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Abstract 

F.E. analyses of composite reinforcement forming are presented at macroscopic and 

mesoscopic scale. Simulations of 3D interlock fabric deformations are based on a hyperelastic 

model. The strain energy model uses the strain invariants representative to independent 

deformation modes of the interlock fabric. In a second part, a simulation at mescoscale of the 

deformation of a textile composite reinforcement is presented. The F.E. model is obtained 

from X-ray computed tomography of the fabric in order to be close to the real geometry. The 

advantage of such an approach in comparison to the use of a textile geometrical modeler is 

shown. 

 

 

1 – Introduction.  

R.T.M process produces high-performance composite parts by resin injection on a textile 

reinforcement made of continuous fibres (Advani, 1994; Ruiz et al., 2011). This 

reinforcement, called preform, is shaped before resin injection. Complex shapes, in particular 

with double curvatures can be obtained by membrane deformations of the textile 

reinforcement. In plane shear angle is the main strain that allows to reach double curved 

shapes. Nevertheless all the shapes are not possible for a given reinforcement. Some defects 

can appear during forming such as wrinkles, gaps between the yarns, fracture of yarns …To 

avoid the costly development by try and error of these forming processes, the numerical 
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simulation can predict if the manufacturing process is possible and what are the conditions for 

a good achievement.  

Two families of methods exist for fibrous reinforcement forming (or draping): kinematic and 

mechanical approaches. Kinematic models (fishnet algorithms) assume that the fibres are 

inextensible and that the reinforcement is mapped onto the surface of the component/forming 

tool by assuming that tow segments are able to freely shear at tow crossovers (Mark and 

Taylor, 1956; Van Der Ween, 1991). The mechanical behavior of the reinforcement, the 

exterior loads, sliding and friction on the tools are not taken into account. The main advantage 

of these methods is the small CPU times needed. On the other hand wrinkles and the effects 

of blank holders cannot be analyzed. The influence of the nature of the reinforcement cannot 

be analyzed either. The present chapter concerns mechanical approaches. The forming process 

is analyzed as a thermomechanical transformation of the composite submitted to 

displacements and temperature of the tools. The simulation needs an efficient mechanical law 

for the analyzed reinforcement or prepreg and an efficient finite element approach. The 

analysis is performed at finite strain. The mechanical behavior of the reinforcements is 

strongly influenced by its fibrous nature. The specificities of this behavior are summarized in 

section 2. Several specific models have been proposed (Rogers, 1989; Spencer, 2000; Yu et 

al., 2002; Cao et al., 2005; Ten Thije et al., 2007; Khan et al., 2010). A hyperelastic model 

for 3D fibrous reinforcements during forming is presented in section 3 (Charmetant et al, 

2012). Textile reinforcements and prepregs present a clear multiscale structure. Forming 

simulations are generally made at macroscopic level. Section 4 present analyses of textile 

reinforcement deformation at mesoscopic scale i.e. at the scale of the representative unit cell. 

The finite element model is obtained from a X-ray computed tomography of the 

reinforcement.  
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2 – Specificities of composite material during forming 

2.1. Different type of continuous fibre reinforcements 

The composite reinforcements made up of continuous and discontinuous fibres must be 

distinguished. Injection processes (Fu et al, 2000; Eberhardt et al, 2001) or 

thermocompression processes (Le Corre et al, 2002) are possible in the case of short 

(discontinuous) fibres. Strongly loaded composite parts are made up of continuous fibres that 

are necessary to obtain high stiffness and high strength. The reinforcement can be made up of 

parallel juxtaposed fibres without interlacing (UD: unidirectional). This situation is the more 

favourable for stiffness in the fibre direction. The strength is quasi null in the transverse 

direction. This is a difficulty for forming process. A cohesion can be given to UD 

reinforcements by stitching. They are called Non Crimp Fabric (NCF) because the fibres are 

not undulated (Fig. 1a)(Yu et al, 2005; Lomov, 2011; Bel et al, 2012).  Weaving is the 

classical way to assemble fibres that are gathered in warp and weft yarns and interlaced by 

weaving (Fig1b). 2D woven fabric are made up of a single layer of warp and weft yarns. In 

3D fabric, the weaving concerns an important thickness and several layer of warp and weft 

yarns (Fig. 1c)(Mouritz et al, 1999; Dufour et al, 2014). In order to obtain a composite part 

with a given thickness, the UD, NCF and 2D woven reinforcement are stacked to form a 

laminate. These material can be subject to delamination. This is avoided by 3D weavings. 

Section 3 presents, a mechanical model for 3D composite reinforcement during forming and 

its application to the simulations of hemispherical drawing and large three point bending. 

 

2.2. Different scales for composite reinforcement analysis  

Composite reinforcements are made up of fibres usually gathered in yarns (3000 to 48000 

fibres per carbon yarn). These yarns are themselves assembled by weaving or stitching. Three 

scales can be clearly distinguished for the analysis. These analyses can be made at the scale of 

the part (macroscopic scale), at the scale of the yarn (mesoscopic scale), or at the fibre scale 
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(microscopic scale). These three scales are simultaneously present in a reinforcement. The 

modelling and the simulations can be made at one of these three scale depending of the 

objective. Simulation of reinforcements or prepreg forming is usually done at macroscopic 

scale in order to determine the optimal conditions of a process, the directions of the fibres 

after forming and possibly the onset of defects (in particular wrinkling)(Pickett et al, 1995; 

Boisse et al, 1995; Hancock and Potter, 2005; Zouari et al, 2005; Jauffrès et al, 2010). The 

objectives of mesoscopic analyses include performing virtual tests on one or some 

representative elementary cells (Cai, 1992; Chen and Chou, 2000; Xue et al, 2005, Lomov et 

al 2007, Charmetant et al, 2011; Nguyen et al, 2013). They also permit to determine the 

properties of the deformed element cell, in particular the permeability of compacted or 

sheared reinforcements (Lekakou et al, 1996; Loix et al, 2008). Section 4 presents the use of 

X-ray computed tomography in order to build F.E. models for mesoscopic analyses that are as 

close as possible to the real reinforcement.  

Analyses are also performed at the scale of the fibre (microscopic scale) (Zhou et al, 2004; 

Durville, 2010). At this scale the considered solids (here the fibres) are actually continuous. 

For upper scales (mesoscopic and macroscopic) the mechanical model must take into account 

the fibrous nature of the yarn or of the reinforcement that might be tricky. At the microscopic 

scale, the fibre can be seen as a beam. But there are many fibers in a yarn (several thousands) 

and much more in a preform. Microscopic scale analyses are presently limited to parts of 

reinforcements with moderate size.  

 

3. Continuous approach for 3D composite forming process analysis 

A hyperelastic constitutive law for 3D layer to layer angle interlock preforms is proposed.  

This model is macroscopic and aims to determine the strains and stresses of the whole 3D 

preform. The strain energy potential is defined for elementary deformation modes 
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3.1. Hyperelastic constitutive equation 

The potential energy is a function that can be written as a function of the right Cauchy-Green 

strain tensor C : 

 w w C  with .
T

C F F     (1) 

The dependence of the strain energy potential on the material privileged directions can be 

introduced explicitly. Structural tensors representative of the anisotropy of the material are 

introduced. 3D interlock fabrics are made of warp and weft yarns which are perpendicular to 

each other in the initial configuration. The 3D material has three privileged directions: the 

warp direction 1M , the weft direction 2M  and a third direction 3M , perpendicular to 1M  

and 2M ,  (through the preform thickness). These directions define three structural tensors: 

1 11
M M M  ;      2 22

M M M   and    3 33
M M M   (2) 

Taking (Boehler, 1978) into account, the strain energy density function of a hyperelastic law 

is written as: 

 1 2 3 41 42 43 412 423 51 52 53, , , , , , , , , ,orth orth
w w I I I I I I I I I I I  (3) 

where 1I , 2I , 3I  are the invariants of C  defined by: 

        2 2

1 2 3

1

2
   I Tr C I Tr C Tr C I Det C   (4) 

and where: 

4 : i ii i
I C M M C M    ,     4 i jijI M C M          

2 2

5 : i ii i
I C M M C M     (i = 1,3)      (5) 

 

are the mixed invariants corresponding to the structural tensors. 

The contribution of each deformation mode is assumed to be independent from the others, 

The strain energy density function is consequently the summation these contributions.  

 
1

n
i i

i i

w Iw

C I C

 


    (6) 
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where Ii is the strain invariant of the ith deformation mode. 

 

3.2. Physically based invariants.  

A phenomenological approach is undertaken to build a physically motivated behavior law 

(Charmetant et al, 2012). Six deformation modes can be identified for a 3D composite 

reinforcement: in-plane shear, transverse shear in warp and weft directions, stretch in the weft 

and warp directions, and transverse compression. Each of this modes will be assigned a 

physical invariant (Fig. 3).The aim of this procedure is to ease the identification process. 

The stretch invariants in warp and weft directions are defined using the 𝐼41 and 𝐼42 

 4ln 1,2elongI I


         (7) 

The definition of the transverse compression invariant is more complex. This invariant is not 

only linked to the third direction 3M . During a pure transverse shear solicitation for example, 

the length of the material vector 3M  will not change but the thickness of the preform will 

decrease, The transverse compression invariant is consequently defined as the total volume 

change divided by the two yarn stretches: 

3

41 42

1
ln

2
comp

I
I

I I

 
  

 
         (8) 

The in-plane shear invariant can be linked to the angle variation 𝛾 between the material 

directions 1M and 2M  in the initial configuration, and 1m and 2m  in the current 

configuration. As 1M and 2M are perpendicular: 

  1 2

1 2

sin
m m

m m
 

          (9) 

Consequently, the in-plane shear invariant is defined by: 

  421

41 42

sincp

I
I

I I
          (10) 
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As for the in-plane shear, the transverse shear invariants are defined by:  

   4 3
3

4 43

sin 1,2  ct

I
I

I I


 



        (11) 

The six deformation modes are assumed to be independent. The energy density is then 

defined as the summation of the contributions of the six deformation modes: 

6

1

( ) ( )


 b
w C w I           (12) 

The second Piola-Kirchhoff tensor is finally obtained by differentiation: 

2
 



 


 
w I

S
I C

          (14) 

 

3.3. Strain energy potential identification 

Tension in warp and weft direction tests are performed to identify the tensile potential. The 

transverse compaction strain energy density is identified from a compressive test. A bias 

extension test is performed to identify the in-plane shear properties. In this case a Levenberg–

Marquardt algorithm is used to identify all the values. Finally a transverse shear test is used to 

identify the part of the strain energy that is coming from this deformation. Details of the 

identifications and the form given to the different potentials can be found in (Charmetant et 

al, 2012).  

 

3.4 Simulation of a hemispherical forming of a 3D interlock reinforcement. 

The hemispherical deep drawing test is frequently used to analyse fabric reinforcements forming 

experiments (Boisse et al, 1995; Yu et al, 2005; Jauffres et al, 2010). The hemisphere is doubly 

curved and in-plane strains of the fabric are necessary to obtain the shape. In-plane shear strains 

can cause wrinkles (Skordos et al, 2007 ; Boisse et al, 2011]. This wrinkles can be avoided thanks 

to blank holders that add tensions to the reinforcement (Lee et al, 2007; Boisse et al, 2011]. The 
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geometry of the tools of a hemispherical forming test are shown in Fig. 4. A drawbead locally 

compacts the preform creating tensile loads at the end of the forming to eliminate potential 

wrinkles. No wrinkles appear during the process (Fig. 5). The results of the simulation show the 

ability of the proposed hyperelastic 3D model to describe the behaviour of interlock 

reinforcements during forming. The shear angles obtained by the simulation (Fig. 5) are in good 

agreement with those measured on the experimental deformed shape. The transverse compaction 

strains are important under the drawbead. This is well described by the 3D simulation model (Fig. 

5). These quantities are not provided when using standard shell finite elements.  

 

3.5. Simulation of a three point bending of a 3D interlock reinforcement 

As the fibre extensions are very small, bending of textile fabrics is a deformation which 

involves mainly transverse shear in a 3D model. The specificities of the deformations of 

interlock reinforcements are highlighted in a three point bending test (Fig. 6). The warp and 

weft yarns are oriented at 0°/90° in the test shown Fig. 6a and at ±45° in Fig. 6c.  

In the case of the 0°/90° specimen, Fig. 6a shows that the cross sections remain close to 

vertical. The Euler–Bernoulli assumption (cross sections remain perpendicular to the mean 

line) is not verified. It is quite different when the yarns are oriented at ±45°. In this case, the 

cross sections remain approximately perpendicular to the mean line.  The comparisons 

between the geometry obtained by simulations and experiments is made in Fig. 6a-6b and 6c-

6d for the two yarn orientations. The simulation correctly describes the orientation of the 

cross sections relatively to the mean line (nearly vertical in Fig. 6a-6b when the yarns are 

oriented at 0°/90°; nearly perpendicular to the mean line when the yarns are oriented at ±45°).  

Some aspects of the simulations of bending of the interlock specimen are nevertheless less 

satisfactory. In particular at 0°/90°, the parts of the specimens external to the supports are 

almost aligned with the central part in the experiments. The simulations give nearly horizontal 
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external parts for this 0°/90° specimen. In addition the computed radius at the centre of the 

two specimens are smaller than in experiments.  

 

3.6. Simulation of a three point bending of a 3D interlock reinforcement adding a local 

bending stiffness. 

The differences between simulations based on the presented hyperelastic law and the 

experiments in three point bending are related to local fibre bending rigidity. The local 

bending stiffness of each fibre aims at keeping the external parts of the specimen aligned with 

the central part. In addition these local bending rigidities increase the central radius of the 

specimens. In the hyperelastic model presented above, as usual in classical continuum 

mechanics there is no local miscrostructure that permits to introduce volume couples. 

Generalized continuum mechanics approaches permit to model these couples (Forest, 1998 

Maugin and Metrikine, 2010). In order to account for the fibre rigidities finite element beams 

are added to the 3D continuous hyperelastic material in the warp and weft directions. These 

beam elements bring the fibre bending stiffness. Fig. 7 shows the improvements obtain with 

this approach. The external parts of the specimen are almost aligned with the central part both 

in experiments and simulations. In addition the central radius of the specimen are in 

agreement with experiments. This shows that the microstructure and in particular the bending 

rigidity of the fibres should be taken into account in the mechanical behaviour of interlocks. 

Studies have been conducted or are in progress to propose models based on generalized 

continua (Ferretti et al, 2014, 2015; d’Agostino et al, 2015). However, the generalized 

continuum models are complex and difficult to identify and implement. For interlock forming 

simulation, the hyperelastic model described above and detailed in (Charmetant et al, 2012) 

may be an interesting compromise between accuracy and simplicity. 
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4. Simulation at the mesoscopic scale based on X-ray computed tomography analysis 

The mesoscopic analyses, i.e. analyses at the scale of the yarn, can be used as virtual test to 

determine the mechanical properties of the reinforcement during forming. The influence of 

different parameters and in particular of the geometry of the yarns and of the weaving can be 

investigated without performing the experiments and consequently without manufacturing the 

considered reinforcement. In mesoscopic analysis, the geometry of the yarns, their contacts are 

described. But the fibres themselves are not modelled.  The yarn is considered as a continuum. 

The behaviour of the yarn is specific since it is made of thousands of fibres which can slide 

with respect to each other. Different constitutive models have been proposed to describe the 

specificity of this yarn mechanical behavior. The mechanical behavior can be modelled by a 

hyperelastic law (Charmetant et al, 2011) or by a hypoelastic approach (Boisse et al, 2005; 

Badel et al, 2008). X-ray tomography offers a powerful tool allowing the exploration of the 

internal structure of the woven textile before and during its deformation. The technique used to 

obtain a F.E. model at mesoscopic scale is described in the present section (Naouar et al, 2014). 

A comparison is presented between experiments, simulations obtained from µCT and 

simulation based on an idealized geometry in the case of a transverse compression test of a 

carbon twill reinforcement. 

 

4.1. Determination of the reinforcement geometry by X-ray computed tomography. 

A laboratory tomograph is used to acquire 3D images of the reinforcement (Herman, 1980; 

Baruchel et al, 2000). As an example the analysis is performed on the Hexcel G0986® fabric 

(Fig. 8a). It is a 2x2 carbon twill. Its 3D reconstruction obtained by X-ray computed 

tomography is shown in Fig. 8. In order to define a finite element model of the representative 

unit cell (RUC) of the fabric an image segmentation is performed to separate warp and weft 
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yarns. A tomography cut is first obtained (Fig. 9). Orientations of the different part of the 

image are computed using the structure tensor J (Jahne, 1993, Jeulin and Moreaud, 2008):  

 
, ,

, ,

x x w x y w

x y w y y w

f f f f
J

f f f f

    
      

 (15) 

x
f  and 

y
f  are the partial derivatives of the image ( , )f x y  relatively to x and y and 

 
²

, ( , ) ( , ) ( , )
w

R

g h w x y g x y h x y dxdy     (16) 

( , )w x y  ≥ 0 is a weighting function that specifies the area of interest. The local orientation , 

the energy E and the coherency C are calculated from tensor J (Rezakhaniha et al, 2011).  

 
,1

arctan(2 )
2 , ,

x y w

y y w x x w

f f

f f f f


 


    
 (17) 

 ( ) , ,
x x w y y w

E Trace J f f f f        (18) 

 max min

max min

( , , )² 4 ,

, ,

y y w x x w x y w

x x w y y w

f f f f f f
C

f f f f

 
 

       
 

     
 (19) 

The pixels with higher energy values correspond to more anisotropic and more oriented 

materials. Coherency is 0 in case of isotropy and tends to 1 when anisotropy increases. 

At each pixel, the orientation  corresponds to a colour. In case of textile reinforcements, the 

two colours (blue and red) allow to separate warp and weft yarns (Fig. 9). Binarization and 

filter operations lead to two different grey levels for the parts of the image in the warp 

direction and for the parts in the weft direction (Fig 10). All the cuts are superimposed after 

these operations. Therefore the geometry of the woven reinforcement is obtained with 

separated warp and weft yarns (Fig. 10).   

 

4.2. Woven cell mesh generation 

Thanks to the segmentation step described above, the warp and weft yarns are separated. The 

marching cubes algorithm is used to define a polygonal surface by triangulating the external 
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surface of each yarn (Lorensen and Cline, 1987). A front algorithm (Jin and Tanner, 1993) is 

used to obtain a volume mesh of each yarn. The initial front is made up of the external 

triangles. Tetrahedral elements are generated step by step on the whole volume of the yarns 

(Fig. 11). 

 

4.3. Mechanical behavior of the yarn 

The equivalent continuum behaviour must take into account the fibrous nature of the material 

(Fig. 12). The fibre direction stiffness is much larger than the others. Consequently the 

constitutive tensor C is oriented by f1 the unit vector in the direction of the fibre. The direction 

of the vector f1 is in general not constant. Since it is a material direction, the initial fibre 

direction f1
0 is transformed by F, the gradient tensor, into f1. An objective derivative defined 

from the fibre rotation is used for the fibrous yarns (Boisse et al, 2005; Badel et al, 2008). 

  σ C:D   with   T Td
. . . .

dt

    
 

σ σ     (20) 

where Φ is the rotation of the fibre. It can be shown that this derivative is objective (Badel et 

al, 2008). The stress update is obtained as: 

   n 1/ 2n 1 n n 1/ 2
ii i i

n 1 n n 1/ 2

ff f f
 

             σ σ C ε  (21) 

The rotation Φ from the initial known frame {fi
0} to the current frame {fi} must be determined. 

From the transformation gradient F, the current fibre direction f1 can be determined. Assuming 

that the initial position of the fibre is f1
0: 

 

0
1

1 0
1

.

.


F f
f

F f
 (22) 

The other basis vectors f2 and f3 of the orthonormal frame {fi} are obtained from the material 

transformation of f2
0 : 



  13 

 
 
 

0 0

2 2 1

2 3 1 20 0

2 2 1

. . .
 and 

. . .


  



F f F f f
f f f f

F f F f f
 (23) 

Then the rotation Φ is obtained by: 

    0
0 0 0 0 0 0

i i j i j j i i j
i

.     Φ f f f f f f f f f  (24) 

The constitutive matrix in equation (21) is written in the frame of the fibre and consequently it 

is directly in its specific form corresponding to the textile material under consideration. This 

constitutive matrix written in the fibre frame can be assumed constant in some cases. Generally 

it is not; the transverse behaviour of a fibrous yarn is depending on the strain state. 

The strain field in the transverse section is partitioned in two parts. The “spherical” part 

represents the change of area of the yarn section, and the “deviatoric” part represents the 

change of shape of the yarn section.  

  (25) 

with 22 33

2
s

  
  et 22 33

2
d

  
  

From this decomposition the constitutive matrix of the material in the frame of the fibre is in 

the form (Badel et al, 2008b): 

 

0 0 0 0 0

0 0 0
2 2

0 0 0
2

0 0

0

if

E

A B A B

A B
C

Symmetry G

B

G

 
   
 
        
 
 
 
  

  (26) 
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4.4. Mesoscopic analysis of the G986 reinforcement compaction based on the F.E. model 

obtained from the CT 

The material parameters of the hypoelastic law presented in section 4.3 can be identified by 

different elementary tests. A biaxial tensile test with k=1 i.e. with equal warp and weft strains 

(equibiaxial tensile test) is sufficient to determine all the parameters (Naouar et al, 2014).  

Actually, due to the weaving the yarn are much compacted in this test (Boisse et al, 2001).  

The simulation of the compaction of a Representative Unit Cell (RUC) is performed (Fig. 13, 

14 and 15).  Periodic boundary conditions were prescribed. The compaction behaviour is non-

linear. The transverse stress versus fibre volume fraction Vf curve follows a classical "J" 

shape (Kelly, 2011). The result of the meso FE model built from µCT is compared to the 

experimental compaction (Fig. 15). The agreement is good.  

A second F.E. model is considered. It is based the geometry obtained with the TexGen 

software (Long and Brown, 2011; TexGen, 2014). The transverse geometry of this model 

obtained with TexGen and of the model based on the X-ray computed tomography are 

compared in Fig. 13. The TexGen model is more regular. All the yarns have the same cross 

section. These sections are somewhat different when they are determined by X-ray computed 

tomography because of small imperfections. These geometrical models are used to build F.E. 

models and to simulate compaction (using the same behaviour law and parameters). The stress 

versus Vf curve obtained from the F.E. model based on the TexGen geometry is somewhat 

more stiff than in the case of the model based on X-ray CT which is consistent with 

experiments. The idealized geometry is the reason for this stiffness increase. A strong interest 

of the F.E. models based on X-ray computed tomography is the possibility of taking into 

account the effective geometry of the yarns within the reinforcement. This real geometry is 

not well known when the reinforcement is complex, for instance in the case of 3D or interlock 

fabrics.  
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5. Conclusions 

The fibrous nature of composite reinforcements gives them a specific mechanical behavior. 

The F.E. simulations of their deformation can avoid the development of forming processes by 

try and error. The simulations can be made at macroscopic, mesoscopic and possibly 

microscopic scale. Simulations of composite reinforcement forming processes are usually 

performed at macroscopic scale. Shell finite elements are generally used to model each ply of 

the laminate. For 3D reinforcements, 3D finite elements are necessary. A hyperelastic model 

for these 3D analyses has been presented. It is based on the physical deformation modes of 

the 3D reinforcements. It has shown to be able to describe the specific mechanical behavior of 

3D interlock reinforcements in three point bending. The cross section of the specimen remains 

nearly vertical for a 0/90° orientation of the yarns but are perpendicular to the mean line in the 

case of a ±45° orientation. This is well depicted by the hyperelastic model. Nevertheless some 

aspects of the deformation would require a generalized mechanics approach to take into 

account the local bending stiffness of the fibres.  

At the mesoscopic scale, the F.E. simulation gives the deformation of the internal textile 

reinforcement structure. The analysis is usually made on a representative woven cell or on a 

few of them. Probably in the future it can concern a whole preform. The result of the 

simulation mainly depends on the quality of the initial F.E. model. X-Ray tomography is a 

possible way to define meshes close to the real reinforcement. This approach will be 

particularly interesting in the case of 3D fabrics for which geometry is complex and not 

always well known.   
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Fig. 1. NCF, woven and 3D reinforcements 

 

 

 

 

 

 

                
Fig. 2. Macroscopic scale (left); mesoscopic scale (middle); microscopic scale (right) 
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Fig. 3. Deformation modes of layer to layer interlock reinforcements (a) transverse compression, (d) in-

plane shear, (b,e) stretches, (c,f) transverse shear. 

 

 

 

 

 

 
 

Fig. 4.Hemispherical deep drawing. Geometry of the tolls 
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f. e. d. 



  23 

  
 

Fig. 5. Hemispherical deep drawing: Experimental deformed shape (left), 

Computed shear angles and compaction ratio (right) 
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Fig. 6. Interlock three point bending.  

Fibres oriented at 0/90° experiments (a) and simulation (b) 

Fibres oriented at ±45° experiments (c) and simulation (d) 
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Fig. 7. Interlock three point bending. Simulations with added beams 

Fibres oriented at 0/90° experiments (a) and simulation (b) 

Fibres oriented at ±45° experiments (c) and simulation (d) 

  

(a) (b) 
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Fig. 8.  G986 2x2 carbon twill (left), G986 3D reconstruction from  CT 

 

 

 
 

Fig. 9.  Tomography cut (left); Separation of warp and weft yarns (right) 

a) b) 



  27 

 
 

Fig. 10. Grey levels in warp and weft directions (left);  

Geometry of the yarns with separated warp and weft yarns (right) 

 

 

 

 

 
 

Fig. 11.  Tetrahedral mesh obtained from tomography X 
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Fig. 12.  Direction of the fibres and transverse isotropy  

 

 

 

 
 

Fig. 13. G986 reinforcement compaction. Comparisons of initial geometries 

 

 

 
 

  
 

Fig. 14. Simulation of the compaction of a G986 reinforcement. Initial state (a). After compaction (b) 
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Fig. 15. G986 reinforcement compaction. Comparisons of experiments and simulations 
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