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This paper proposes a nonlinear parameter varying (N LP V ) observer to estimate in real-time the damper force of an electrorheological (ER) damper in road vehicle suspension system. First, a nonlinear quarter-car model equiped with the dynamic nonlinear model of ER damper is represented, which captures the main behaviors of the suspension system. The estimation method of the damper force is developed using N LP V observer whose objectives are to minimize the effects of bounded unknown road profile disturbances and measurement noises on the estimation errors in the H ∞ framwork. Furthermore, the nonlinearity coming from damper model (and considered in the observer formulation) is handled through a Lipschitz condition. The observer inputs are given by two low-cost sensors data (two accelerometers data from the sprung mass and the unsprung mass). For performance assessment, the observer is implemented on the INOVE testbench from GIPSA-lab (1/5-scaled real vehicle). Both simulation and experimental results demonstrate the effectiveness of proposed observer in terms of the ability of estimating the damper force in real-time and againsting measurement noises and road disturbances.

INTRODUCTION

Recently, semi-active suspensions are widespread in vehicle applications because of their advantages compared to active and passive suspensions [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF] and references therein). One of the main issues is the control design based on a reduced number of sensors to improve comfort and safety (road holding) for on-board passengers. Therefore, there have been several control methods developed in the literature (see a review in [START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF]). Some control approaches are considering the damper force as the control input of the suspension system, then an inverse model or look-up tables are used for implementation (see for instance [START_REF] Poussot-Vassal | A new semi-active suspension control strategy through lpv technique[END_REF], [START_REF] Do | An lpv control approach for semi-active suspension control with actuator constraints[END_REF], [START_REF] Nguyen | Semi-active suspension control problem: Some new results using an lpv/h ∞ state feedback input constrained control[END_REF]). On the other hand, some control design methodologies use an inner force tracking controller in order to attain control objectives [START_REF] Priyandoko | Vehicle active suspension system using skyhook adaptive neuro active force control[END_REF], [START_REF] Aubouet | Semi-active SOBEN suspensions modeling and control[END_REF]). Therefore, the damper force signal is crucial for control and diagnosis of suspension systems. Some methodologies were developed to estimate the damper force, since the damper force sensors are difficult This work has been partially supported by the 911 scholarship from Vietnamese government. The authors also thank the financial support of the ITEA 3, 15016 EMPHYSIS project. and expensive setup in pratice. The key challenges for designing this estimation are to reduce the cost of the required sensors, to take the dynamic behavior of damper into account and to deal with the nonlinearity. Along the line of research for the damper force estimation, some contributions have been proposed in literature as follows:

• The work by [START_REF] Koch | Nonlinear and filter based estimation for vehicle suspension control[END_REF] presented the Kalman filters to estimate the damper force but ignores the dynamic characteristic of the semi-active damper. [START_REF] Pham | Design and Experimental Validation of an H ∞ Observer for Vehicle Damper Force Estimation[END_REF] proposed an H ∞ observer using two accelerometers to estimate the damper force in the ER suspension system while the nonlinearity in the ER damper model is bounded by Lipschitz condition. However, the variation of the the damper force amplification function of the voltage input were not considered in the design step.

To handle this issue, an NLPV observer is proposed here where the observer gain depends on the voltage control input u. The proposed method considers two accelerometers (sprung mass and unsprung mass accelerations) as inputs of observer. The design of the observer is based on a nonlinear suspension model made of a quarter-car vehicle model, augmented with a first order dynamical nonlinear damper model, which captures the main behavior of the ER dampers in an automotive application. It is worth noting that the damper nonlinearity is multiplied by the control input u; therefore, the latter will be considered as a scheduling parameter. Then a N LP V observer is developed bounding the nonlinearity by a Lipschitz condition and minimizing the effect of unknown input disturbances (road profile derivative and measurement noises) on the estimation errors via H ∞ framework.

The major contributions of this paper are as follows:

• A N LP V approach for Lipchitz nonlinear system is developed to design a damper force observer minimizing, in an L 2 -induced gain objective, the effect of unknown inputs (road profile and measurement noises). • The proposed observer has been implemented on a real scaled-vehicle test bench, through the Matlab/Simulink real-time workshop. The observer performances are then assessed with experimental tests

The rest of this paper is as follows. Section 2 presents the dynamic of quarter car system and the N LP V reformulation. Section 3 provides the design of N LP V observer. In section 4 this method is analyzed in frequency and time domain simulation. Section 5 discusses the experimental results and finally, section 6 give some concluding remarks.

SEMI-ACTIVE SUSPENSION MODELING AND QUARTER-CAR SYSTEM DESCRIPTION

Semi-active suspension modeling

First a nonlinear dynamical model of semi-active ER suspension is expressed as Fig. 1. 1/4 car model with semi-active suspension

       F d = k 0 (z s -z us ) + c 0 ( żs -żus ) + F er Ḟer = - 1 τ F er + f c τ • u • tanh(k 1 (z s -z us ) +c 1 ( żs -żus )) (1)
where F d is the damper force; c 0 , c 1 , k 0 , k 1 , f c , τ are constant parameters; z s and z us are the displacements of the sprung and unsprung masses, respectively. The control input u is the voltage input that provides the electrical field to control the ER damper. In practice, it is the duty cycle of the PWM signal that controls the application (shown in table 2).

Remark 1: It is worth noting that if time constant τ is zero, the model (1) becomes Guo's model (see [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF])

To determine the parameters of the above model, linear and nonlinear indentification methodologies were used (shown in table 1). They are not described here since it is out of the scope of this paper. 

Quarter-car system description

This section introduces the quarter-car model with the semi-active ER suspension system depicted in Fig. 1. The well-known model consists of the sprung mass (m s ), the unsprung mass (m us ), the suspension components located between (m s ) and (m us ) and the tire which is modelled as a spring with stiffness k t . From Newton's second law of motion, the system dynamics around the equilibrium are given as:

m s zs = -F s -F d m us zus = F s + F d -F t (2)
where

F s = k s (z s -z us ) is the spring force; F t = k t (z us - z r
) is the tire force; the damper force F d is given as in (1). z s and z us are the displacements of the sprung and unsprung masses, respectively; z r is the road displacement input.

By selecting the system states as 2), the system dynamics can be written in the following NLPV form:

x = [x 1 , x 2 , x 3 , x 4 , x 5 ] T = [z s -z us , żs , z us -z r , żus , F er ] T ∈ R 5 , the measured vari- ables y = [z s , zus ] T ∈ R 2 , the variables to be estimated z = [x 1 , x 2 , x 4 , x 5 ] T ∈ R 4 and the scheduling variable ρ = u ∈ R (Table
   ẋ = Ax + B(ρ)Φ(x) + D 1 ω y = Cx + D 2 ω z = C z x (3) 
where ω = żr n , in which, żr is the road profile derivative and

n is the sensor noises. Φ(x) = tanh(k 1 x 1 + c 1 (x 2 -x 4 )) = tanh(Γx) with Γ = [k 1 , c 1 , 0, -c 1 , 0] Therefore, Φ(x) satisfies the Lipschitz condition in x Φ(x) -Φ(x) Γ(x -x) , ∀x, x (4) 
A =           0 1 0 -1 0 - (k s + k 0 ) m s - c 0 m s 0 c 0 m s - 1 m s 0 0 0 1 0 (k s + k 0 ) m us c 0 m us - k t m us - c 0 m us 1 m us 0 0 0 0 - 1 τ           C =    - (k s + k 0 ) m s - c 0 m s 0 c 0 m s - 1 m s (k s + k 0 ) m us c 0 m us - k t m us - c 0 m us 1 m us    B =       0 0 0 0 f c τ ρ       , C z =   
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

   , D 1 =      0 0 0 0 -1 0 0 0 0 0      D 2 = 0 0.01 0 0.01
According to [START_REF] Apkarian | Selfscheduled h ∞ control of linear parameter-varying systems: a design example[END_REF], since the matrix B(ρ) is affine in ρ and since the scheduling parameter ρ varies in a polytope Y of 2 vertices ρ ∈ [ρ, ρ], it can be transformed into a convex interpolation as follows:

B(ρ) = 2 i=1 α i (ρ)B i , α i (ρ) 0, 2 i=1 α i (ρ) = 1 (5)
where

B 1 = B(ρ), B 2 = B(ρ)
Note that the measured outputs y = [z s , zus ] T can be obtained easily from on board sensors (accelerometers) and the scheduling variable ρ = u are real-time accessible.

N LP V OBSERVER DESIGN

In this section, a N LP V observer is proposed to estimate the ER damper force accurately. The unknown input ω (road profile disturbance and measurement noise) is considered as an unknown disturbance. Therefore, a H ∞ criterion is used to minimize the effect of the unknown disturbance ω on the state estimation errors and to bound the nonlinearity by Lipschitz constant.

The N LP V observer for the quarter-car system (3) is chosen as:

ẋ = Ax + L(ρ)(y -C + B(ρ)Φ(x) ẑ = C z x (6)
where x is the estimated states vector of x, ẑ represents the estimated variables of the variables z. The observer gain L(ρ) to be determined in the next steps is defined as follows:

L(ρ) = 2 i=1 α i (ρ)L i (7) with L i ∈ R 5×2
The estimation error is given as

e(t) = x(t) -x(t) (8) 
Differentiating e(t) with respect to time and using ( 3) and ( 6), one obtains

                 ė = ẋ - ẋ = Ax + B(ρ)Φ(x) + D 1 ω -Ax -L(ρ)(y -C x) -BΦ(x) = (A -L(ρ)C)e + B(ρ)(Φ(x) -Φ(x)) +(D 1 -L(ρ)D 2 )ω e z = C z e (9)
The problem to be solved then is stated as:

• The system (9) is stable for ω(t) = 0 • Minimize γ such that e z (t) L2 < γ ω(t) L2 for ω(t) = 0
The following theorem solves the above problem into an LMI framework. Theorem 1. Consider the system model (3) and the observer (6). The above design problem is solved if there exist a symmetric positive definite matrix P , a matrix Y i with i = 1, 2 and positive scalar l minimizing γ such that:

  Ω i P B i P D 1 + Y i D 2 * -l I d 0 n,d * * -γ 2 I   < 0 ( 10 
)
where

Ω i = A T P + P A + Y i C + C T Y T i + l Γ T Γ + C T z C z the observer vertex matrices are L i = -P -1 Y i Proof. Consider the following Lyapunov function V (t) = e(t) T P e(t) (11) 
Differentiating V (t) along the solution of (9) yields V (t) = ė(t) T P e(t) + e(t)

T P ė(t) = [(A -L(ρ)C)e + B(ρ)(Φ(x) -Φ(x)) + (D 1 -L(ρ)D 2 )ω] T P e + e T P [(A -L(ρ)C)e + B(ρ)(Φ(x) -Φ(x)) + (D 1 -L(ρ)D 2 )ω] (12) Defining η = e Φ(x) -Φ(x) ω , one obtains V (t) = η T M η (13) where M =   Ω 1 (ρ) P B(ρ) P (D 1 -L(ρ)D 2 ) B(ρ) T P 0 0 (D 1 -L(ρ)D 2 ) T P 0 0   with Ω 1 (ρ) = (A -L(ρ)C) T P + P (A -L(ρ)C)
From (4), the following condition is obtained

(Φ(x) -Φ(x)) T (Φ(x) -Φ(x)) e T Γ T Γe ⇔η T Qη 0 ( 14 
)
where

Q =   -Γ T Γ 0 0 0 I 0 0 0 0  
In order to satisfy the objective design w.r.t. the L 2 gain disturbance attenuation, the H ∞ performance index is defined as:

J = e T z e z -γ 2 ω T ω = η T Rη (15) where R =   C T z C z 0 0 0 0 0 0 0 -γ 2 I  
By applying the S-procedure [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]) to both contraints ( 14) and J ≥ 0, V (t) < 0 if there exists a scalar

l > 0 such that V (t) -l (η T Qη) + J < 0 ⇔η T (M -l Q + R)η < 0 (16) The condition (16) is equivalent to M -l Q + R < 0 ⇔   Ω 1 (ρ) + l Γ T Γ + C T z C z P B(ρ) P (D 1 -L(ρ)D 2 ) B(ρ) T P -l I 0 (D 1 -L(ρ)D 2 ) T P 0 -γ 2 I   < 0 (17)
Let define Y i = -P L i and substitute (5), ( 7) into (17), the LMI (10) is obtained.

If ( 10) is satisfied and since the term l (η T Qη) 0, one obtains V + J < 0 ⇔ V < γ 2 ω T ω -e T z e z (18) By integrating the both sides of (18), one obtains [START_REF] Darouach | h ∞ observers design for a class of nonlinear singular systems[END_REF])

∞ 0 V (τ )dτ < ∞ 0 γ 2 ω(τ ) T ω(τ )dτ - ∞ 0 e z (τ ) T e z (τ )dτ ⇔V (∞) -V (0) < γ 2 ω(t) 2 L2 -e z (t) 2 L2 (19) Under zero initial conditions, (19) becomes V (∞) < γ 2 ω(t) 2 L2 -e z (t) 2 L2 (20) It is equivalent to e z (t) 2 L2 < γ 2 ω(t) 2

L2

(21) The proof of Theorem 1 is completed.

ANALYSIS OF THE OBSERVER DESIGN: FREQUENCY AND TIME DOMAIN SIMULATIONS

In this section, the synthesis result of the N LP V observer is shown and some simulation scenarios are considered. The proposed observer is applied to the system presented in section 2. It is worth noting that for INOVE testbed available at GIPSA-lab, the control input u (duty cycle of PWM signal) is limited in the range of [0, 1] (see Table 2)

Synthesis results and frequency domain analysis

Solving Theorem 1 with ρ = 0 and ρ = 1, we obtain the minimum L 2 -induced gain γ = 1.0001, l = 4 and the observer gains 

L 1 =      -3.

Bode Diagram

Frequency (Hz)

Magnitude (dB) Fig. 2. Transfer e z /ω -Bode diagrams of NLPV observer with ρ = 0 (red solid) and NLPV observer with ρ = 1 (green dash), w.r.t road profile derivative (left) and w.r.t measurement noise (right).

In Figure 2 the Bode diagrams of the estimation error systems with input ω (road profile derivative and sensor noise) and output (the state estimation errors) are shown for the frozen values of the parameter ρ = {0, 1}. These results emphasize the satisfactory attenuation level of unknown road profile derivative and measurement noises effect on the 4 estimation errors e z with scheduling parameter ρ = ρ = 0 (red line) and ρ = ρ = 1 (green dash).

Time-domain simulation

To emphasize the effectiveness of the proposed approach, simulations are now performed considering the nonlinear quarter-car model (3).

The initial conditions of the proposed design are as follows:

x 0 = [0, 0, 0, 0, 0] T , x0 = [0.01, -0.1, 0.001, -0.1, 5]

T Four simulation scenarios are used to evaluate the performance of the observer as follows:

Scenario 1: Test with various road frequencies

• The road profile is a chirp signal • The control input u is constant (u = 0.3)
Scenario 2: Test with a slow varying of scheduling parameter

• An ISO 8608 road profile signal (Type C) is used.

• The control input is sin wave with low frequency Scenario 3: Test the stability of the N LP V observer with a step road profile

• A step road profile is used.

• Control input u is obtained from a Skyhook controller Scenario 4: Test of the N LP V observer for a closedloop system with an infinitely fast varying scheduling parameter

• An ISO 8608 road profile signal (Type C) is used.

• Control input u is obtained from a Skyhook controller In this study, the proposed algorithm is applied for the rear-left corner. As previously mentioned, only both unsprung mass acceleration zus and sprung mass acceleration zs are used as inputs of the proposed observer.

For validation purpose only, the damper force sensor is used to compare the measured force with the estimated one. The following block-scheme illustrates the experiment procedure of the estimation (see Fig. 8). Experiment 1:

• The road profile is sequence of sinusoidal bumps • The control input u is obtained from a Skyhook controller Experiment 2:

• An ISO 8608 road profile signal (Type C) is used.

• The control input u is obtained from a Skyhook controller The results demostrate the accuracy and efficiency of the proposed observer in realistic tests. To further describe this accuracy, Table 3 presents the normalized root-meansquare errors w.r.t. maximum value, considering the difference between the estimated and measured forces in experiment 1 and experiment 2.

CONCLUSION

This paper presented a N LP V observer to estimate the damper force, using the dynamic nonlinear model of the ER damper. For this purpose, the quarter-car system is represented in a NLPV form by considering a phenomenological model of damper for which the nonlinearity term bounded by a Lipschitz condition. Based on two accelerometers, a N LP V observer is designed, giving good estimation results of the damping force. The estimation error is minimized accounting for the effect of unknown inputs (road profile derivative and measurement noises). Both simulation and experiment results assess the ability and the accuracy of the proposed models to estimate the damping force of the ER semi-active damper.

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. Simulation scenario 1 (ρ = u = 0.3): (a) Damping force estimation, (b) Estimation error, (c) Road profile

Fig. 7 .

 7 Fig. 7. The experimental testbed INOVE at GIPSA-lab (see www.gipsa-lab.fr/projet/inove)

Fig. 8 .

 8 Fig. 8. Block diagram for implementation of the H ∞ damper force observer

Fig. 10 .

 10 Fig. 9. Experiment 1: (a) Damping force estimation, (b) Estimation error, (c) Road profile (d) Scheduling parameter

Fig. 9

 9 Fig.9and Fig.10are the experiment results of the observer in experimental scenario 1 and 2, respectively. The results demostrate the accuracy and efficiency of the proposed observer in realistic tests. To further describe this accuracy, Table3presents the normalized root-meansquare errors w.r.t. maximum value, considering the difference between the estimated and measured forces in experiment 1 and experiment 2.

Table 1 .

 1 Parameter values of the quarter-car model equipped with an ER damper

	Parameter	Description	value Unit
	ms	Sprung mass	2.27	kg
	mus	unsprung mass	0.25	kg
	ks	Spring stiffness	1396 N/m
	kt	Tire stiffness	12270 N/m
	k 0	Passive damper stiffness coefficient	170.4 N/m
	c 0	Viscous damping coefficient	68.83 N.s/m
	k 1	Hysteresis coefficient due to displacement 218.16 N.s/m
	c 1	Hysteresis coefficient due to velocity	21 N.s/m
	fc	Dynamic yield force of ER fluid	28.07	N
	τ	Time constant	43	ms

Table 2 .

 2 Range of control input value u

	Control input	Description	value
	u	Duty cycle of PWM channel [0, 1]

Table 3 .

 3 Normalized Root-Mean-Square Errors (NRMSE)

	Road Profile	NRMSE
	Experiment 1	0.1125
	Experiment 2	0.1342