.5 and 2.6. We first give a proof of Theorem 2.5. Since log |G n x| log G n and the function rs is strictly positive and uniformly bounded on S, applying Theorem 2.1 we get the lower bound: For the upper bound, since all matrix norms are equivalent, there exists a positive constant C which does not depend on the product G n such that log G n max 1 i d log |G n e i | + C, where (e i ) 1 i d is the canonical orthonormal basis in R d . From this inequality, we deduce that Using Lemma 4.1, we see that there exists a constant C s> 0 such that e n[Λ * (q+l-C/n)-Λ * (q+l)]C s , uniformly in |l| l n and n 1. Again by Theorem 2.1, we obtain the upper bound: + l)) -Λ * (q). This, together with (6.1), proves Theorem 2.5. Using Theorem 2.3, the proof of Theorem 2.6 can be carried out in the same way.Proof of Theorem 2.7. Without loss of generality, we assume that the function ϕ is non-negative. From Theorem 2.2, we deduce that there exists a sequence (r n ) n 1 , determined by the matrix law µ such that r n → 0 as n → ∞ and, uniformly in x ∈ S, |l| l n and 0 ∆ o(n), it holds that

	P(log G n	n(q + l))	
	lim sup n→∞ n(q E ϕ(X x sup |l| ln 1 n log P(log G n n )1 {log |Gnx| n(q+l)+a+∆}
			=	rs (x) sσ s √ 2πn	e -nΛ
	lim inf n→∞	inf |l| ln	1 n	log P(log G n	n(q + l)) -Λ * (q).	(6.1)

d i=1 P log |G n e i | n q + l -C/n . * (q+l+ a+∆ n ) ν s (ϕ) + r n . (

6.2)