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simulation can predict if the manufacturing process is possible and what are the conditions for a good achievement.

Two families of methods exist for fibrous reinforcement forming (or draping): kinematic and mechanical approaches. Kinematic models (fishnet algorithms) assume that the fibres are inextensible and that the reinforcement is mapped onto the surface of the component/forming tool by assuming that tow segments are able to freely shear at tow crossovers ( [START_REF] Mark | The fitting of woven cloth to surfaces[END_REF][START_REF] Van Der Ween | Algorithms for draping fabrics on doubly curved surfaces[END_REF]. The mechanical behavior of the reinforcement, the exterior loads, sliding and friction on the tools are not taken into account. The main advantage of these methods is the small CPU times needed. On the other hand wrinkles and the effects of blank holders cannot be analyzed. The influence of the nature of the reinforcement cannot be analyzed either. The present chapter concerns mechanical approaches. The forming process is analyzed as a thermomechanical transformation of the composite submitted to displacements and temperature of the tools. The simulation needs an efficient mechanical law for the analyzed reinforcement or prepreg and an efficient finite element approach. The analysis is performed at finite strain. The mechanical behavior of the reinforcements is strongly influenced by its fibrous nature. The specificities of this behavior are summarized in section 2. Several specific models have been proposed [START_REF] Rogers | Rheological characterization of anisotropic materials[END_REF][START_REF] Spencer | Theory of fabric-reinforced viscous fluids[END_REF][START_REF] Yu | Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thermoplastic Composites[END_REF]Cao et al., 2005;[START_REF] Thije | Large deformation simulation of anisotropic material using an updated Lagrangian finite element method[END_REF][START_REF] Khan | Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[END_REF]. A hyperelastic model for 3D fibrous reinforcements during forming is presented in section 3 [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF]. Textile reinforcements and prepregs present a clear multiscale structure. Forming simulations are generally made at macroscopic level. Section 4 present analyses of textile reinforcement deformation at mesoscopic scale i.e. at the scale of the representative unit cell.

The finite element model is obtained from a X-ray computed tomography of the reinforcement.

-Specificities of composite material during forming

Different type of continuous fibre reinforcements

The composite reinforcements made up of continuous and discontinuous fibres must be distinguished. Injection processes [START_REF] Fu | Tensile properties of short glass fiber and short carbon fiber reinforced polypropylene composites[END_REF][START_REF] Eberhardt | Fibre-orientation measurements in short-glass-fibre composites II: a quantitative error estimate of the 2D image analysis technique[END_REF] or thermocompression processes (Le [START_REF] Corre | Shear and compression behaviour of sheet moulding compounds[END_REF] are possible in the case of short (discontinuous) fibres. Strongly loaded composite parts are made up of continuous fibres that are necessary to obtain high stiffness and high strength. The reinforcement can be made up of parallel juxtaposed fibres without interlacing (UD: unidirectional). This situation is the more favourable for stiffness in the fibre direction. The strength is quasi null in the transverse direction. This is a difficulty for forming process. A cohesion can be given to UD reinforcements by stitching. They are called Non Crimp Fabric (NCF) because the fibres are not undulated (Fig. 1a) [START_REF] Yu | Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation[END_REF][START_REF] Lomov | Non-Crimp Fabric Composites: Manufacturing, Properties and Applications[END_REF][START_REF] Baruchel | Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding[END_REF]. Weaving is the classical way to assemble fibres that are gathered in warp and weft yarns and interlaced by weaving (Fig1b). 2D woven fabric are made up of a single layer of warp and weft yarns. In 3D fabric, the weaving concerns an important thickness and several layer of warp and weft yarns (Fig. 1c) [START_REF] Mouritz | Review of applications for advanced three-dimensional fibre textile composites[END_REF][START_REF] Dufour | Experimental Investigation about Stamping Behaviour of 3D Warp Interlock Composite Preforms[END_REF]. In order to obtain a composite part with a given thickness, the UD, NCF and 2D woven reinforcement are stacked to form a laminate. These material can be subject to delamination. This is avoided by 3D weavings.

Section 3 presents, a mechanical model for 3D composite reinforcement during forming and its application to the simulations of hemispherical drawing and large three point bending.

Different scales for composite reinforcement analysis

Composite reinforcements are made up of fibres usually gathered in yarns (3000 to 48000 fibres per carbon yarn). These yarns are themselves assembled by weaving or stitching. Three scales can be clearly distinguished for the analysis. These analyses can be made at the scale of the part (macroscopic scale), at the scale of the yarn (mesoscopic scale), or at the fibre scale (microscopic scale). These three scales are simultaneously present in a reinforcement. The modelling and the simulations can be made at one of these three scale depending of the objective. Simulation of reinforcements or prepreg forming is usually done at macroscopic scale in order to determine the optimal conditions of a process, the directions of the fibres after forming and possibly the onset of defects (in particular wrinkling) [START_REF] Pickett | An explicit finite element solution for the forming prediction of continuous fibre-reinforced thermoplastic sheets[END_REF][START_REF] Boisse | Experimental Study and Finite Element Simulation of Glass Fiber Fabric Shaping Process[END_REF][START_REF] Hancock | Inverse drape modelling -an investigation of the set of shapes that can be formed from continuous aligned woven fibre reinforcements[END_REF]Zouari et al, 2005;[START_REF] Jauffrès | Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[END_REF]. The objectives of mesoscopic analyses include performing virtual tests on one or some representative elementary cells [START_REF] Cai | The 3-D deformation behavior of a lubricated fiber bundle[END_REF][START_REF] Chen | Compaction of woven-fabric preforms: nesting and multi-layer deformation[END_REF][START_REF] Xue | Integrated micro/macro-mechanical model of woven fabric composites under large deformation[END_REF][START_REF] Lomov | Meso-FE modelling of textile composites: Road map, data flow and algorithms[END_REF][START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF][START_REF] Nguyen | Mesoscopic scale analyses of textile composite reinforcement compaction[END_REF]. They also permit to determine the properties of the deformed element cell, in particular the permeability of compacted or sheared reinforcements [START_REF] Lekakou | Compressibility and flow permeability of twodimensional woven reinforcements in the processing of composites[END_REF][START_REF] Loix | Woven fabric permeability: from textile deformation to fluid flow mesoscale simulations[END_REF]. Section 4 presents the use of X-ray computed tomography in order to build F.E. models for mesoscopic analyses that are as close as possible to the real reinforcement.

Analyses are also performed at the scale of the fibre (microscopic scale) [START_REF] Zhou | Multi-chain digital element analysis in textile mechanics[END_REF][START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF]. At this scale the considered solids (here the fibres) are actually continuous.

For upper scales (mesoscopic and macroscopic) the mechanical model must take into account the fibrous nature of the yarn or of the reinforcement that might be tricky. At the microscopic scale, the fibre can be seen as a beam. But there are many fibers in a yarn (several thousands) and much more in a preform. Microscopic scale analyses are presently limited to parts of reinforcements with moderate size.

Continuous approach for 3D composite forming process analysis

A hyperelastic constitutive law for 3D layer to layer angle interlock preforms is proposed. This model is macroscopic and aims to determine the strains and stresses of the whole 3D

preform. The strain energy potential is defined for elementary deformation modes

Hyperelastic constitutive equation

The potential energy is a function that can be written as a function of the right Cauchy-Green strain tensor C :
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Taking [START_REF] Boehler | Lois de comportement anisotropes des milieux continus[END_REF] into account, the strain energy density function of a hyperelastic law is written as:
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and where:
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are the mixed invariants corresponding to the structural tensors.

The contribution of each deformation mode is assumed to be independent from the others,

The strain energy density function is consequently the summation these contributions.
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where Ii is the strain invariant of the i th deformation mode.

Physically based invariants.

A phenomenological approach is undertaken to build a physically motivated behavior law [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF]. Six deformation modes can be identified for a 3D composite reinforcement: in-plane shear, transverse shear in warp and weft directions, stretch in the weft and warp directions, and transverse compression. Each of this modes will be assigned a physical invariant (Fig. 3).The aim of this procedure is to ease the identification process.

The stretch invariants in warp and weft directions are defined using the 𝐼41 and 𝐼42

 
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The definition of the transverse compression invariant is more complex. This invariant is not only linked to the third direction 3 M . During a pure transverse shear solicitation for example, the length of the material vector 3 M will not change but the thickness of the preform will decrease, The transverse compression invariant is consequently defined as the total volume change divided by the two yarn stretches:
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The in-plane shear invariant can be linked to the angle variation 𝛾 between the material directions 1 M and 2 M in the initial configuration, and 1 m and 2 m in the current configuration. As 1 M and 2 M are perpendicular:
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Consequently, the in-plane shear invariant is defined by:   As for the in-plane shear, the transverse shear invariants are defined by:
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The six deformation modes are assumed to be independent. The energy density is then defined as the summation of the contributions of the six deformation modes:
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The second Piola-Kirchhoff tensor is finally obtained by differentiation:
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Strain energy potential identification

Tension in warp and weft direction tests are performed to identify the tensile potential. The transverse compaction strain energy density is identified from a compressive test. A bias extension test is performed to identify the in-plane shear properties. In this case a Levenberg-Marquardt algorithm is used to identify all the values. Finally a transverse shear test is used to identify the part of the strain energy that is coming from this deformation. Details of the identifications and the form given to the different potentials can be found in [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF].

Simulation of a hemispherical forming of a 3D interlock reinforcement.

The hemispherical deep drawing test is frequently used to analyse fabric reinforcements forming experiments [START_REF] Boisse | Experimental Study and Finite Element Simulation of Glass Fiber Fabric Shaping Process[END_REF][START_REF] Yu | Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation[END_REF]Jauffres et al, 2010). The hemisphere is doubly curved and in-plane strains of the fabric are necessary to obtain the shape. In-plane shear strains can cause wrinkles [START_REF] Skordos | A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites[END_REF][START_REF] Boisse | Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile in-plane shear and bending stiffnesses[END_REF]. This wrinkles can be avoided thanks to blank holders that add tensions to the reinforcement [START_REF] Lee | The effect of blank holder force on the stamp forming behaviour of non-crimp fabric with a chain stitch[END_REF][START_REF] Boisse | Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile in-plane shear and bending stiffnesses[END_REF]. The geometry of the tools of a hemispherical forming test are shown in Fig. 4. A drawbead locally compacts the preform creating tensile loads at the end of the forming to eliminate potential wrinkles. No wrinkles appear during the process (Fig. 5). The results of the simulation show the ability of the proposed hyperelastic 3D model to describe the behaviour of interlock reinforcements during forming. The shear angles obtained by the simulation (Fig. 5) are in good agreement with those measured on the experimental deformed shape. The transverse compaction strains are important under the drawbead. This is well described by the 3D simulation model (Fig. 5). These quantities are not provided when using standard shell finite elements.

Simulation of a three point bending of a 3D interlock reinforcement

As the fibre extensions are very small, bending of textile fabrics is a deformation which involves mainly transverse shear in a 3D model. The specificities of the deformations of interlock reinforcements are highlighted in a three point bending test (Fig. 6). The warp and weft yarns are oriented at 0°/90° in the test shown Fig. 6a and at ±45° in Fig. 6c.

In the case of the 0°/90° specimen, Fig. 6a Generalized continuum mechanics approaches permit to model these couples (Forest, 1998 Maugin andMetrikine, 2010). In order to account for the fibre rigidities finite element beams are added to the 3D continuous hyperelastic material in the warp and weft directions. These beam elements bring the fibre bending stiffness. Fig. 7 shows the improvements obtain with this approach. The external parts of the specimen are almost aligned with the central part both in experiments and simulations. In addition the central radius of the specimen are in agreement with experiments. This shows that the microstructure and in particular the bending rigidity of the fibres should be taken into account in the mechanical behaviour of interlocks.

Studies have been conducted or are in progress to propose models based on generalized continua [START_REF] Ferretti | Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory[END_REF][START_REF] Madeo | Thick fibrous composite reinforcements behave as special second gradient materials: three point bending of 3D interlocks[END_REF][START_REF] Madeo | Continuum and discrete models for structures including (quasi-)inextensible elasticae with a view to the design and modeling of composite reinforcement[END_REF]. However, the generalized continuum models are complex and difficult to identify and implement. For interlock forming simulation, the hyperelastic model described above and detailed in [START_REF] Charmetant | Hyperelastic model for large deformation analyses of 3D interlock composite preforms[END_REF] may be an interesting compromise between accuracy and simplicity.

Simulation at the mesoscopic scale based on X-ray computed tomography analysis

The mesoscopic analyses, i.e. analyses at the scale of the yarn, can be used as virtual test to determine the mechanical properties of the reinforcement during forming. The influence of different parameters and in particular of the geometry of the yarns and of the weaving can be investigated without performing the experiments and consequently without manufacturing the considered reinforcement. In mesoscopic analysis, the geometry of the yarns, their contacts are described. But the fibres themselves are not modelled. The yarn is considered as a continuum.

The behaviour of the yarn is specific since it is made of thousands of fibres which can slide with respect to each other. Different constitutive models have been proposed to describe the specificity of this yarn mechanical behavior. The mechanical behavior can be modelled by a hyperelastic law [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF] or by a hypoelastic approach [START_REF] Boisse | Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level[END_REF]Badel et al, 2008). X-ray tomography offers a powerful tool allowing the exploration of the internal structure of the woven textile before and during its deformation. The technique used to obtain a F.E. model at mesoscopic scale is described in the present section [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF].

A comparison is presented between experiments, simulations obtained from µCT and simulation based on an idealized geometry in the case of a transverse compression test of a carbon twill reinforcement.

Determination of the reinforcement geometry by X-ray computed tomography.

A laboratory tomograph is used to acquire 3D images of the reinforcement [START_REF] Herman | Image Reconstruction from Projections: The Fundamentals of Computerized Tomography[END_REF][START_REF] Baruchel | Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding[END_REF]. As an example the analysis is performed on the Hexcel G0986 ® fabric (Fig. 8a). It is a 2x2 carbon twill. Its 3D reconstruction obtained by X-ray computed tomography is shown in Fig. 8. In order to define a finite element model of the representative unit cell (RUC) of the fabric an image segmentation is performed to separate warp and weft yarns. A tomography cut is first obtained (Fig. 9). Orientations of the different part of the image are computed using the structure tensor J (Jahne, 1993, Jeulin and[START_REF] Jeulin | Segmentation of 2d and 3d textures from estimates of the local orientation[END_REF]:
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( , ) w x y ≥ 0 is a weighting function that specifies the area of interest. The local orientation ,

the energy E and the coherency C are calculated from tensor J [START_REF] Rezakhaniha | Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy[END_REF].
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The pixels with higher energy values correspond to more anisotropic and more oriented materials. Coherency is 0 in case of isotropy and tends to 1 when anisotropy increases.

At each pixel, the orientation  corresponds to a colour. In case of textile reinforcements, the two colours (blue and red) allow to separate warp and weft yarns (Fig. 9). Binarization and filter operations lead to two different grey levels for the parts of the image in the warp direction and for the parts in the weft direction (Fig 10). All the cuts are superimposed after these operations. Therefore the geometry of the woven reinforcement is obtained with separated warp and weft yarns (Fig. 10).

Woven cell mesh generation

Thanks to the segmentation step described above, the warp and weft yarns are separated. The marching cubes algorithm is used to define a polygonal surface by triangulating the external surface of each yarn [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF]. A front algorithm [START_REF] Jin | Generation of unstructured tetrahedral meshes by advancing front technique[END_REF] is used to obtain a volume mesh of each yarn. The initial front is made up of the external triangles. Tetrahedral elements are generated step by step on the whole volume of the yarns (Fig. 11).

Mechanical behavior of the yarn

The equivalent continuum behaviour must take into account the fibrous nature of the material (Fig. 12). The fibre direction stiffness is much larger than the others. Consequently the constitutive tensor C is oriented by f1 the unit vector in the direction of the fibre. The direction of the vector f1 is in general not constant. Since it is a material direction, the initial fibre direction f1 0 is transformed by F, the gradient tensor, into f1. An objective derivative defined from the fibre rotation is used for the fibrous yarns [START_REF] Boisse | Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level[END_REF]Badel et al, 2008). 20) where Φ is the rotation of the fibre. It can be shown that this derivative is objective (Badel et al, 2008). The stress update is obtained as:
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The rotation Φ from the initial known frame {fi 0 } to the current frame {fi} must be determined.

From the transformation gradient F, the current fibre direction f1 can be determined. Assuming that the initial position of the fibre is f1 0 :
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The other basis vectors f2 and f3 of the orthonormal frame {fi} are obtained from the material transformation of f2 0 :
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Then the rotation Φ is obtained by:
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The constitutive matrix in equation ( 21) is written in the frame of the fibre and consequently it is directly in its specific form corresponding to the textile material under consideration. This constitutive matrix written in the fibre frame can be assumed constant in some cases. Generally it is not; the transverse behaviour of a fibrous yarn is depending on the strain state.

The strain field in the transverse section is partitioned in two parts. The "spherical" part represents the change of area of the yarn section, and the "deviatoric" part represents the change of shape of the yarn section. The material parameters of the hypoelastic law presented in section 4.3 can be identified by different elementary tests. A biaxial tensile test with k=1 i.e. with equal warp and weft strains (equibiaxial tensile test) is sufficient to determine all the parameters [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[END_REF].

Actually, due to the weaving the yarn are much compacted in this test [START_REF] Boisse | Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations[END_REF].

The simulation of the compaction of a Representative Unit Cell (RUC) is performed (Fig. 13, 14 and 15). Periodic boundary conditions were prescribed. The compaction behaviour is nonlinear. The transverse stress versus fibre volume fraction Vf curve follows a classical "J" shape [START_REF] Kelly | Transverse compression properties of composite reinforcements[END_REF]. The result of the meso FE model built from µCT is compared to the experimental compaction (Fig. 15). The agreement is good.

A second F.E. model is considered. It is based the geometry obtained with the TexGen software [START_REF] Long | Modelling the geometry of textile reinforcements for composites: TexGen. Composite reinforcements for optimum performance[END_REF]TexGen, 2014). The transverse geometry of this model obtained with TexGen and of the model based on the X-ray computed tomography are compared in Fig. 13. The TexGen model is more regular. All the yarns have the same cross section. These sections are somewhat different when they are determined by X-ray computed tomography because of small imperfections. These geometrical models are used to build F.E. models and to simulate compaction (using the same behaviour law and parameters). The stress versus Vf curve obtained from the F.E. model based on the TexGen geometry is somewhat more stiff than in the case of the model based on X-ray CT which is consistent with experiments. The idealized geometry is the reason for this stiffness increase. A strong interest of the F.E. models based on X-ray computed tomography is the possibility of taking into account the effective geometry of the yarns within the reinforcement. This real geometry is not well known when the reinforcement is complex, for instance in the case of 3D or interlock fabrics.

Conclusions

The fibrous nature of composite reinforcements gives them a specific mechanical behavior.

The F.E. simulations of their deformation can avoid the development of forming processes by try and error. The simulations can be made at macroscopic, mesoscopic and possibly microscopic scale. Simulations of composite reinforcement forming processes are usually performed at macroscopic scale. Shell finite elements are generally used to model each ply of the laminate. For 3D reinforcements, 3D finite elements are necessary. A hyperelastic model for these 3D analyses has been presented. It is based on the physical deformation modes of the 3D reinforcements. It has shown to be able to describe the specific mechanical behavior of 3D interlock reinforcements in three point bending. The cross section of the specimen remains nearly vertical for a 0/90° orientation of the yarns but are perpendicular to the mean line in the case of a ±45° orientation. This is well depicted by the hyperelastic model. Nevertheless some aspects of the deformation would require a generalized mechanics approach to take into account the local bending stiffness of the fibres.

At the mesoscopic scale, the F.E. simulation gives the deformation of the internal textile reinforcement structure. The analysis is usually made on a representative woven cell or on a few of them. Probably in the future it can concern a whole preform. The result of the simulation mainly depends on the quality of the initial F.E. model. X-Ray tomography is a possible way to define meshes close to the real reinforcement. This approach will be particularly interesting in the case of 3D fabrics for which geometry is complex and not always well known. f. e. d. 

  shows that the cross sections remain close to vertical. The Euler-Bernoulli assumption (cross sections remain perpendicular to the mean line) is not verified. It is quite different when the yarns are oriented at ±45°. In this case, the cross sections remain approximately perpendicular to the mean line. The comparisons between the geometry obtained by simulations and experiments is made in Fig.6a-6b and 6c-6d for the two yarn orientations. The simulation correctly describes the orientation of the cross sections relatively to the mean line (nearly vertical in Fig.6a-6b when the yarns are oriented at 0°/90°; nearly perpendicular to the mean line when the yarns are oriented at ±45°). Some aspects of the simulations of bending of the interlock specimen are nevertheless less satisfactory. In particular at 0°/90°, the parts of the specimens external to the supports are almost aligned with the central part in the experiments. The simulations give nearly horizontal external parts for this 0°/90° specimen. In addition the computed radius at the centre of the two specimens are smaller than in experiments.3.6. Simulation of a three point bending of a 3D interlock reinforcement adding a local bending stiffness.The differences between simulations based on the presented hyperelastic law and the experiments in three point bending are related to local fibre bending rigidity. The local bending stiffness of each fibre aims at keeping the external parts of the specimen aligned with the central part. In addition these local bending rigidities increase the central radius of the specimens. In the hyperelastic model presented above, as usual in classical continuum mechanics there is no local miscrostructure that permits to introduce volume couples.

  From this decomposition the constitutive matrix of the material in the frame of the fibre is in the form(Badel et al, 2008b):
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