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ABSTRACT
We propose a new methodology for selecting and ranking covariates associated with a variable
of interest in a context of high-dimensional data under dependence but few observations. The
methodology successively intertwines the clustering of covariates, decorrelation of covariates
using Factor Latent Analysis, selection using aggregation of adapted methods and finally rank-
ing. A simulation study shows the interest of the decorrelation inside the different clusters of
covariates. We first apply our method to transcriptomic data of 37 patients with advanced non-
small-cell lung cancer who have received chemotherapy, to select the transcriptomic covariates
that explain the survival outcome of the treatment. Secondly, we apply our method to 79 breast
tumor samples to define patient profiles for a new metastatic biomarker and associated gene
network in order to personalize the treatments.

KEYWORDS
Aggregated methods; Correlated covariates selection; Genetic profiles; High dimension;
Multiple testing procedures; Personalized medicine; Ranking; Variable selection.

1. Introduction

The purpose of personalized medicine is to select appropriate and optimal therapies based on
the context of a patient’s genetic content or other molecular or cellular analysis. One of the main
challenges faced by biologist and mathematician consortium for the construction of explanatory
models of multivariable biological processes, is the relatively low amount of experimental data
available compared to the huge number of variables. The point is of great concern when the
biological question deals with transcriptomic data in order to build gene networks and decipher
the role of a rare isoform, for which no specific probe is currently available. In that context, the
purpose of this paper is to propose a method to select the covariates that are linked with the
outcome of a given therapy or a biological marker, among a set of more than tens of thousands
covariates. For instance, the relevant dataset we will study in this paper are the following:

• 51336 transcriptomic data of 37 patients with advanced non-small-cell lung cancer who
have received chemotherapy. The survival time being known, the objective is to select
the transcriptomic covariates that explain the survival outcome of the treatment, then to
define the profiles of the patients who survive the treatment.
• 54676 probes in 79 breast tumor samples. A new metastatic biomarker being known, the

objective is to define patient profiles for this metastatic biomarker, and associated gene
network in order to personalize the treatments.

The variable of interest being known (treatment outcome or biological marker), the question is
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to find its link with the transcriptomic profile of the patients. We propose a methodology, that,
firstly selects and ranks the transcriptomic covariates that are the most linked with the outcome
treatment, and secondly, that visualises the profiles of the selected transcriptomic covariates,
for all the patients of the study.

More generally, the problem to detect association between a variable of interest and many
covariates has been tackled by many biologists and statisticians [2, 3, 11, 18, 19]. A common
example, coming from biology, is testing which of p genes’ expression levels given in a dataset X
is linked significantly with a variable Y , which we will call the variable of interest. The variable
of interest may be a binary variable like an outcome of treatment or it may be a quantitative
variable such as a phenotype or physiological parameter. In the two data studies of this paper,
the aim of the biologist is not necessarily to detect exhaustively all the genes involved in his
problem but to have a list of the most important of them in order to study their biological
functions. For this purpose, it is interesting to rank the genes according to the strength of their
link with the variable of interest. Although we present biological studies, our goal is to propose
a general methodology in a context of high dimensional data (the number p of covariates is
in the order of thousands) while the total number n of samples could be small (for instance
between 25 and 100).

In the context of transcriptomic data, the covariates are high dimensional and correlated.
This correlation between covariates, in a high-dimensional context, has to be taken into account
in the statistical analysis. Moreover, we are in a context of small sample size (n � p). Thus,
robustness of the statistical analysis has to be quantified.

We cite here some statistical methods that have been developed to select covariates in
high-dimensional contexts. The state of the art about the control of false discoveries in multiple
testing procedures is very extensive. The famous correction proposed by [6] to control the Family
Wise Error Rate (FWER) has been emulated and we can find a review about these methods in
[10]. Alternative methods focused on the control of the False Discovery Rate (FDR) ([4, 5]), or
of the local FDR [12] or the q-value [26–28]. For a review (in french) of the methods, see [3].
Regarding regression in the framework of high dimensional data (n � p), many methods are
available. For exemple, the PLS approach of [30] is a kind of principal component regression.
The Lasso regression proposed by [32] performs both variable selection and regularization in
penalizing the sums of squares by the L1-norm of the coefficients. This method has been derived
for many kinds of problems like logistic-regression in the case of binary data [21], or network
inference [22]. Another versatile tool to select covariates in different non parametric contexts is
given by the random forests, with the concept of importance of covariates [16].

Another important characteristic of the data that has to be taken into account is the struc-
ture of covariance of the covariates. Most of the multiple testing corrections make the assumption
of the independence between the tests. However it is well-known that omics data are correlated
by blocks. In the context of multiple testing, covariance between the covariates could bias the
uniform repartition of the p-values under the null hypothesis and also inflates the variance of
the estimation of the FDR [14, 15]. In [16] it is also shown that despite the robustness of the
random forests, importance of covariates calculated by random forests is perturbed by adding
other correlated covariates. One of the ways to deal with dependence is to model it by latent
factors; it is a way to reduce the information in supposing that the common information of the
p covariates is given by q � p latent factors as [15] and [14]. More precisely, they propose a way
to correct the data according to a regression link with the variable of interest Y in such a way
that covariates are independent conditionally to Y (leading to the independence of the tests).
After this correction, they propose a multiple testing procedure based on the method of [4] and
[5]. This method of correction will be called FAMT correction (for Factor Analysis for Multiple
Testing) in the sequel.

However, the framework of FAMT is to consider the data X as an only one block of correlated
covariates and has to be adapted if X is structured in several independent clusters of correlated
covariates. As we will see in Section 3, the FAMT does not give good results if it is applied
directly on the whole set of data X, without taking into account its decomposition in clusters
with strong within correlation. Then, we propose to identify the clusters of correlated covariates
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before performing FAMT correction on each of the clusters. The clustering of covariates as
proposed by [9] is a good way to arrange covariates into homogeneous clusters, i.e., groups
inside of which covariates are strongly related to each other.

Our purpose in this paper is to propose a method adapted to the selection (and ranking) of
correlated quantitative covariates associated with a variable of interest. For this, we propose a
methodology that takes into account (1) the structure of correlation by clusters of covariates;
(2) the correlation inside each cluster of correlated covariates.

Our methodology is divided in two steps: a pretreatment of the covariates (step 1) and a
procedure of selection of the pretreated covariates (step 2). The pretreatment consists of (step
1.1) detecting the clusters of covariates by using the clustering of covariates proposed by [9],
and (step 1.2) applying a ”decorrelation” between the covariates inside each cluster using the
factor analysis proposed by [7, 14, 15]. Their method performs a decorrelation of the covariates
and calculates the corrected covariates suitable for statistical testing and/or regression.

After that pretreatment, we propose a procedure to select and rank the covariates, by com-
bining different selection methods that take into account the nature of the outcome Y (qual-
itative or quantitative) and the high dimensional context (multiple testing procedures for the
tests, penalised regression, ...). We define a score for each covariate, which is defined by the
number of selections among all the selection methods involved in this step. This score can be
used to classify the covariates like in [29].

The paper is organized as follows. In Section 2, we detail the model and explain the principle
of the main steps of our methodology: the pretreatment of the covariates and the construction
of the covariates scores of selection. Section 3 is dedicated to simulations studies in order to
assess the interest of the proposed pretreatment on one hand and the good working of the
whole selection strategy on the other hand. The simulations are performed in the case where
the variable of interest is binary. Section 4 is dedicated to two real data analysis: the purpose
of the first analysis is to select covariates that are linked with the outcome of a lung cancer
treatment, whereas the second analysis selects covariates linked with a breast cancer biomarker.
In both analysis, the selected covariates are used to define genetic profiles of patients. Section 5
gives some conclusions and perspectives. The Appendix gives two simulation studies in the case
where the variable of interest is respectively a binary and a continuous quantitative variable
(Sections A and B of Appendix). Technical details on the two real data applications are also
given (Sections C and D of the Appendix).

2. Methodology

2.1. Framework and model

We suppose that we have n i.i.d replications of (Y,X) where Y is the variable of interest,
and X = (X1, X2, . . . , Xp) is the vector of covariates, taking its values in Rp. We make the
assumption that the covariates are decomposed into K independent clusters:

X = (X
(1)
1 , . . . , X(1)

p1︸ ︷︷ ︸
X(1)

, . . . , . . . , X
(k)
i , . . .︸ ︷︷ ︸

X(k)

, . . . , . . . , X(K)
pK︸ ︷︷ ︸

X(K)

) = (X(1), . . . ,X(K)),

where p1 + . . .+ pK = p.
On one hand, we model the dependence in the K clusters of covariates as in the framework

of [15]: inside each cluster X(k), the common information between the pk covariates is modeled
by regression on qk latent factors:

X
(k)
i = δ

(k)
i (Y ) + b

(k)
i Z(k) + ε

(k)
i , for i = 1, . . . , pk, (1)

where δ
(k)
i (Y ) is a function of Y , Z(k) is a random centered qk-vector such that E(Z(k)Z(k)′) = Iqk ,
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b
(k)
i is a qk-vector, and ε(k) = (ε

(k)
1 , . . . , ε

(k)
pk ) is a random centered pk-vector with independent

components, and independent of Z(k). The common information contained in X(k) is then con-
centrated in a small dimension space by qk latent factors Z(k). Under the model (1), we have:

Σ(k) := V(X(k)|Y ) = B(k)(B(k))′ + Ψ(k) (2)

V(X(k)|Y,Z(k)) = Ψ(k) (3)

Cov(ε
(k)
i , Z

(k)
j ) = 0, ∀i, j, k (4)

where Ψ(k) is a diagonal pk × pk matrix (the covariance matrix of ε(k)) and B(k) is a pk × qk
matrix of factor loadings b

(k)
i (cf Equation (1), the b

(k)
i being the ith row of B(k)). In the

decomposition given in Equation (2), the diagonal element Ψ
(k)
i is the specific variance of the

response X
(k)
i while B(k)(B(k))′ appears as the shared variance in the common factor structure.

[15] define the common variance by

ComVar(k) =
trace(B(k)(B(k))′)

trace(Σ(k))
. (5)

On the other hand, we suppose that the specific informations at each cluster (that is vectors
(Z(k), ε(k))1≤k≤K) are independent, then, given Y , the covariance matrix of the whole vector of
covariates has the form given by the Figure 1.

2.2. Main prodecure

The procedure is decomposed in two steps: a pretreatment of the covariates (step 1) and a
selection method of the covariates (step 2).

2.2.1. Step 1: pretreatment of data (clustering of covariates and decorrelation inside clusters).

The aim of this pretreatment is to perform a decorrelation of the covariates, to obtain corrected
covariates that are suitable for testing and/or regression. Indeed, the correlation between covari-
ates has an impact on all the classical selection procedures: the conventional methods, namely
the multiple testing procedures (the p-value adjustment methods proposed by [6], [4, 5], or the
q-value proposed by [26–28], or the local FDR presented in [2], [3]) are all built on the assump-
tion that tests are independent. As a results, they are no longer promising if the independence
is not verified. A very detailed discussion can be found in the Friguet’s thesis [13].

In estimating together the latent factors Z(k) and the coefficients of regressions (B(k),Ψ(k))
by an E.M. algorithm in model (1), the FAMT procedure of [15] can correct the covariates
such that they are almost independent and as a result, suitable for multiple testing proce-
dures or selection by regression or random forests. More precisely, the corrected data, noted

X
(k)?
i = X

(k)
i − b

(k)
i Z(k) = δ

(k)
i (Y ) + ε

(k)
i , i = 1, . . . , pk, lead to a standard multiple regression

problem where the errors ε
(k)
i are independent. Note that this correction of the data X is done

conditionally on the variable of interest Y [15].
Of course, the whole vector X satisfies assumption of Equation (1), and [15] apply this

decorrelation procedure on the whole set of covariates X. But instead of applying Friguet’s
procedure on the whole set of covariates X, we propose to first detect the different clusters
(X(k))1≤k≤K and then to apply the decorrelation method on each cluster. Indeed, [25] has
shown with some simulation studies that the decorrelation was degraded by the dimension of
the vector of covariates, whereas it was better after the detection of the independent clusters. By
this way, the covariates selection procedure can be highly improved by clustering of covariates
(step 1.1) before applying factor analysis to correct the correlation within each cluster (step
1.2), as it is shown in Section 3.
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2.2.1.1. Step 1.1: clustering of covariates. We apply a clustering of covariates in the
purpose to find clusters of correlated variables as we assumed in Section 2.1. We propose to
use the algorithm of [9] to cluster covariates into homogeneous clusters and thus to reveal
structures. This algorithm maximizes an homogeneity criterion, where the homogeneity of a
cluster is defined by the sum of squared Pearson correlations between the covariates present
in the cluster and the first principal component of this cluster. This algorithm is expected to
roughly find the highly correlated clusters of covariates as we assumed in the Section 2.1. The
procedure proposes also a method (based on bootstrap resampling) to find the number K of
clusters if it is unknown.

2.2.1.2. Step 1.2: Factor analysis to correct dependency structure in each cluster.
As already explained in the beginning of this section, clustering is followed by decorrelation
inside each cluster using the Friguet’s procedure.

At the end of this pretreatment procedure, we obtain corrected data, noted X∗Y in the sequel.
Note that X∗Y depends on Y . To simplify the notations, X∗Y will be noted X∗.

2.2.2. Step 2: Aggregation of statistical methods applied on the resulting dataset.

The statistical methods proposed in this part are not fixed and can be adapted by the practi-
tioner according to its preferred selection methods and the characteristics of the data (nature
of variable of interest Y , samples’ sizes and so on).

The idea is the following: we choose several methods to select the pretreated covariates X?.
We perform L methods, then each covariate X?

i obtains a score Si ∈ {0, 1, . . . , L} that is the
number of selections among the L methods. By this way, the covariates can be ranked according
to their link with the outcome Y .

For instance, in the examples developed in our simulation studies and in real data, Y is
binary, the size of the samples are low and we choose eight different methods of selection:
five different multiple testing procedures applied to the Wilcoxon test (Bonferroni, Benjamin-
Hochberg, q-values, local FDR, FAMT), logistic regression penalised by Lasso, and two selections
by random forests (threshold step and interpret step, see [16]). The outcomes of this procedure
are the scores Si, i = 1, . . . , p which are integers included in [0, 8]. For example, if Si = 8, then
the corresponding variable has been selected by all the eight methods, whereas if Si = 0, the
corresponding variable has been selected by none of them. The scores can be used to rank the
covariates according to the strength of their link with the variable of interest.

2.3. R Package armada

In the sequel, we call our procedure ARMADA for AggRegated Methods for covAriates selec-
tion under Dependence. Our procedure has been implemented in an R package, called armada,
available on the CRAN [23]. The package proposes also a graphical representation of the selected
covariates, through heatmaps, as presented in Figures 5 and 8.

3. Simulations

We first explain the simulation design in Section 3.1. We then describe the effect of the pre-
treatment in Section 3.2 and finally, we study the selection procedure in Section 3.3.

3.1. Simulation design

We propose a simulation study with p = 1600 covariates and sample size n = 60. We first
describe how to create dependence in the covariates X, then we present a simulation design
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in a classification study. Two other designs in classification and regression cases are given in
Sections A and B of the Appendix.

The covariates X = (X(k))k=1,...,4 are clustered into four independent clusters, each of them
containing pk = 400 covariates. For this, before to model the dependence with the outcome Y ,
we generate for each cluster k, a preliminary vector X̃(k) that is a gaussian 400-vector, with mean
0 and non-diagonal variance-covariance matrix Σ(k). The correlation between the covariates of
X̃(k) inside the cluster k is designed by a factor analysis model described in Equation (2). More
precisions on the simulation procedure of data with covariance design defined by Equation (2)

can be found in [13]. We simulate data with common variances ComVar(k) equal to 0.8 in each
cluster (recall that the common variance is defined in Equation (5)). Moreover, the numbers of
latent factors in each cluster are (q(1), . . . , q(4)) = (4, 6, 8, 10).

Now, we create the dependence between X and Y in perturbing some component of X̃. We
consider an equiprobable two-class problem, Y ∈ {0, 1} (i.e. Y = 1 for n

2 subjects, and Y = 0
for n

2 subjects). Y is linked with 160 influential covariates in X, whose links with the response
variable Y have different intensities. The other covariates are noise. More precisely, in each
cluster k = 1, . . . , 4, and for i = 1, . . . , 400,

X
(k)
i = X̃

(k)
i + δi1Y=0

with δ = (δi)i=1,...,400 = (1.5, . . . , 1.5︸ ︷︷ ︸
i=1,...,10

, 1, . . . , 1︸ ︷︷ ︸
i=11,...,20

, 0.75, . . . , 0.75︸ ︷︷ ︸
i=21,...,30

, 0.5, . . . , 0.5︸ ︷︷ ︸
i=31,...,40

, 0, . . . , 0︸ ︷︷ ︸
i=41,...,400

). In other

words, Y is linked with the m1 = 40 first covariates of each cluster, and the m0 = 360 remaining
covariates of each cluster are independent of Y . Then, the 10 first covariates of each cluster are
the most strongly linked with the response variable Y and the strength of the link is decreasing
in the successive groups of 10 influential covariates.

We can remark that this design respects the covariance matrix given in Figure 1 and the
model given by Equation (1).

3.2. Interest of our data pretreatment

In order to emphasize the interest of our data pretreatment, we compare the results of a Wilcoxon
test after three different data pretreatments:

Procedure 1: nothing is done on the dataset X.
Procedure 2: the covariates X are decorrelated, taking Y into account, with the factor analysis proce-

dure of [7, 15], implemented in the R package FAMT. This gives a new dataset X†Y .
Procedure 3: the 4 clusters are estimated with the procedure of [9], implemented in the R package

ClustOfVar; then the covariates are decorrelated in each cluster, taking Y into account,
with the factor analysis procedure of [7, 15], implemented in the R package FAMT. This
gives a new dataset X∗Y obtained by the concatenation of the decorrelated clusters.

Remark: our data pretreatment is the Procedure 3. We have supposed that the number of
clusters is known. If that is not the case, the user can choose its own number of clusters by
using the graphical tools of the ClustOfVar procedure (plots of the dendrogram).

Our objective is to find out the differently expressed covariates in the two groups (groups
Y = 0 and Y = 1) with sample sizes n

2 = 30. For this, we perform Wilcoxon tests on each

of the p pretreated covariates of the dataset (that is X for Procedure 1, X†Y for Procedure
2, X∗Y for Procedure 3), given a three sets of p p-values. For each of these procedures, the
selected covariates are those with p-values lower than 0.05. We compare these procedures on
N = 100 runs of (X, Y ). For the comparison, we count the number of influential covariates that
are correctly detected (this number is noted TP, for True Positive), this indicator gives an idea
of the sensibility of the test after the procedure. To assess the specificity, we count the number
of non-influential detected covariates (this number is noted FP, for False Positive). Note that
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the perfect method would detect all the influential covariates (that is 160 here) and no False
Positive. However, according to the detection threshold chosen for the p-value, the expected
number of FP is 72 = 5%× (1600− 160). The results are shown in Figure 2.

On the Figure 2, we can see that Procedure 1 is in fact the one that has the lowest rate of
FP but its power is also the poorest. Our Procedure reduces the mean and the variability of
the distributions of the false positive rates, in comparison to the Procedure 2 (i.e. the FAMT
procedure). The power of our Procedure is comparable with Procedure 2. This results show the
interest of our proposed pretreatment before performing selection.

3.3. Results of the whole method (pretreatment and selection)

In order to describe the performances of our method, we show in Figure 3 the mean ARMADA
scores obtained on the N = 100 runs of (X, Y ) for each design. The scores are given for all
the covariates individually, and also by group of influential and noise covariates (the groups of
influential covariates are noted by ”1.5”, ”1”, ”0.75”, ”0.5” (see Section 3.1); the group of noise
covariates is noted by ”-”).

We can see on the Figure 3 that the scores give a clear ranking of the covariates, according
to the strength of their link with the response variable Y . The highest scores are obtained by
the covariates which are the most strongly linked with the response variable Y . The ARMADA
method is performant: the mean score clearly distinguishes the five groups of covariates accord-
ing to their link with Y . The distribution of the individual scores inside each group is given by
the boxplots. The ARMADA scores clearly separate the influential covariates from the others;
and inside the influential covariates the two first groups are clearly separated of the last one.
Note that around 95% of the noise covariates obtained an ARMADA score that was exactly 0.

3.4. Comparison with other selection methods

We propose the following selection criterion in our procedure: the selected covariates are those
with scores greater or equal to 1.

We compare this selection procedure with two other selection methods:

• the Wilcoxon test: the selected covariates are those with raw-pvalues (i.e. p-values without
any correction) lower than 0.05,
• the FAMT procedure [7]: the selected covariates are those with adjusted p-values lower

than 0.05.

To compare the three selection methods, the Table 1 gives the rates of selection for each
group of influential covariates, and for the group of noise covariates. The rates of selection have
been computed on N = 100 runs of (X, Y ). We can see that our method respects the expected
rate of false positives that is not the case for the FAMT method which exhibits a greater rate
of 10 %. Moreover, our method gives the best results. The rate of selection of the influential
covariates is very good compared with the other methods even if the strength of the link is poor.

Table 1. Results of the N = 100 runs: rates

of selection of the different groups of influential
and noise covariates by the ARMADA method,

the Wilcoxon test and the FAMT procedure. The
corresponding standard deviations are given in
brackets.

ARMADA Wilcoxon FAMT

1.5 0.99 (0.04) 0.99 (0.07) 0.99 (0.02)
1 0.97 (0.15) 0.85 (0.35) 0.95 (0.20)

0.75 0.91 (0.27) 0.62 (0.48) 0.82 (0.38)
0.5 0.79 (0.40) 0.33 (0.47) 0.52 (0.49)
- 0.05 (0.23) 0.05 (0.22) 0.10 (0.30)

Finally, we can conclude with the ROC curves given in Figure A3 that our method out-

7



X(1) X(2) X(3) X(K)

q1	factors

0
q2	factors

q3	factors

0

…….

qK	factors

Cluster	2

Cluster	3

…….

Cluster	K

X(1)

X(2)

X(3)

X(K)

Cluster	1

Figure 1. Covariance structure of covariates given Y

1 2 3

10
0

12
0

14
0

Procedure

nb
 o

f T
P

1 2 3

50
20

0
35

0

Procedure

N
b 

of
 F

P

Figure 2. Number of true positive tests (left), false positive tests (right) according to the different pretreatment procedures

(1: Nothing, 2: FAMT, 3: clustering followed by FAMT in each cluster). Dotted lines: expected number of FP. Boxplots
are calculated on N = 100 runs.

0 500 1000 1500

0
2

4
6

Variables index

M
ea

n 
sc

or
e

cluster 1 cluster 2 cluster 3 cluster 4

0
2

4
6

8

Intensity of link with Y

A
R

M
A

D
A

 s
co

re
s

1.5 1 0.75 0.5 −

Figure 3. Left: mean of the ARMADA scores obtained by all the covariates. Right: boxplot of the scores of the covariates,
ranked by levels of link with Y . Means and boxplots are calculated on N = 100 runs.

8



performs the two others selection methods (the ordinates of the points of the ARMADA ROC
curve are all higher than the ordinates of the points of the two other ROC curves). The ROC
curves have been obtained by the mean of the N = 100 ROC curves obtained in the N = 100
runs of (X, Y ).
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Figure 4. ROC curves for the three selection methods.

4. Application to real data

In this section we apply our method on two real datasets, both in oncology. The first one
concerns the selection of transcriptomic covariates linked with the outcome of a chemotherapy
for lung cancer. The second one concerns the selection of covariates linked with a quantitative
biomarker ERα36 in breast cancer.

4.1. Outcome of chemotherapy for advanced non-small-cell lung cancer

We apply our method on transcriptomic data of n = 37 patients with advanced non-small-cell
lung cancer, who have received chemotherapy. Even if we are aware of the fact that chemotherapy
is not a target therapy, the problematic is really to select suitable transcriptomic covariates in
the purpose to detect profiles associated with the effect of a treatment. For each patient, we have
51336 transcriptomic covariates, and its survival status: 24 patients whose death occurred before
12 months and 13 patients whose death occurred after 12 months. This criteria of death before
one year is very common in clinical trials. We applied a first filtering of the covariates, where
we decided to ignore the covariates for which the Wilcoxon test does not detect a difference
between the 24 patients whose survival time is lower than 12 months and the 13 other ones (we
eliminate covariates with Wilcoxon-pvalue greater than 0.05). After this filtering we obtained a
dataset with n = 37 patients and p = 6810 covariates. In the pretreatment step, we found that
the p = 6810 covariates are decomposed in 3 independent group of covariates.

In a first time, the biological question was to find the genes which can explain a survival
time greater or lower than 12 months. We then consider a binary response variable Y : Y = 1
for the 24 patients whose survival time is lower than 12 months and Y = 0 for the 13 patients
whose survival time is greater than 12 months. The response variable being binary, we first
applied the selection method presented in Section 2.2.2.

Moreover, as the survival time was known for all the 37 patients without any censoring,
we also apply our method on the same dataset (6810 covariates) but here, Y is the survival
time. We then have a regression problem. We have used eight selection methods in Step 2 of
our method: five different multiple testing procedures applied to the Pearson correlation test
(Bonferroni, Benjamin-Hochberg, q-values, local FDR, FAMT), regression penalised by Lasso,
and two selections by random forests (threshold step and interpret step, see [16]).

The joint results of the classification and regression studies are given in Table 2. In the
classification study, we can see that 10 covariates are particularly important, with a score equal
to 7, whereas 2827 covariates have a score equal to 0, and 3983 covariates have a score greater
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or equal to 1. It is clear that, the biologist will not focus on the 3983 covariates with a positive
score. But the method clearly gives a hierarchy between the genes and it is sure that the function
of the 10 genes with a score at 7 has to be studied to understand its link with the ”success”
of the treatment. The table 2 is a little disappointing, because regression and classification do
not select the same covariates. Whatever, among the covariates with a C-score (score in the
classification case) equal to 7, there is only one with a R-score (score in the regression case)
lower than 4 (equal to 0!). But these two analyses are not looking for the same kind of link with
the covariates. Moreover, these two approaches give two tools to detect influential covariates.
We can combine these two approaches and consider the covariates that are selected by at least
one approach, or consider the covariates that are selected by both of them. In the Figure 5, we
show the heatmap of the selected covariates which have a classification score and a regression
score greater than five. For the visualisation of the results, we then build an heatmap obtained
thanks to the R package heatmaply after co-clustering of the survival times (on the x-axis) and
of the covariates (on the y-axis) with the function hclust (Figure 5).

Table 2. Repartition of the covariates scores in the transcriptomic

dataset. The R-scores are given in the 9 rows, the C-scores are given
in the 8 columns. For instance, 41 covariates have a R-score equal to 1,

and a C-score equal to 0.

Classification score
Regression score 0 1 2 3 4 5 6 7

0 2227 328 273 337 531 257 34 1
1 41 7 3 9 17 10 2 0
2 131 35 39 52 119 71 9 0
3 119 48 44 50 117 114 17 0
4 174 65 56 86 256 241 102 4
5 119 64 40 57 116 176 116 4
6 15 4 4 5 12 19 26 1
7 1 2 1 0 1 0 0 0
8 0 0 0 0 1 0 0 0

G1	

G2	

P1	 P2	 P3	

Figure 5. Heatmap of the 342 covariates which have ARMADA scores greater or equal to 5 in both classification and

regression studies. Each column corresponds to one patient. The x-axis represents the patients (marked with their survival
time) and the y-axis the covariates. Color gives the normalised expression of the covariates.

The visualisation of the co-clustering of the selected genes and the survival leads to the
distinction of three different groups of patients (noted P1, P2, P3 in Figure 5) of respective sizes
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7, 8, 22 from the left to the right of the x-axis. The co-clustering identifies also two clusters
of genes (noted G1 and G2 for simplicity). All the people except 2 of the two first group P1

and P2 have a life status Y = 1 (among the two exceptions, one is at the threshold with a
survival of 11.5 months), all of the people of the third group P3 have a life status Y = 0. The
selected covariates clearly discriminates groups P1 and P3. Indeed, the patients of the group P1

have a low expression of the covariates in G1 and a high expression of the covariates in G2 and
the inverse for group P3. Patients of group P2 have intermediate expressions according the two
others groups.

As the number of patients n = 37 is small compared to the number of covariates even after
filtering (p = 6810), we have checked our results with a bootstrap study. The results (reported
in the Section C of the Appendix) show that our method is robust: the distributions of the
bootstrapped scores faithfully reproduce the original scores.

4.2. Biological network involving ERα36 in breast cancer

ERα36 is a variant of the oestrogen receptor α encoded by the ESR1 locus and expressed only
in humans [33]. ERα36 expression and activity have been mainly studied in vitro and in vivo
in the context of breast cancer. However, due to the lack of comprehensive transcriptomic data
that include ERα36, only sparse information is available on factors that could act up- and
downstream ERα36 in biological networks. Our challenge from a statistical point of view was
to explain the ERα36 expression variation obtained in a small number of breast tumors from
a large number of potential explanatory variables that correspond to the 54676 transcriptomic
probes. For this, we analysed the biological network involving ERα36 through the use of 4 sets
of Affymetrix transcriptomic data obtained from breast tumors of different molecular subtypes:
the triple negative (noted TN), ERa66+, PR+ and PR- datasets (details are provided in Section
D of the Appendix).

The analysis was performed in three steps (Figure 6).

	
«	Complete	»	datasets	

79	tumors		
54676	probes	(Affymetrix	U133	array)	

	

46	
«	ERa66+	»	

16	
«	PR-	»	

29	
	«	PR+	»	

17	
«	TN	»	

Step	1	:	Experimental	measurement	of	ERa36	expression	level		(RT-qPCR)	

Step	2a	:	slecOon	of	a	probeset	linked	to	ERa36	
	ARMADA		algorithm	

277	
probes	

711	
probes	

319	
probes	

369	
probes	

Step	2b	:		
FuncOonal	analysis	
MSigDB	(GSEA)		

Step	2c	:		
Experimental	validaOon	

Step	3	:	Molecular	signatures	associated	to	ERa36	expression	
		

4	
classes	

2	
classes	

3	
classes	

3	
classes	

Figure 6. Workflow describing the 3 steps of four breast tumor transcriptomic datasets.

Step 1, clinical data completion. These 4 transcriptomic datasets were completed by the
measurement of ERα36 expression level in each tumor. Biological details are given in Section
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D of the Appendix.
Step 2a, statistical analysis. To explain the ERα36 expression variation obtained in a small
number of tumors from a large number of potential explanatory variables, we used the R package
armada, in its regression version (as in Section 4.1 where Y is quantitative), that allowed to
select, among the 54676 initial probes, a few hundreds of genes whose expression is supposed to
be correlated to that of ERα36 (ARMADA score ≥ 1). We obtained four lists of respectively
711, 277, 319 and 369 probes correlated to the expression of ERα36 in the TN, ERa66+, PR+
and PR- groups.
Step 2b, functional analysis. From these four lists of transcriptomic probes, we carried out
a functional analysis using the MSigDB database (GSEA). In particular, we looked for tran-
scription factors and microRNAs involved in the regulation of the majority of genes from the
different lists (TN, ERa66+, PR+ and PR-). The results indicated that four transcription fac-
tors: NFAT, FOXO4, SP1 and LEF-1, were common regulators and could therefore be mediators
of the ERα36 effect in all breast tumor subtypes. Interestingly, a study by [1] has shown that
these transcription factors FOXO4, SP1 and LEF-1 are transcriptional hallmarks characteris-
tic of cancer cells and associated to the Wnt signaling pathway (involved in metastasis and
maintenance of cancer stem cells). Regarding the analysis of microRNAs, the results indicated
that the majority of the genes whose expression correlated to ERα36 one in the TN set were
regulated by the microRNAs: hsa-miR-106B, hsa-miR21 and hsa-miR-29A, listed as oncogenic
microRNAs involved in metastatic processes, survival and self-sufficiency in growth factors of
mammary tumors [20]. These results recalled those of a previous study of [8], which showed
that a high ERα36 expression in mammary tumors is associated with an increased metastatic
potential and an estrogen-independent tumor growth.
Step 2c, experimental validation. Subsequently, we provided an experimental confirmation
of the biological reliability of the results: the correlation between the expression of ERα36
and that of ZEB1, FZD7, ZIC1 and TCF7LD genes, identified by armada as correlated to
ERα36 in all tumor sets, was verified in vitro by RT-qPCR in two breast cancer cell lines
(MCF-7 (ERa66+, PR+, PR-) and MDA-MB-231 (TN)). The results of Figure 7 confirmed
the correlation (positive or negative) between the expression of ERα36 and that of the genes
identified by armada in the both cell lines.

Figure 7. Experimental validation of biological data inferred from armada. (A) ERα36 expression level as measured
by RT-qPCR in MCF-7 and MDA-MB-231 breast cancer cells. (B) TCF7L1, ZEB1, FZD7 and ZIC1 expression level as
measured by RT-qPCR in MCF-7 and MDA-MB-231 breast cancer cells.

Step 3, tumor classification according to ERα36 expression level. The final goal of
our study was to identify the molecular signatures accounting for the ERα36 expression level
in the four different sets of tumors. These signatures were identified thanks to the R package
heatmaply after co-clustering of the ERα36 expression (on the x-axis) and of the covariates
(on the y-axis) with the function hclust. For each of the four tumor datasets, a heatmap was
built which accounted for the expression level of the genes correlated to ERα36. Thanks to
the associated dendogram, different classes of tumors were defined and characterized by both
the level of ERα36 expression and an associated molecular signature. The Figure 8 illustrates
the results for the study on the dataset ERa66+: two classes of tumors were identified, called
ERα36++ and ERα36−. Taken together, the armada package helped to cluster patients which
breast tumor highly express ERα36 and associated genes. These patients could be treated by
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Wnt signaling inhibitors or specific microARN modulators and therefore benefit such promising
new personalized medicine.

Figure 8. Heatmap of the 711 covariates which have ARMADA scores greater or equal to 1 in the study of the dataset

ERa66+. Each column corresponds to one ERa66+ tumor. The x-axis represents the tumors (marked with their ERα36

expression level) and the y-axis represents the selected probes. Color gives the normalised expression of the covariates.

5. Conclusion and perspectives

We have proposed a new methodology which is able to select the covariates (here the genes) that
are linked with a variable of interest (here the treatment of an outcome or a biological marker).
The method is of particular interest in the high dimensional case and when the covariates are
correlated. The algorithms corresponding to this method are available through the R package
armada. After this selection obtained with our method, it is then easy to visualise the selected
genes (or probes) for all the patients, and to classify the genetic profiles of patients with respect
to their treatment outcome or biological marker. In the study of the treatment by chemotherapy
in the advanced non-small-cell lung cancer, we have identify three types of genetic profiles defined
with two clusters of genes. In the study of the mammary tumors, the covariates selection allows
the biologist to study the functional role of selected probes and also to classify tumors and
associated transcriptomic signatures. This kind of results is very promising for the identification
of new therapeutic targets and the development of more efficient and personalized anti-cancer
treatment.

Appendix

The Appendix gives additional simulations on another classification model, and on a regression
model where Y is a continuous quantitative variable (Sections A and B of Appendix), some
further analysis of the lung cancer data presented in Section 4.1 (Section C of Appendix), and
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technical informations on the biological material used in Section 4.2 (Section D of Appendix).

Appendix A. Classification design

A.1. Simulation design

As in Section 3, we propose a simulation study with p = 1600 covariates and sample size
n = 60. The response variable Y is binary: Y = 1 for n

2 subjects, and Y = 0 for n
2 subjects.

The covariates X = (X(k))k=1,...,4 are clustered into four independent clusters, each of them
containing pk = 400 covariates. For this, before to model the dependence with the outcome Y ,
we generate for each cluster k, a preliminary vector X̃(k) that is a gaussian 400-vector, with mean
0 and non-diagonal variance-covariance matrix Σ(k). The correlation between the covariates of
X̃(k) inside the cluster k is designed by a factor analysis model, as in the Section 3. More
precisions on the factor analysis model can be found in [13]. Now, we create the dependence
between X and Y in perturbing some component of X̃. This simulation design is inspired from
the toys-data of [16]. The outcome Y is linked with 240 influential covariates in X, the others
being noise covariates. The links between the influential covariates and the response variable
Y have different intensities. More precisely, the 10 first covariates of each cluster are the most
strongly linked with the response variable Y and the strength of the link is decreasing in the
successive groups of 10 influential covariates.

More precisely, let us define the simulation model by giving the conditional distribution of
Xi given the value y of Y : in each cluster k = 1, . . . , 4, and for i = 1, . . . , 400,

X
(k)
i = X̃

(k)
i + δ

(k)
i (y)

where δi(y) is a random variable.

• The relevant covariates are the m1 = 60 first covariates of each cluster. The distribution

of the δ
(k)
i (y) leading to the links between the relevant covariates and Y is given in Table

A1.
• The m0 = 340 remaining covariates of each cluster are independent of Y : δ

(k)
i (y) = 0

whatever y for i = 61, . . . , 400.

Table A1. Links between the relevant covariates and
Y in the classification design. The notation δ

(k)
i ∼

0.7N (3y, 1) + 0.3N (0, 1) means that, with probabil-

ity 0.7, δ
(k)
i ∼ N (3y, 1), and with probability 0.3,

δ
(k)
i ∼ N (0, 1).

i model for δki

for i = 1, . . . , 10 δ
(k)
i ∼ 0.7N (3y, 1) + 0.3N (0, 1)

for i = 11, . . . , 20 δ
(k)
i ∼ 0.7N (2y, 1) + 0.3N (0, 1)

for i = 21, . . . , 30 δ
(k)
i ∼ 0.7N (y, 1) + 0.3N (0, 1)

for i = 31, . . . , 40 δ
(k)
i ∼ 0.3N (3y, 1) + 0.7N (0, 1)

for i = 41, . . . , 50 δ
(k)
i ∼ 0.3N (2y, 1) + 0.7N (0, 1)

for i = 51, . . . , 60 δ
(k)
i ∼ 0.3N (y, 1) + 0.7N (0, 1)

We can remark that this design respects the covariance matrix given in Figure 1. This design

differs a little bit from the model of Equation (1), because δ
(k)
i (Y ) is a random function of Y .

Note that in real data analysis, we don’t know the model from which they are generated. It is
why it is interesting to analyse the performance of our method on different kinds of simulated
data.
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A.2. Interest of our data pretreatment

In order to emphasize the interest of our data pretreatment, we compare the results of a Wilcoxon
test after three different data pretreatments:

Procedure 1: nothing is done on the dataset X.
Procedure 2: the covariates X are decorrelated, taking Y into account, with the factor analysis proce-

dure of [7, 15], implemented in the R package FAMT. This gives a new dataset X†Y .
Procedure 3: the 4 clusters are estimated with the procedure of [9], implemented in the R package

ClustOfVar; then the covariates are decorrelated in each cluster, taking Y into account,
with the factor analysis procedure of [7, 15], implemented in the R package FAMT. This
gives a new dataset X∗Y obtained by the concatenation of the decorrelated clusters.

Remark: our data pretreatment is the Procedure 3. We have supposed that the number of
clusters is known. If that is not the case, the user can choose its own number of clusters by
using the graphical tools of the ClustOfVar procedure (plots of the dendrogram).

Our objective is to find out the differently expressed covariates in the two groups (groups
Y = 0 and Y = 1) with sample sizes n

2 = 30. For this, we perform Wilcoxon tests on each

of the p pretreated covariates of the dataset (that is X for Procedure 1, X†Y for Procedure
2, X∗Y for Procedure 3), given a three sets of p p-values. For each of these procedures, the
selected covariates are those with p-values lower than 0.05. We compare these procedures on
N = 100 runs of (X, Y ). For the comparison, we count the number of influential covariates that
are correctly detected (this number is noted TP, for True Positive), this indicator gives an idea
of the sensibility of the test after the procedure. To assess the specificity, we count the number
of non-influential detected covariates (this number is noted FP, for False Positive). Note that
the perfect method would detect all the influential covariates (that is 240 in this study) and
no False Positive. However, according to the detection threshold chosen for the p-value, the
expected number of FP is 68 = 5%× (1600− 240). The results are shown in Figure A1.
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Figure A1. Number of true positive tests (top), false positive tests (bottom) in the classification design according to the
different pretreatment procedures (1: Nothing, 2: FAMT, 3: clustering followed by FAMT in each cluster). Dotted lines:
expected number of FP. Boxplots are calculated on N = 100 runs.

If we analyse the results given by Figure A1, we can see that Procedure 1 is in fact the
one that has the lowest rate of FP but its power is also the poorest whatever the design. Our
Procedure reduces the mean and the variability of the distributions of the false positive rates,
in comparison to the Procedure 2 (i.e. the FAMT procedure). The power of our Procedure
is comparable with Procedure 2. This results show the interest of our proposed pretreatment
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before performing selection.

A.3. Results of the whole method (pretreatment and selection)

In order to describe the performances of our method, we show in Figure A2 the mean ARMADA
scores obtained on the N = 100 runs of (X, Y ). The scores are given for all the covariates
individually, and also by group of influential and noise covariates (the groups of influential
covariates are noted by ”(0.7,3)”, ”(0.7,2)”, ”(0.7,1)”, etc.; the group of noise covariates is
noted by ”-”).
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Figure A2. Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of the scores of the
covariates, ranked by levels of link with Y . Means and boxplots are calculated on N = 100 runs. Simulation in the

classification design.

We can see on the Figure A2 that the scores give a clear ranking of the covariates, according
to the strength of their link with the response variable Y . The highest scores are obtained by
the covariates which are the most strongly linked with the response variable Y . The method is
not so performant as in the design presented in Section 3, probably because we are note exactly
in the model of the study, given by Equation (1), but also because the strength of the link with
Y is low excepted for the two first groups of covariates that have scores which are well separated
from the others by the selection method. We can precise that around 95% of the noise covariates
obtained an ARMADA score that was exactly 0.

A.4. Comparison with other selection methods

We propose the following selection criterion in our procedure: the selected covariates are those
with scores greater or equal to 1.

We compare this selection procedure with two other selection methods:

• the Wilcoxon test: the selected covariates are those with raw-pvalues (i.e. p-values without
any correction) lower than 0.05,
• the FAMT procedure [7]: the selected covariates are those with adjusted p-values lower

than 0.05.

To compare the three selection methods, the Table A2 gives the rates of selection for each
group of influential covariates, and for the group of noise covariates. The rates of selection have
been computed on N = 100 runs of (X, Y ). We can see that our method respect the expected
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rate of false positives that is not the case for the FAMT method which exhibits a greater rate
of 10 %. Our method is competitive with the FAMT procedure for the detection of influential
covariates, but again FAMT procedure has more false positives than ours.

Table A2. Results of the N = 100 runs in the clas-

sification design: rates of selection of the different
groups of influential and noise covariates by the AR-

MADA method, the Wilcoxon test and the FAMT

procedure. The corresponding standard deviations
are given in brackets.

ARMADA Wilcoxon FAMT

(0.7-3) 0.99 (0.08) 0.99 (0.07) 0.99 (0.04)
(0.7-2) 0.92 (0.27) 0.92 (0.26) 0.96 (0.17)
(0.7-1) 0.44 (0.49) 0.43 (0.49) 0.58 (0.49)
(0.3-3) 0.54 (0.49) 0.41 (0.49) 0.61 (0.48)
(0.3-2) 0.32 (0.46) 0.28 (0.45) 0.41 (0.49)
(0.3-1) 0.12 (0.32) 0.12 (0.33) 0.19 (0.39)

- 0.05 (0.23) 0.05 (0.22) 0.09 (0.29)

Finally, we can conclude with the ROC curves given in Figure A3 that our method out-
performs the two others selection methods (the ordinates of the points of the ARMADA
ROC curve are all higher than the ordinates of the points of the two other ROC curves).
Note that the ROC curves give the impression that our method is not competitive with the
two others, but this is only caused by the fact that we have traced a solid line between the
points (1-specificity, sensibility)ARMADA score=0 and (1-specificity, sensibility)ARMADA score=1.
The ROC curves have been obtained by the mean of the N = 100 ROC curves obtained in
the N = 100 runs of (X, Y ).
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Figure A3. ROC curves for the three selection methods in the classification design.

Appendix B. Regression design

In this section, we give results of simulations to study the behavior of our algorithm to select
covariates linked with a continuous variable of interest (like survival time here). We simulate
X̃ = (X̃(k))k=1,...,4 as in Section 3, and Y as a standard gaussian variable. Now, we create the

dependence with outcome Y in perturbing some component of X̃: in all cluster k = 1, . . . , 4,
and for all i = 1, . . . , 400:

X
(k)
i = X̃

(k)
i + δiY (B1)

where δ = (δj)j=1,...,400 = (1, 0.8, 0.6, 0.4, 0.2, 0, 0, . . . , 0). Only the first 5 covariates of each
cluster are linked with Y .

We show the interest of our pretreatment, comparing the three procedures detailed in Section
3. As Y is a gaussian variable, we use the Pearson correlation test (instead of the Wilcoxon test
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used in Section 3). We produce N = 100 runs of (X, Y ) and count the number of false and true
positive, and the ARMADA scores (shown in Figures B1 and B2).
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Figure B1. Number of: true positive tests (top), false positive tests (bottom) in the regression design. Boxplots are
calculated on N = 100 runs.
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Figure B2. Top: mean of the ARMADA scores obtained by all the covariates. Bottom: boxplot of the scores of the
covariates, ranked by levels of link with Y . Means and boxplots are calculated on N = 100 runs. Simulation in the
regression design.

Similarly to the classification studies presented in Section 3, our Procedure reduces the mean
and the variability of the distributions of the false positive rates, in comparison to the Procedure
2 (i.e. the FAMTprocedure), and the power of our Procedure is comparable with Procedure 2.

The Figure B2 shows the ARMADA scores obtained on these N = 100 runs of (X, Y ).
Again, similarly to the Section 3, the scores give a ranking of the covariates, according to the
intensity of their link with respect to the response variable Y . The true covariates are clearly
separated of the noise covariates. We can also precise that 96% of the noise covariates obtained
a score that was 0.

As in Section 3, the Table B1 and the ROC curve in Figure B3 allow us to compare our
method with the Pearson test and the FAMT procedure. Our method seems to be a good
compromise to have quite good detection rates for the true covariates, but small detection rates
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for the noise covariates. Even though true covariates are not always enough detected, compared
to the FAMT procedure, detection rate of noisy covariates is lower than FAMT. The Pearson
test has the lowest levels of detection rates, and the true covariates with a small link with Y
are not well detected. On the whole, our method seems to be appropriate for sparse models
particularly when the goal is to avoid false positive detections.
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Figure B3. ROC curves for the three selection methods, in the case of regression design. The ROC curves have been

obtained by the mean of the N = 100 ROC curves obtained in the N = 100 runs of (X, Y ).

Table B1. Results of the N = 100 runs in the

regression design: rates of selection of the differ-

ent groups of influential and noise covariates by
the ARMADA method, the Pearson correlation

test and the FAMT procedure. The correspond-

ing standard deviations are given in brackets.

ARMADA Pearson FAMT

1 1 (0) 1 (0) 1 (0)
0.8 1 (0) 1 (0) 1 (0)
0.6 0.99 (0.08) 0.99 (0.08) 1 (0)
0.4 0.97 (0.18) 0.82 (0.38) 0.98 (0.13)
0.2 0.67 (0.47) 0.33 (0.47) 0.76 (0.43)
- 0.07 (0.26) 0.05 (0.22) 0.10 (0.30)

Appendix C. Lung cancer real dataset: bootstrap analysis

As the number of patients n = 37 is small compared to the number of covariates even after
filtering (p = 6810), we have checked our results with a bootstrap study. We have calculated
the C-scores and R-scores of each covariates on B = 100 bootstrap samples and the mean of the
B results. We give the distribution of the bootstrapped means according to the original scores
for the original dataset (Figure C1).

We can see that the distributions of the bootstrapped means of the scores have a quite
small dispersion and faithfully reproduce the original scores. The same conclusion holds for the
bootstrapped median scores (shown in Tables C1 and C2).

Moreover, we can emphasis that our method is robust to detect the most important covari-
ates (for instance, the 10 covariates that have a C-score equal to 7, or the 6 covariates that have
an R-score greater than 7): their corresponding bootstraped means of scores are also high, and
their corresponding bootstraped median scores are greater than 5.

Appendix D. Biological material for the study of ERα36 in breast cancer

We analysed the biological network involving ERα36 through the use of 4 sets of Affymetrix
transcriptomic data obtained from breast tumors of different molecular subtypes: the triple
negative (noted TN), ER66+, PR+ and PR- datasets:
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Figure C1. Distribution of the bootstraped mean of C-scores (resp. R-scores), i.e. means of C-(or R-)scores obtained on

B = 100 bootstrap samples), according to the corresponding C-scores (resp. R-scores) in the original dataset for all the

p = 6810 covariates.

Table C1. Distribution of the boostraped median C-scores of the p = 6810 covari-

ates, obtained on B = 100 boostrap samples, versus the corresponding C-scores.

ARMADA C-score
Bootstraped median C-score 0 1 2 3 4 5 6 7

0 2698 53 0 0 0 0 0 0
0.5 11 1 0 0 0 0 0 0
1 108 315 29 1 0 0 0 0

1.5 0 19 5 0 0 0 0 0
2 9 162 308 76 5 0 0 0

2.5 0 2 28 14 0 0 0 0
3 1 1 87 321 55 2 0 0

3.5 0 0 1 29 12 1 0 0
4 0 0 2 155 922 218 1 0

4.5 0 0 0 0 19 6 0 0
5 0 0 0 0 157 644 221 2

5.5 0 0 0 0 0 0 6 0
6 0 0 0 0 0 17 78 8

Table C2. Distribution of the boostraped median R-scores of the p = 6810 covariates,

obtained on B = 100 boostrap samples, versus the corresponding R-scores.

ARMADA C-score
Bootstraped median R-score 0 1 2 3 4 5 6 7 8

0 3773 29 11 0 0 0 0 0 0
0.5 20 2 5 0 0 0 0 0 0
1 67 22 17 0 0 0 0 0 0

1.5 8 1 9 0 0 0 0 0 0
2 109 32 243 40 1 0 0 0 0

2.5 4 0 22 8 2 0 0 0 0
3 7 3 147 295 80 2 0 0 0

3.5 0 0 0 14 13 2 0 0 0
4 0 0 2 149 788 210 0 0 0

4.5 0 0 0 0 10 14 0 0 0
5 0 0 0 3 90 462 85 5 0

5.5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 1 1 0 1
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• the TN dataset corresponding to Affymetrix transcriptomic comprehensive data from
17 patients derived xenografts (PDX) breast tumors was extracted from the XentechTM

database with the permission of Olivier Déas and Stefano Cairo (MTA CXT-295 Xentech
SAS/University of Lorraine ; [24]).
• the 3 other datasets (46 tumors ER66+, 29 tumors PR+, 16 tumors PR-) were part of

those from the Carte d’Identité des Tumeurs Program (CIT) from the Ligue Nationale
Contre le Cancer described in [17]. Transcriptomic raw data were kindly provided by
Aurélien De Reynies and Jacqueline Métral. One microgram of cDNAs from each tumor
sample gathered at the Oncogenetics laboratory, INSERM U735, Institut Curie-Hôpital-
Centre René Huguenin, St Cloud, France was also kindly provided by Ivan Bieche to
measure ERα36 expression.

The measurement of ERα36 expression in each tumor (Step 1: clinical data completion)
has been done as described in [31]. Total RNA extraction of PDX samples and qPCR anal-
yses were performed. The following primers were used for qRT-PCR : GAPDH forward (Fw)
5’-TGC-ACC-ACC-AAC-TGC-TTA-GC -3’, GAPDH reverse (Rev) 5’-GGC-ATG-GAC-TGT-
GGT-CAT-GAG -3’, ERα36 forward (Fw) 5’- ATG-AAT-CTG-CAG-GGA-GAG-GA-3’, ERα36
reverse (Rev) 5’- GGC-TTT-AGA-CAC-GAG-GAA-ACC-3’. Assays were performed at least in
triplicate, and the mean values were used to calculate expression levels, using the ∆∆C(t)
method referring to GAPDH housekeeping gene expression.

Notes on contributors

The first case study of Section 4.1 comes from Transgene team thanks to B. Bastien. T.
Boukhobza, H. Dumond and C. Thiebaut conducted the biological study of Section 4.2 and
performed the functional analysis that follows the covariates selection with armada. S. Cairo
and O. Déas ; XenTech, Genopole, 91000 Evry (France) provided the TN dataset; A. De Reynies,
I. Bieche and J. Métral from the Carte d’Identité des Tumeurs program provided the access to
transcriptomic raw data and biological samples (ERa66+, PR+, PR- datasets). The statistical
methodology has been developed by A. Gégout-Petit and A. Muller-Gueudin, and thanks to Y.
Shi and H. Chakir during their Master internships.
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Bordel S. (2017). Transcriptional hallmarks of cancer cell lines reveal an emerging role of branched
chain amino acid catabolism. Scientific reports 7(1), 7820.

[2] Aubert J., Bar-Hen A., Daudin J.J. and Robin S. (2004). Determination of the differentially
expressed genes in microarray experiments using local fdr. BMC bioinformatics 5(1), 1.

[3] Bar-Hen A., Daudin J.J. and Robin S. (2005). Comparaisons multiples pour les microarrays.
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