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In this paper we construct a Birkhoff normal form for a semiclassical magnetic Schrödinger operator with non-degenerate magnetic field, and discrete magnetic well, defined on an even dimensional riemannian manifold M . We use this normal form to get an expansion of the first eigenvalues in powers of 1/2 , and semiclassical Weyl asymptotics for this operator.

Introduction

The analysis of the magnetic Schrödinger operator, or magnetic Laplacian, on a Riemannian manifold L = (i d + A) * (i d + A) in the semiclassical limit → 0 has given rise to many investigations in the last twenty years. Asymptotic expansions of the lowest eigenvalues have been studied in many cases involving the geometry of the possible boundary of M and the variations of the magnetic field. For discussions about the subject, the reader is referred to the books and review [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF], [START_REF] Helffer | Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field[END_REF], [START_REF] Raymond | Bound States of the Magnetic Schrödinger Operator[END_REF]. The classical picture associated with the Hamiltonian |p -A(q)| 2 has started being investigated to describe the semiclassical bound states (the eigenfunctions of low energy) of L , in [START_REF] Raymond | Geometry and Spectrum in 2D Magnetic wells[END_REF] (on R 2 ) and [START_REF] Helffer | Magnetic Wells in Dimension Three, Analysis and PDE[END_REF] (on R 3 ). In these two papers, semiclassical Birkhoff normal forms were used to describe the first eigenvalues. In [START_REF] Sjöstrand | Semi-excited states in nondegenerate potential wells[END_REF], Sjöstrand introduced the semiclassical Birkhoff normal form to study the spectrum of an electric Schrödinger operator, and some resonance phenomenons appeared. In [START_REF] Charles | Spectral Asymptotics via the semiclassical Birkhoff Normal Form[END_REF], the resonant case for the same electric Schrödinger operator was tackled (see also [START_REF] Vu | Systèmes intégrables semi-classiques: du local au global, volume 22 of Panoramas et Synthèses[END_REF] and [START_REF] Vu | Quantum Birkhoff normal forms and semiclassical analysis, Noncommutativity and singularities[END_REF]). In this paper, we adapt this method to L , generalizing the results of [START_REF] Raymond | Geometry and Spectrum in 2D Magnetic wells[END_REF] to higher dimensions and manifolds. Our normal forms give a great geometric interpretation of the semiclassical spectral asymptotics of L . Indeed, it enlightens the contributions of the cyclotron motion (the first oscillator) and the variations of the magnetic field near its well (the second oscillator) in the Weyl asymptotics and the eigenvalue asymptotics. Some normal forms for magnetic Schrödinger operators also appear in [START_REF] Ivrii | Microlocal Analysis and precise spectral asymptotics[END_REF]. On a Riemannian manifold M , the magnetic Laplacian is related to the Bochner Laplacian (see the recent papers [START_REF] Kordyukov | Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: The case of discrete wells[END_REF], [START_REF] Kordyukov | Semiclassical eigenvalue asymptotics for the Bochner Laplacian of a positive line bundle on a symplectic manifold[END_REF] and [START_REF] Marinescu | Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface[END_REF], where bounds and asymptotic expansions of the first eigenvalues of Bochner Laplacians are given).

In this paper we get an expansion of the first eigenvalues of L in powers of 1/2 , and semiclassical Weyl asymptotics. It would be interesting to have a precise description of the eigenfunctions too, as was done in the 2D case by Bonthonneau-Raymond [START_REF] Bonthonneau | WKB constructions in bidimensional magnetic wells[END_REF] (euclidian case) and Nguyen Duc Tho [START_REF] Duc | WKB form of semi-classical spectrum of magnetic Lapalcian with discrete wells on two dimensional Riemannian manifold[END_REF] (general riemannian metric). Moreover, we only have investigated the spectral theory of the stationary Schrödinger equation with a pure magnetic field ; it would be interesting to describe the long-time dynamics of the full Schrödinger evolution, as was done in the euclidian 2D case by Boil-Vu Ngoc [START_REF] Boil | Long-time dynamics of coherent states in strong magnetic fields[END_REF].

1.1. Definition of the magnetic Schrödinger operator. Let (M, g) be a smooth d dimensional oriented Riemannian manifold. We assume that M is compact with boundary, or that M = R d with the Euclidean metric. For q ∈ M , g q is a scalar product on T q M . Since M is oriented, there is a canonical volume form, denoted either dx g or dq g . If f ∈ L 2 (M ), we denote its norm by

f = M |f (q)| 2 dq g 1/2
.

If p ∈ T q M * , we denote by |p| g q or |p| the norm of p, defined by

∀Q ∈ T q M, |Q| 2 gq = |g q (Q, .)| 2 g * q . (1.1)
We denote by g * q the associated scalar product. The norm of a 1-form α on M is

α = M |α(q)| 2 dq g 1/2
.

It is associated with a scalar product, denoted by brackets ., . . We denote by d the exterior derivative, associating to any p-form α a (p + 1)-form dα. Using the scalar products induced by the metric, we can define its adjoint d * , associating to any p-form α a (p -1)-form d * α.

We take a 1-form A on M called the magnetic potential, and we denote by B = dA its exterior derivative. B is called the magnetic 2-form. The associated classical Hamiltonian is defined on T * M by: H(q, p) = |p -A(q)| 2 g * q , p ∈ T q M * . Using the isomorphism T q M T q M * given by the metric, we define the magnetic operator B(q) : T q M → T q M by:

B q (Q 1 , Q 2 ) = g q (B(q)Q 1 , Q 2 ), ∀Q 1 , Q 2 ∈ T q M. (1.2)
The norm of B(q) is |B(q)| = [Tr(B * (q)B(q))] 1/2 . On the quantum side, for > 0, we define the magnetic quadratic form q on

D(q ) = {u ∈ L 2 (M ), (i d + A)u ∈ L 2 Ω 1 (M ), u ∂M = 0}, by q (u) = M |(i d + A)u| 2 dq g ,
where L 2 Ω 1 (M ) denotes the space of square-integrable 1-forms on M . By the Lax-Milgram theorem, this quadratic form defines a self-adjoint operator L on

D(L ) = {u ∈ L 2 (M ), (i d + A) * (i d + A)u ∈ L 2 (M ), u ∂M = 0}, by the formula L u, v = q [u, v], ∀u, v ∈ C ∞ 0 (M )
, where q [., .] is the inner product associated with the quadratic form q (.). L is the magnetic Schrödinger operator with Dirichlet boundary conditions. 1.2. Local coordinates. If we choose local coordinates q = (q 1 , ..., q d ) on M , we get the corresponding vector fields basis (∂ q 1 , ..., ∂ q d ) on T q M , and the dual basis (dq 1 , ..., dq d ) on T q M * . In these basis, g q can be identified with a symmetric matrix (g ij (q)) with determinant |g|, and g * q is associated with the inverse matrix (g ij (q)). We can write the 1-form A in the coordinates:

A ≡ A 1 dq 1 + ... + A d dq d , with A = (A j ) 1≤j≤d ∈ C ∞ (R d , R d ). We denote T q A : T q M → T q M *
the linear operator whose matrix is the Jacobian of A:

(∇A(q)) ij = ∂ j A i (q).
In the coordinates, the 2-form B is

B = i<j B ij dq i ∧ dq j , with B ij = ∂ i A j -∂ j A i = ( t ∇A -∇A) ij . (1.3)
Let us denote (B ij (q)) 1≤i,j≤d the matrix of the operator B(q) : T q M → T q M in the basis (∂q 1 , ..., ∂q d ). With this notation, equation (1.2) relating B to B can be rewritten:

∀Q, Q ∈ R d , ijk g kj B ki Q i Qj = ij B ij Q i Qj , which means that ∀i, j, B ij = k g kj B ki . (1.4)
Also note that:

ι Q B = i<j B ij (Q i dq j -Q j dq i ) = j i B ij Q i dq j (1.5) = j ( t ∇A -∇A)Q j dq j = ( t T q A -T q A)Q (1.6)
Finally, in the coordinates H is given by:

H(q, p) = i,j g ij (q)(p i -A i (q))(p j -A j (q)), (1.7)
and L acts as the differential operator:

L coord = d k,l=1 |g| -1/2 (i ∂ k + A k )g kl |g| 1/2 (i ∂ l + A l ).
(1.8) 1.3. Pseudodifferential operators. We refer to [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF] and [START_REF] Zworski | Semiclassical Analysis[END_REF] for the general theory of -pseudodifferential operators. If m ∈ Z, we denote by

S m (R 2n ) = {a ∈ C ∞ (R 2n ), |∂ α x ∂ β ξ a| ≤ C αβ ξ m-|β| , ∀α, β ∈ N d } the class of Kohn-Nirenberg symbols.
If a depends on the semiclassical parameter , we require that the coefficients C αβ are uniform with respect to ∈ (0, 0 ]. For a ∈ S m (R 2n ), we define its associated Weyl quantization Op w (a ) by the oscillatory integral

A u(x) = Op w (a )u(x) = 1 (2π ) n R 2n e i x-y,ξ a x + y 2 , ξ u(y)dydξ,
and we denote: a = σ (A ). A pseudodifferential operator A on L 2 (M ) is an operator acting as a pseudodifferential operator in coordinates. Then the principal symbol of A does not depend on the coordinates, and we denote it by σ 0 (A ). The subprincipal symbol σ 1 (A ) is also well-defined, up to imposing the charts to be volume-preserving (in other words, if we see A as acting on half-densities, its subprincipal symbol is well defined).

If M is compact, in any local coordinates, the coefficients A j of A (as a function of q ∈ R d ) are in S 0 (R 2d (q,p) ). Hence we see from (1.8) that L is a pseudodifferential operator on L 2 (M ). Its principal and subprincipal Weyl symbols are:

σ 0 (L ) = H, σ 1 (L ) = 0.
This is well-known, but we detail the computation of the subprincipal symbol in Appendix (Lemma A.1).

If M = R d , we assume that A j ∈ S 0 (R 2d ) for 1 ≤ j ≤ d. We could also assume that A j belongs to some standard class of symbol defined by a general order function on R 2d . 1.4. Assumptions. Since B(q), defined in (1.2), is a skew-symmetric operator for the scalar product g q , its eigenvalues are in iR. We define the magnetic intensity, which is equivalent to the trace-norm, by

b(q) = Tr + B(q) = 1 2 Tr([B * (q)B(q)] 1/2 ) = iβ j ∈sp(B(q)),β j >0 β j .
It is a continuous function of q, but not smooth in general. We also denote

b 0 = inf q∈M b(q),
and in the non-compact case

M = R d , b ∞ = lim inf |q|→+∞ b(q).
We first assume that the magnetic field satisfies the following inequality.

Assumption 1. We assume that there exist 0 > 0 and C 0 > 0 such that, for ∈ (0, 0 ],

∀u ∈ D(q ), (1 + 1/4 C 0 )q (u) ≥ M (b(q) -1/4 C 0 )|u(q)| 2 dq g .
In [START_REF] Helffer | Semiclassical Analysis for the Ground State Energy of a Schrödinger Operator with Magnetic Wells[END_REF], Helffer and Morame proved such an inequality in the case M compact. If M = R d , they prove that it is sufficient to assume that

∇B ij (q) ≤ C(1 + |B(q)|), 1 ≤ i, j ≤ d
for some C > 0 to deduce the inequality.

We consider the case of a unique discrete magnetic well: Assumption 2. We assume that the magnetic intensity b admits a unique and nondegenerate minimum b 0 at q 0 ∈ M \ ∂M , such that 0 < b 0 < b ∞ .

Finally, we make a non-degeneracy assumption. Assumption 3. We assume that d is even and B(q 0 ) is invertible.

In particular, B(q) is invertible for q in a neighborhood of q 0 , which means that the 2-form B is symplectic near q 0 . Under this Assumption, the eigenvalues of B(q 0 ) can be written ±iβ 1 (q 0 ), . . . , ±iβ d/2 (q 0 ), with β j (q 0 ) > 0. We define the resonance order r 0 ∈ N * ∪ {∞} of the eigenvalues by r 0 := min{|α| : α ∈ Z d/2 , α = 0, α, β(q 0 ) = 0}, (1.9) with the notations

|α| = d/2 j=1 |α j |, α, β(q 0 ) := d/2 j=1 α j β j (q 0 ).
We make a non-resonance assumption.

Assumption 4. We assume that the eigenvalues of B(q 0 ) are simple (which is equivalent to assuming that r 0 ≥ 3).

In particular, there is a neighborhood Ω ⊂⊂ M \ ∂M of q 0 on which the eigenvalues of B(q) are simple, and defined by smooth positive functions

β j : Ω → R * + .
We can choose Ω such that every β j is bounded from bellow by a positive constant on Ω. We can also find smooth orthonormal vectors on Ω: u 1 (q), v 1 (q), . . . , u d/2 (q), v d/2 (q) ∈ T q M, such that: B(q)u j (q) = -β j (q)v j (q), B(q)v j (q) = β j (q)u j (q). (1.10)

We take

r ∈ N ∩ [3, r 0 ]. (1.11)
Up to reducing Ω (depending on r), we also have (since r is finite), for 0 < |α| < r: α, β(q) = 0, ∀q ∈ Ω.

(1.12)

Under Assumption 2, we can find b 0 < b1 < b ∞ such that K := {b(q) ≤ b1 } ⊂ Ω. (1.13) In the case M = R d , using the inequality in Assumption 1, it is proved in [START_REF] Helffer | Semiclassical Analysis for the Ground State Energy of a Schrödinger Operator with Magnetic Wells[END_REF] that there exist 0 and c > 0 such that, for ∈ (0, 0 ],

sp ess (L ) ⊂ [ ( b1 -c 1/4 ), +∞),
and so, for small enough, the spectrum of L below b 1 (for a given b 1 < b1 ) is discrete. When M is compact, L has compact resolvent, and its full spectrum is discrete. 1.5. Main results. On the classical part, we first prove the following reduction of the Hamiltonian. For z = (x, ξ) ∈ R d and w = (y, η) ∈ R d , we denote z j = (x j , ξ j ), w j = (y j , η j ), and B z (ε) = {|z| ≤ ε}. We use the notation R d z (or R d w ) to emphasize that an element of R d is denoted z (or w).

Theorem 1.1. Under Assumptions 1,2,3 and 4, for Ω and ε > 0 small enough, there exist symplectomorphisms ϕ : (Ω, B) → (V ⊂ R d w , dη ∧ dy), and Φ : (V × B z (ε), dη ∧ dy + dξ ∧ dx) → (U ⊂ T * M, ω), with Φ(ϕ(q), 0) = (q, A(q)), under which the Hamiltonian H becomes:

Ĥ(w, z) = H • Φ(w, z) = d/2 j=1 βj (w)|z j | 2 + O(|z| 3 ),
locally uniformly in w, with the notation βj (w) = β j • ϕ -1 (w).

Our next aim is to construct a semiclassical Birkhoff normal form for L , that is to say a pseudodifferential operator N on L 2 (R d ), commuting with suitable harmonic oscillators such that:

U L U * = N + R , with U : L 2 (M ) → L 2 (R d
) a microlocally unitary Fourier integral operator and R a remainder. We will contruct the remainder so that the first eigenvalues of L coincide with the first eigenvalues of N , up to a small error of order O( r/2-ε ), where r is defined in (1.11). More precisely, we prove the following theorem. the canonical variables. For ζ > 0 and ∈ (0, 0 ] small enough, there exist a Fourier integral operator

U : L 2 (R d (x,y) ) → L 2 (M ),
a smooth function f (w, I 1 , ..., I d/2 , ), and a pseudodifferential operator R on R d such that:

(i) U * L U = N + R , (ii) N = Op w H 0 + f (w, I (1) 
, ...,

I (d/2) , ) , (iii) σ w (R ) ∈ O((|z| + 1/2 ) r ) on a neighborhood of w = 0, (iv) U * U = I microlocally near (z, w) = 0, (v) U U * = I microlocally near (q, p) = (q 0 , A q 0 ), (vi) (1 -ζ) Op w H 0 ψ, ψ ≤ N ψ, ψ ≤ (1 + ζ) Op w H 0 ψ, ψ , ∀ψ ∈ S(R d ),
with

I (j) = Op w (|z j | 2 ) = -2 ∂ 2 ∂x 2 j + x 2 j , H 0 = d/2 j=1 βj (w)|z j | 2 . (1.14)
We call N the normal form, and R the remainder.

Using microlocalization properties of the eigenfunctions of L and N , we prove that they have the same spectra in the following sense. We recall that b1 , defined in (1.13), is chosen such that {b(q) ≤ b1 } ⊂ Ω.

Theorem 1.3. Let ε > 0 and b 1 ∈ (0, b1 ). We denote

λ 1 ( ) ≤ λ 2 ( ) ≤ ... and ν 1 ( ) ≤ ν 2 ( ) ≤ ...
the first eigenvalues of L and N respectively. Then

λ n ( ) = ν n ( ) + O( r/2-ε ), uniformly in n such that λ n ( ) ≤ b 1 and ν n ( ) ≤ b 1 .
Thus, the eigenvalues of L are given by the eigenvalues of N , which we can reduce since it commutes with harmonic oscillators. Theorem 1.4. For k ≥ 0, let us denote h k the Hermite function, satisfying

I (j) h k (x j ) = (2k + 1)h k (x j ). For n = (n 1 , ..., n d/2 ) ∈ N d/2
, there exists a pseudodifferential operator N (n) acting on

L 2 (R d/2
y ) such that:

N (u ⊗ h n 1 ⊗ ... ⊗ h n d/2 ) = N (n) (u) ⊗ h n 1 ⊗ ... ⊗ h n d/2 , u ∈ S(R d/2 y
). Its symbol is:

F (n) (w) = d/2 j=1 βj (w)(2n j + 1) + f (w, (2n + 1), ),
and we have:

sp(N ) = n sp(N (n) ).
Moreover, the multiplicity of λ as eigenvalue of N is the sum over n of the multiplicities of λ as eigenvalue of N (n) .

Finally, we deduce an expansion of the N > 0 first eigenvalues of L in powers of 1/2 .

Theorem 1.5 (Expansion of the first eigenvalues). Let ε > 0 and N ≥ 1. There exist 0 > 0 and c 0 > 0 such that, for ∈ (0, 0 ], the N first eigenvalues of L : (λ j ( )) 1≤j≤N admit an expansion in powers of 1/2 of the form:

λ j ( ) = b 0 + 2 (E j + c 0 ) + 5/2 c j,5 + ... + (r-1)/2 c j,r-1 + O( r/2-ε ),
where E j is the j-th eigenvalue of the d/2-dimensional harmonic oscillator

Op w (Hess 0 (b • ϕ -1 )).
Remark. When M is compact but the 2-form B is not exact, one can not define the magnetic Laplacian L , but one can consider the Bochner Laplacian on a complex line bundle L endowed with a connexion of curvature iB. Then, the semiclassical limit corresponds to the high tensor product limit of L. Using quasimodes, Kordyukov [?] proved asymptotic expansions of the first eigenvalues of the Bochner Laplacian, in the case of non-degenerate magnetic wells. Thus, his result is closely related to Theorem 1.5. When M is compact, our case corresponds to the Bochner Laplacian of a trivial line bundle. However, our normal form gives a geometrical interpretation of the coefficients, and also describes higher eigenvalues (semi-excited states).

Note that, from Theorems 1.3 and 1.4, we deduce Weyl estimates for L . Some similar formulas appear in [START_REF] Ivrii | Microlocal Analysis and precise spectral asymptotics[END_REF]. Here N (L , b 1 ) denotes the number of eigenvalues λ of L such that λ ≤ b 1 , counted with multiplicities.

Corollary 1.1 (Weyl estimates). For any b 1 ∈ (b 0 , b1 ), N (L , b 1 ) ∼ 1 (2π ) d/2 n∈N d/2 b [n] (q)≤b 1 B d/2 (d/2)! .
where

b [n] (q) = d/2 j=1 (2n j + 1)β j (q).
The sum is finite because the β j are bounded from below by a positive constant on Ω. In particular, if M = R d , we get

N (L , b 1 ) ∼ 1 (2π ) d/2 n∈N d/2 b [n] (q)≤b 1 β 1 (q)...β d/2 (q)dq.
Remark. In their works Demailly [START_REF] Demailly | Champs magnétiques et inégalités de Morse pour la d -cohomologie[END_REF][START_REF] Demailly | Holomorphic Morse inequalities. Several complex variables and complex geometry[END_REF] and Bouche [START_REF] Bouche | Convergence de la métrique de Fubini-Study d'un fibré linéaire positif[END_REF] proved similar Weyl asymptotics for Bochner Laplacians on a compact complex manifold. They used an expansion of the associated heat kernel and an local approximation of the magnetic field by a constant. 1.6. Organization and strategy. In section 2, we construct a symplectomorphism which simplify H near its zero set Σ = H -1 (0) (Theorem 1.1). In the new coordinates, H becomes:

Ĥ(q, z) = d/2 j=1 β j (q)|z j | 2 + O(|z| 3 ).
In section 3, we construct a formal Birkhoff normal form: in the space of formal series in variables (x, ξ, ), we change Ĥ into

H 0 + κ + ρ, with H 0 = d/2 j=1 β j |z j | 2 , κ a series in |z j | 2 (1 ≤ j ≤ d/2
), and ρ a remainder of order r (Theorem 3.1). In section 4, we quantify the changes of coordinates constructed in section 2 and 3, and we get the semiclassical Birkhoff normal form (Theorem 1.2). In section 5, we reduce N (Theorem 1.4) and we deduce an expansion of its first eigenvalues. It remains prove that the spectra of L and N below b 1 coincide. Before doing it, we need microlocalization results proved in section 6. We prove that the eigenfunctions of L and N are microlocalized near the zero set of H, where our formal construction is valid. In section 7, we use the results of section 6, to prove that L and N have the same spectrum below b 1 (Theorem 1.3). This Theorem, together with the results of section 5, finishes the proof of Theorem 1.5. We also prove the Weyl estimates (Corollary 1.1) here. 

Reduction of the classical Hamiltonian

Σ = H -1 (0) = {(q, A(q)) ∈ T * M : q ∈ Ω},
is a d-dimensional smooth submanifold of the cotangent bundle T * M . We denote j : Ω → T * M the embedding j(q) = (q, A(q)).

The symplectic structure on T * M is defined by the form

ω = dp ∧ dq = dα, α = pdq.
In other words, for p ∈ T q M * and V ∈ T (q,p) (T * M ),

α (q,p) (V) = p(π * V), (2.1)
Where the map π * : T (q,p) (T * M ) → T q M is the differential of the canonical projection

π : T * M → M, π(q, p) = q.
Using local coordinates with the notations of section 1.2, at any point (q, p) ∈ T * M with

p = p 1 dq 1 + ... + p d dq d , the tangent vectors V ∈ T (q,p) (T * M ) are identified with (Q, P ) ∈ T q M × T q M * , with Q = Q 1 ∂q 1 + ... + Q d ∂q d , P = P 1 dq 1 + ... + P d dq d . With this notation, π * (Q, P ) = Q, α (q,p) (Q, P ) = p(Q), ω (q,p) ((Q, P ), (Q , P )) = P , Q -P, Q ,
where ., . denotes the duality bracket between T q M and T q M * .

Lemma 2.1. Σ is a symplectic submanifold of (T * M, ω), and

j * ω = B.
In particular, at each point j(q) ∈ Σ,

T j(q) (T * M ) = T j(q) Σ ⊕ T j(q) Σ ⊥ , (2.2)
where ⊥ denotes the symplectic orthogonal for ω.

Proof. To say that Σ is a symplectic submanifold of T * M means that the restriction of ω to Σ is non-degenerate. Written with the embedding j, this restriction is j * ω. Actually, using the definition (2.1) of α with p = A q and V = d q j(Q), we get

∀Q ∈ T q M, (j * α) q (Q) = A q (π * d q j(Q)) = A q (Q). Hence j * α = A, so j * (dα) = dA = B.
Since any j(q) is a critical point of H, the Hessian of H at j(q) is well defined and independant of any choice of coordinates. We now compute this Hessian according to the decomposition (2.2):

Lemma 2.2. The Hessian T 2 j(q) H, as a bilinear form on T j(q) (T * M ), can be written:

T 2 j(q) H(V, V) = 0 if V ∈ T j(q) Σ, T 2 j(q) H(V, V) = 2|B(q)π * V| 2 gq if V ∈ T j(q) Σ ⊥ .
Proof. Using local coordinates on M , we will denote every V ∈ T (q,p) (T * M ), as (Q, P ) ∈ T q M × T q M * . In these coordinates, with the notations introduced in section 1.2,

Σ ≡ {(q, A(q)), q ∈ R d } so that T j(q) Σ = {(Q, P ) ∈ T q M × T q M * , P = T q A • Q}. (2.3)
We can also describe T j(q) Σ ⊥ using these coordinates. Indeed,

(Q, P ) ∈ T j(q) Σ ⊥ ⇔ ∀Q 0 ∈ T q M, ω((Q, P ), (Q 0 , T q A • Q 0 )) = 0 ⇔ ∀Q 0 ∈ T q M, P, Q 0 = T q A • Q 0 , Q ⇔ P = t T q A • Q. Hence T j(q) Σ ⊥ = {(Q, P ), P = t T q A • Q}. (2.4)
From the expression (1.7) of H in coordinates, we deduce that:

T (q,p) H(Q, P ) = 2 ij g ij (q)(p i -A i (q))(P j -∇ q A j • Q) + ijk ∂ k g ij (q)Q k (p i -A i (q))(p j -A j (q)),
so that the Hessian of H in coordinates is:

T 2 j(q) H((Q, P ), (Q, P )) = 2 ij g ij (q)(P i -∇ q A i • Q)(P j -∇ q A j • Q) = 2|P -T q A • Q| 2 g * q .
It follows from (2.3) that ∀(Q, P ) ∈ T j(q) Σ, T 2 j(q) H((Q, P ), (Q, P )) = 0, and from (2.4) and (1.5) that

∀(Q, P ) ∈ T j(q) Σ ⊥ , T 2 j(q) H((Q, P ), (Q, P )) = 2|( t T q A -T q A)Q| 2 g * q = |ι Q B| 2 g * q .
Let us rewrite this using B. Note that:

|ι Q B| 2 g * q = ij g ij (q) ki B ki Q k   j B j Q   = k   ij g ij B ki B j   Q k Q ,
and keeping in mind that (g ij ) is the inverse matrix of (g ij ) together with the relation (1.4) between B and B, we have

ij g ij B ki B j = ijk g ij g k i g j B k k B = k g k B k k B ,
and so

|ι Q B| 2 g * q = k g k k B k k Q k B Q = |B(q)Q| 2 gq .
We endow Ω × R d z with the symplectic form:

ω 0 (q, z) = B ⊕ d/2 j=1 dξ j ∧ dx j ,
with the notation z = (x, ξ). (Σ, B) is a d-dimensional symplectic submanifold of (T * M, ω).

The following Darboux-Weinstein lemma claims that this situation is modelled on the submanifold

Σ 0 = Ω × {0} of (Ω × R d z , ω 0 ).
Lemma 2.3. There exists a local diffeomorphism

Φ 0 : Ω × R d z → T * M such that Φ * 0 ω = ω 0 , and Φ 0 (Σ 0 ) = Σ.
In order to keep track on the construction of Φ 0 , we will give the proof of this result.

Proof. Again, we use local coordinates on M to denote every V ∈ T (q,p) (T * M ) as (Q, P ) ∈ T q M × T * q M . For q ∈ Ω, using the vectors u j (q), v j (q) ∈ T q M defined in (1.10), we define the vectors e j (q) = 1 β j (q) u j (q), t T q A u j (q) , f j (q) = 1 β j (q) v j (q), t T q A v j (q) , which are in T j(q) Σ ⊥ by (2.4). These vectors satisfy ω j(q) (e i (q), f j (q)) = δ ij , ω j(q) (e i (q), e j (q)) = 0, ω j(q) (f i (q), f j (q)) = 0. (2.5) Indeed, the first equality follows from

ω j(q) (e i , f j ) = - 1 β i β j ( t T q A -T q A)u j , v j = - 1 β i β j B(u i , v j ) = - 1 β i β j g q (B(q)u i , v j ) = β i β i β j g q (v i , v j ) = δ ij ,
and the two others from similar calculations. Let us construct a Φ0 : Ω × R d z → T * M such that: Φ0 (q, 0) = j(q), (2.6)

∂ z Φ0 (q, 0) = L q , (2.7)
where L q : R d → T j(q) Σ ⊥ is the linear map sending the canonical basis onto (e 1 (q), f 1 (q), ..., e d/2 (q), f d/2 (q)).

For this, we take local vector fields êj (q, p), fj (q, p) ∈ T (q,p) (T * M ) defined in a neighborhood of Σ, such that êj (j(q)) = e j (q), fj (j(q)) = f j (q).

In other words, if we see e j and f j as vector fields on Σ using j(q), we extend them to a neighborhood of Σ. Then we consider the associated flows, defined on a neighborhood of Σ by: ∂φ x j j ∂x j (q, p) = êj (φ

x j j (q, p)), x j ∈ R, ∂ψ ξ j j ∂ξ j (q, p) = fj (ψ ξ j j (q, p)), ξ j ∈ R, φ 0 j (q, p) = ψ 0 j (q, p) = (q, p). Then Φ0 (q, z) := φ x 1 1 • ψ ξ 1 1 • ... • φ x d/2 d/2 • ψ ξ d/2
d/2 (j(q)) satisfies (2.6) and (2.7). Hence, if q ∈ Ω, the linear tangent map T (q,0) Φ0 : T q M ⊕ R d → T j(q) Σ ⊕ T j(q) Σ ⊥ acts as:

T q j 0 0 L q .

In particular, Φ * 0 ω = ω 0 on {z = 0} by (2.5) and lemma 2.1. By Weinstein lemma A.2 (Appendix), for ε > 0 small enough there exists a diffeomorphism S : Ω×B z (ε) → Ω×B z (ε) such that S(q, z) = (q, z) + O(|z| 2 ) and S * Φ * 0 ω = ω 0 . Then Φ 0 = Φ0 • S is the desired symplectomorphism.

2.2. Proof of Theorem 1.1. Now we can prove the normal form for the classical Hamiltonian. Up to reducing Ω, we can take symplectic coordinates w = (y, η) ∈ R d to describe Ω, thanks to the Darboux lemma:

ϕ : Ω → V ⊂ R d w .
We get a new symplectomorphism

Φ : V × B z (ε) → U ⊂ T * M, defined by 
Φ(w, z) = Φ 0 (ϕ -1 (w), z).
It remains to compute a Taylor expansion of H in these coordinates. Using the Taylor Formula for Ĥ = H • Φ, we get:

Ĥ(w, z) = Ĥ(w, 0) + ∂ z Ĥ|z=0 (z) + 1 2 ∂ 2 z Ĥ|z=0 (z, z) + O(|z| 3 ). (2.8)
By the chain rule, we have (with q = ϕ -1 (w)):

∂ z Ĥ|z=0 (z) = T j(q) H(∂ z Φ |z=0 (z)) = 0,
because T j(q) H = 0, and

∂ 2 z Ĥ|z=0 (z, z) = T 2 j(q) H(∂ z Φ |z=0 (z), ∂ z Φ |z=0 (z)).
But ∂ z Φ |z=0 sends the canonical basis onto (e 1 (q), f 1 (q), ... , e d/2 (q), f d/2 (q)), so we get from Lemma 2.2:

1 2 ∂ 2 z Ĥ|z=0 (z, z) = d/2 j=1 β j (q)|z j | 2 .
Hence (2.8) gives:

Ĥ(w, z) = H • Φ(w, z) = d/2 j=1 βj (w)|z j | 2 + O(|z| 3 ).

The Formal Birkhoff Normal Form

3.1. The Hamiltonian Ĥ. In the new coordinates given by Theorem 1.1, we have a Hamiltonian Ĥ(w, z) of the form:

Ĥ(w, z) = H 0 (w, z) + O(|z| 3 ), where H 0 (w, z) = d/2 j=1 βj (w)|z j | 2 .
H 0 is defined for w ∈ V , but we extend the functions βj to R d w such that:

d/2 j=1 βj (w) ≥ b1 for w ∈ V c . (3.1)
This is just technical, since we will prove microlocalization results on V in section 6. Then we can construct a Birkhoff normal form, in the spirit of [START_REF] Sjöstrand | Semi-excited states in nondegenerate potential wells[END_REF] and [START_REF] Raymond | Geometry and Spectrum in 2D Magnetic wells[END_REF], with w as a parameter.

3.2. The space of formal series. We will work in the space of formal series

E = C ∞ (R d w )[[x, ξ, ]].
We endow E with the Moyal product , compatible with the Weyl quantization (with respect to all the variables z and w). Given a pseudodifferential operator A = Op w (a) we will denote σ w,T (A) or [a] the formal Taylor series of a at zero, in the variables x, ξ, . With this notation, the compatibility of with the Weyl quantization means σ w,T (AB) = σ w,T (A) σ w,T (B).

The reader can find the main results on -pseudodifferential operators in [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF] or [START_REF] Zworski | Semiclassical Analysis[END_REF].

We define the degree of x α ξ γ to be |α| + |γ| + 2 . Hence, we can define the degree and valuation of a series κ, which depends on the point w ∈ R d . We denote O N the space of formal series with valuation at least N on V , and D N the space spanned by monomials of degree N on V (V ⊂ R d w is given by Theorem 1.1). We denote z j the formal series x j + iξ j . Thus every κ ∈ E can by written

κ = αγ c αγ (w)z α zγ , with the notation z α = z α 1 1 ...z α d/2 d/2 . For κ 1 , κ 2 ∈ E, we denote ad κ 1 κ 2 = [κ 1 , κ 2 ] = κ 1 κ 2 -κ 2 κ 1 . It is well known that [κ 1 , κ 2 ] is of order , so for N 1 + N 2 ≥ 2, we have 1 [O N 1 , O N 2 ] ⊂ O N 1 +N 2 -2 . (3.2)
Explicitly, we have 

= d/2 j=1 ∂ ξ j ∂ x j -∂ x j ∂ ξ j + ∂ η j ∂ y j -∂ y j ∂ η j .
From formula (3.3), a simple computation yields to

i ad |z j | 2 (z α zβ ) = {|z j | 2 , z α zγ } = (α j -γ j )z α zγ . (3.4)
3.3. The formal normal form. In order to prove Theorem 1.2, we look for a pseudodifferential operator Q such that

e i Q Op w Ĥe -i Q (3.5)
commutes with the harmonic oscillators I where H 0 + γ is the Taylor expansion of Ĥ, and τ = σ w,T (Q ). Moreover, σ w,T (I (j) ) = |z j | 2 , so we want (3.6) to be equal to H 0 + κ, where [κ, |z j | 2 ] = 0, which is equivalent to say that κ is a series in (|z 1 | 2 , ..., |z d/2 | 2 , ). This is possible modulo O r , as stated in the following theorem. We recall that r is the non-resonance order, defined in (1.11), and that we assumed r ≥ 3.

Theorem 3.1. If γ ∈ O 3 , there exist τ, κ, ρ ∈ O 3 such that:

• e i adτ (H 0 + γ) = H 0 + κ + ρ, • [κ, |z j | 2 ] = 0 for 1 ≤ j ≤ d/2, • ρ ∈ O r .
Proof. Let 3 ≤ N ≤ r -1. Assume that we have, for a τ N ∈ O 3 :

e i adτ N (H 0 + γ) = H 0 + K 3 + ... + K N -1 + R N + O N +1 ,
where

K i ∈ D i commutes with |z j | 2 (1 ≤ j ≤ d/2
) and where R N ∈ D N . Using (3.2), we have for any τ ∈ D N :

e i ad τ N +τ (H 0 + γ) = e i ad τ H 0 + K 3 + ... + K N -1 + R N + O N +1 = H 0 + K 3 + ... + K N -1 + R N + i ad τ H 0 + O N +1 .
Thus, we look for τ and K N ∈ D N such that:

R N = K N + i ad H 0 τ modulo O N +1 . (3.7)
To solve this equation, we need to study ad H 0 . Since

H 0 = j βj (w)|z j | 2 , i ad H 0 τ = d/2 j=1 βj (w) i ad |z j | 2 (τ ) + i ad βj (τ )|z j | 2 .
Since βj only depends on w, i ad βj (τ ) ∈ O N -1 , (see formula (3.3)). Hence

i ad H 0 τ = d/2 j=1 βj (w) i ad |z j | 2 (τ ) + O N +1 .
Thus equation (3.7) can be rewritten

R N = K N + T (τ ) + O N +1 , (3.8)
with the notation

T = d/2 j=1 βj (w) i ad |z j | 2 .
From formula (3.4) we see that T acts on monomials as

T (c(w)z α zγ ) = α -γ, β(w) c(w)z α zγ . (3.9) Thus, if we write R N = |α|+|γ|+2 =N r αγ (w)z α zγ , we choose K N = α=γ r αγ |z| 2α , which commutes with |z j | 2 ( 1 ≤ j ≤ d/2
). The rest R N -K N is a sum of monomials of the form r αγ z α zγ with α = γ. As soon as 0 < |α -γ| < r, we have α -γ, β(w) = 0 (by (1.12) because r is lower than the resonance order (1.9)), so we can define the smooth coefficient

c αγ (w) = r αγ (w)
α -γ, β(w) .

Thus (3.9) yields to

T (c αγ z α zγ ) = r αγ (w)z α zγ , so R N -K N is in the range of T modulo O N +1 because N ≤ r -1.
Hence we solved equation (3.8), and thus we can iterate until N = r -1. The series ρ is the O r that remains:

e i -1 adτ N (H 0 + γ) = H 0 + K 3 + ... + K r-1 + ρ.

The Semiclassical Birkhoff Normal Form

The next step is to quantize Theorems 1.1 and 3.1.

4.1. Quantization of Theorem 1.1. Theorem 1.1 gives a symplectomorphism Φ reducing H to Ĥ = H • Φ. We can quantize this result in the following way. The Egorov Theorem (Thm 5.5.9 in [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]) implies the existence of a Fourier integral operator

V : L 2 (R d (x,y) ) → L 2 (M ),
associated to the symplectomorphism Φ, and a pseudo-differential operator L with principal symbol Ĥ on V × B z (ε) and subprincipal symbol 0, such that: 

V * L V = L , (4.1) V * V = I microlocally on V × B z (ε), (4.
σ = Ĥ + 2 r on V × B z (ε). (4.4)
In particular, σ w,T L = H 0 + γ for some γ ∈ O 3 , with the notation of section 3.2. We want to construct a normal form using a bounded pseudodifferential operator Q :

e i Q L e -i Q = N + R . (4.5)
In Theorem 3.1, applied to γ, we have constructed formal series τ , κ, and ρ such that

e i adτ (H 0 + γ) = H 0 + κ + ρ.
The idea is to choose pseudodifferential operators Q and N such that σ w,T (Q ) = τ and σ w,T (N ) = κ, and to check that they satisfy (4.5). Following this idea, we prove the following Theorem.

LÉO MORIN Theorem 4.1. For ∈ (0, 0 ] small enough, there exist a unitary operator

U : L 2 (R d ) → L 2 (R d ),
a smooth function f (w, I 1 , ..., I d/2 , ), and a pseudodifferential operator R such that: 1) , ..., I (d/2) , ) + R , (ii) f has an arbitrarily small compact (I 1 , ..., I d/2 , )-support (containing 0),

(i) U * L U = L 0 + Op w f (w, I ( 
(iii) σ w,T (R ) ∈ O r and σ w,T (U R U * ) ∈ O r .
with I (j) = Op w (|z j | 2 ) and L 0 = Op w (H 0 ). We call and arbitrarily small compact support in (I 1 , ..., I d/2 , ) (containing 0). Let c(w, z, ) be a smooth function with compact support with Taylor series τ , given by Theorem 3.1. Then by the Taylor formula, we have:

N = L 0 + Op w f (w, I ( 
e i Op w (c) Op w (H 0 + r )e -i Op w (c) = r-1 n=0 1 n! ad n i -1 Op w (c) Op w (H 0 + r ) + 1 0 1 (r -1)! (1 -t) r-1 e it -1 Op w (c) ad r i -1 Op w (c) Op w (H 0 + r )e -it -1 Op w (c) dt.
By the Egorov Theorem and the fact that ad r i -1 Op w (c) : E → O r (see (3.2)), the integral remainder has a symbol with Taylor series in O r . Moreover,

σ w,T r-1 n=0 1 n! ad n i -1 Op w (c) Op w (H 0 + r ) = r-1 n=0 1 n! ad n i -1 τ (H 0 + γ) = e i adτ (H 0 + γ) + O r = H 0 + κ + O r .
Thus, by the definition of f , there exists s(w, z, ) such that [s] ∈ O r and:

e i Op w (c) Op w (H 0 + r )e -i Op w (c) = Op w (H 0 ) + Op w (f (w, |z 1 | 2 , ..., |z d/2 | 2 , )) + Op w (s).
Using the compatibility of the quantization with the Moyal product, we have σ w,T (f (w, I

, ...,

I (d/2) , )) = [f (w, |z 1 | 2 , ..., |z d/2 | 2 , )],
so we get:

e i Op w (c) Op w (H 0 + r )e -i Op w (c) = Op w (H 0 ) + Op w (f (w, I (1) 
, ...,

I (d/2) , )) + Op w (s),
for a new symbol s(w, z, ) with [s] ∈ O r . Hence we get

U * L U = Op w (H 0 ) + Op w (f (w, I (1) 
, ..., I (d/2) , )) + Op w (s), with U = e -i Op w (c) . To prove (iii) with R = Op w (s), note that

σ w,T (R ) = [s] ∈ O r and σ w,T (U R U * ) = e i adτ ([s]) ∈ O r .
Theorem 1.2 follows with the new operator Ũ = V U given by (4.1) and Theorem 4.1. Point (ii) of Theorem 1.2 is remaining. We prove it here, using that the function f can be chosen with arbitrarily small compact support. Proposition 4.1. For any ζ ∈ (0, 1), up to reducing the support of f , the normal form N of Theorem 4.1 satisfies for ∈ (0, 0 ] small enough:

(1 -ζ) L 0 ψ, ψ ≤ N ψ, ψ ≤ (1 + ζ) L 0 ψ, ψ , ∀ψ ∈ S(R d ).
Proof. For a given K > 0, we can take a cutoff function χ supported in {λ ∈ R d/2 : λ ≤ K}, and change f into χf . Thus, for λ j ∈ sp(I (j) ),

|χf (w, λ 1 , ..., λ d/2 , )| ≤ CK λ ≤ CK j 1 min βj βj (w)λ j ≤ CK j βj (w)λ j .
Hence, using functional calculus and the G

• arding inequality, we deduce that

| Op w f * (w, I (1) 
, ...,

I (d/2) , )ψ, ψ | ≤ CK L 0 ψ, ψ + c ψ 2 ≤ ζ L 0 ψ, ψ ,
for K and small enough.

Spectral reduction of N

In this section, we prove an expansion of the first eigenvalues of N in powers of 1/2 . In order to prove Theorem 1.5, it will only remain to compare the spectra of N and L . This will be done in the next sections.

Let 1 ≤ j ≤ d/2. For n j ≥ 0, we denote h n j : R → R the n j -th Hermite function of the variable x j . In particular, for every 1 ≤ j ≤ d/2 we have:

I (j) h n j (x j ) = (2n j + 1)h n j (x j ). (5.1) Moreover, (h n j ) n j ≥0 is a Hilbertian basis of L 2 (R x j ): L 2 (R x j ) = n j ≥0 h n j . On R d/2
x , we define the functions h n for any n

= (n 1 , ..., n d/2 ) ∈ N d/2 by h n (x) = h n 1 ⊗ ... ⊗ h n d/2 (x) = h n 1 (x 1 )...h n d/2 (x d/2 ).
We have the following space decomposition:

L 2 (R d/2 x ) = n∈N d/2
h n .

In particular, we have:

L 2 (R d x,y ) = n∈N d/2 L 2 (R d/2 y ) ⊗ h n . (5.2)
Since N commutes with the harmonic oscillators I 

(j) (1 ≤ j ≤ d/2),
N (u ⊗ h n 1 ⊗ ... ⊗ h n d/2 ) = N (n) (u) ⊗ h n 1 ⊗ ... ⊗ h n d/2 , ∀u ∈ S(R d/2 y
). Its symbol is:

F (n) (w) = d/2 j=1 βj (w)(2n j + 1) + f (w, (2n + 1), ),
and we have:

sp(N ) = n sp(N (n) ).
Moreover, the multiplicity of λ as eigenvalue of N is the sum over n of the multiplicities of λ as eigenvalue of N (n) .

This follows directly from (5.1) and (4.6). Moreover, we can prove the following more precise inclusions of the spectra. Lemma 5.2. Let b 1 ∈ (b 0 , b1 ). There exist 0 , n max , c > 0 such that, for any ∈ (0, 0 ):

sp(N ) ∩ (-∞, b 1 ] ⊂ 0≤|n|≤nmax sp(N (n) ), (5.3) 
and for any n ∈ N d/2 with 1 ≤ |n| ≤ n max :

sp(N (n) ) ⊂ [ (b 0 + c|n|), +∞). (5.4)
Proof. Remember that the functions βj are bounded from below by a positive constant. Thus, the G • arding inequality implies that there are 0 , c > 0 such that, for every ∈ (0, 0 ),

Op w ( βj )u, u ≥ c u 2 , ∀u ∈ L 2 (R d/2 y ). (5.5)
For any n ∈ N d/2 , we have:

N (n) u, u = N (u ⊗ h n ), u ⊗ h n ≥ (1 -ζ) L 0 (u ⊗ h n ), u ⊗ h n by Proposition 4.1 = (1 -ζ) d/2
j=1 (2n j + 1) Op w ( βj )u, u because L 0 = j Op w ( βj )I (j) . Thus using (5.5) and the G

• arding inequality,

N (n) u, u ≥ (1 -ζ)(2c|n| u 2 + Op w ( b)u, u ) ≥ (1 -ζ)(2c|n| + b 0 -c ) u 2 .
This proves (5.4) for a new c > 0. Moreover, if you take any eigenpair (λ, ψ) of N with λ ≤ b 1 , it is an eigenpair of some N (n) , with ψ = u ⊗ h n , and:

(1 -ζ)(2c|n| + b 0 -c ) u 2 ≤ N (n) u, u = N ψ, ψ ≤ b 1 ψ 2 .
Thus, there is a n max > 0 independent of , λ, ψ such that |n| ≤ n max .

We deduce (5.3).

Using the previous Lemma and the well-known expansion of the first eigenvalues of Op w ( b), we deduce an expansion of the first eigenvalues of N .

Theorem 5.1. Let ε > 0 and N ≥ 1. There exist 0 > 0 and c 0 > 0 such that, for ∈ (0, 0 ], the N first eigenvalues of N : (λ j ( )) 1≤j≤N admit an expansion in powers of 1/2 of the form:

λ j ( ) = b 0 + 2 (E j + c 0 ) + 5/2 c j,5 + 3 c j,6 + ...,
where E j is the j-th eigenvalue of the d/2-dimensional harmonic oscillator associated to the Hessian of b at 0, counted with multiplicity.

Proof. The smallest eigenvalues of N are those of N (0) , which has the symbol b(w) + f (w, , ..., ) = ( b(w) + c 0 + O( 2)).

The first eigenvalues of a semiclassical pseudodifferential operator with principal symbol b (which admits a unique and non-degenerate minimum) have an expansion of the form: and Helffer-Sjöstrand proved in [START_REF] Helffer | Multiple wells in the semi-classical limit 1[END_REF] that the first eigenvalues of a pseudo-differential operator with such a symbol admits an expansion in powers of 1/2 . Sjöstrand [START_REF] Sjöstrand | Semi-excited states in nondegenerate potential wells[END_REF] recovered this result using a Birkhoff normal form in the case where the coefficients (ν j ) j are non-resonant.

µ j ( ) = b 0 + E j + 3/2
Charles and Vu Ngoc also tackled the resonant case in [START_REF] Charles | Spectral Asymptotics via the semiclassical Birkhoff Normal Form[END_REF].

Microlocalization results

In section 4, we have proved Theorem 1.2: We have constructed a normal form, which is only valid on a neighborhood U of Σ = H -1 (0) since the rest R can be large outside this neighborhood. Hence, we now prove that the eigenfunctions of L and N are microlocalized on a neighborhood of Σ.

6.1. Microlocalization of the eigenfunctions of L . We recall that

K = {b(q) ≤ b1 } ⊂ Ω.
For ε > 0, we denote

K ε = {q : d(q, K) ≤ ε}. (6.1)
For ε > 0 small enough, K ε ⊂ Ω.

The following Theorem states the well-known Agmon estimates (see Agmon's paper [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF]), which gives exponential decay of the eigenfunctions of the magnetic Laplacian L outside the minimum q 0 of the magnetic intensity b. In particular, these eigenfunctions are localized in Ω. Theorem 6.1 (Agmon estimates). Let α ∈ (0, 1/2) and b 0 < b 1 < b1 . There exist C, 0 > 0 such that for all ∈ (0, 0 ] and for all eigenpair (λ, ψ) of L with λ ≤ b 1 , we have:

M |e d(q,K) -α ψ| 2 dq ≤ C ψ 2 .
In particular, if

χ 0 : M → [0, 1] is a smooth function being 1 on K ε , ψ = χ 0 ψ + O( ∞ ) in L 2 (M ).
Proof. If Φ : M → R is a Lipschitz function such that e Φ ψ belongs to the domain of q , the Agmon formula (Theorem A.3 in Appendix), q (e Φ ψ) = λ e Φ ψ 2 + 2 dΦe Φ ψ 2 , together with the Assumption 1,

(1 + 1/4 C 0 )q (e Φ ψ) ≥ (b(q) -1/4 C 0 )|e Φ ψ| 2 dq g , yields to: (b(q) -1/4 C 0 ) -(1 + 1/4 C 0 )(λ + 2 |dΦ| 2 ) |e Φ ψ| 2 dq g ≤ 0.
We split this integral into two parts:

K c (b(q) -1/4 C 0 ) -(1 + 1/4 C 0 )(λ + 2 |dΦ| 2 ) |e Φ ψ| 2 dq g ≤ K -(b(q) -1/4 C 0 ) + (1 + 1/4 C 0 )(λ + 2 |dΦ| 2 ) |e Φ ψ| 2 dq g .
We choose Φ: Φ m (q) = χ m (d(q, K)) -α for m > 0, where χ m (t) = t for t < m, χ m (t) = 0 for t > 2m, and χ m uniformly bounded with respect to m. Since Φ m (q) = 0 on K and b(q) -1/4 C 0 ≥ 0, we have:

K c (b(q) -1/4 C 0 ) -(1 + 1/4 C 0 )(λ + 2 |dΦ m | 2 ) |e Φm ψ| 2 dq g ≤ C ψ 2 . Morever, λ ≤ b 1 and |dΦ m | 2 ≤ C -2α : K c (b(q) -1/4 C 0 ) -(1 + 1/4 C 0 )(b 1 + C 2-2α ) |e Φm ψ| 2 dq g ≤ C ψ 2 .
Thus, up to changing the constant C 0 :

K c ( b1 -b 1 -1/4 C 0 -C 1-2α )|e Φm ψ| 2 dq ≤ C ψ 2 . Since b1 > b 1 , we have b1 -b 1 -1/4 C 0 -C 1-2α > 0 for small enough. Hence K c |e Φm ψ| 2 dq ≤ C ψ 2 ,
and since Φ m = 0 on K:

|e Φm ψ| 2 dq ≤ (C + 1) ψ 2 .
By Fatou's lemma in the limit m → +∞,

|e d(q,K) -α ψ| 2 dq ≤ (C + 1) ψ 2 .
To prove the second result, notice that

ψ -χ 0 ψ 2 = χ 0 =1 |(1 -χ 0 )ψ| 2 dq ≤ χ 0 =1 |ψ| 2 dq ≤ K c ε |ψ| 2 dq ≤ e -2ε -α K c ε |e d(q,K) -α ψ| 2 dq ≤ Ce -2ε -α ψ 2 = O( ∞ ).
Now we prove the microlocalization of the eigenfunctions of L near Σ. Theorem 6.2. Let ε > 0, δ ∈ (0, 1 2 ), and 0 < b 1 < b1 . Let χ 0 : M → [0, 1] be a smooth function being 1 on K ε . Let χ 1 : R → [0, 1] be a smooth compactly supported cutoff function being 1 near 0. Then for any normalized eigenpair (λ, ψ) of L such that λ ≤ b 1 we have:

ψ = χ 1 ( -2δ L )χ 0 (q)ψ + O( ∞ ) in L 2 (M ).
Proof. Using Theorem 6.1, we have ψ = χ 0 ψ + O( ∞ ) in L 2 (M ). Since χ 1 ( -2δ L ) is a bounded operator, we get:

χ 1 ( -2δ L )ψ = χ 1 ( -2δ L )χ 0 ψ + O( ∞ ) in L 2 (M ).
In fact,

ψ = χ 1 ( -2δ L )ψ.
Indeed, there exists a C > 0 such that χ 1 ( -2δ . ) = 1 on B(0, C 2δ ), and for ∈ (0, 0 ) small enough,

λ ∈ B(0, b 1 ) ⊂ B(0, C 2δ ). Thus, χ 1 ( -2δ L )ψ = χ 1 ( -2δ λ)ψ = ψ.
6.2. Microlocalization of the eigenfunctions of N . The next two theorems states the microlocalization of the eigenfunctions of the normal form. We recall that if ϕ is defined by Theorem 1.1, we have:

ϕ(K) = {w ∈ V : b(w) ≤ b1 }, with b(w) = b • ϕ -1 (w).
We also recall the definition (6.1) of K ε . This first lemma gives a microlocalization result on the w variable.

Lemma 6.1. Let ∈ (0, 0 ] and b 1 ∈ (0, b1 ). Let χ 0 be a smooth cutoff function on R d w supported on V such that χ 0 = 1 on ϕ(K ε ). Then for any normalized eigenpair (λ, ψ) of N such that λ ≤ b 1 , we have:

ψ = Op w (χ 0 )ψ + O( ∞ ) in L 2 (R d x,y ).
Proof. Let χ = 1 -χ 0 , which is supported in ϕ(K ε ) c . The eigenvalue equation yields to

N Op w (χ)ψ, Op w (χ)ψ ≤ b 1 Op w (χ)ψ 2 + [N , Op w (χ)]ψ, Op w (χ)ψ . (6.2) Using Lemma 5.1, we can write ψ = u ⊗ h n for some n ∈ N d/2 , u ∈ L 2 (R d/2 w ), with 0 ≤ |n| ≤ n max . Then [N , Op w (χ)]ψ = [N (n) , Op w (χ)]u ⊗ h n =   d/2 j=1 (2n j + 1)Op w ( βj ), Op w (χ)   ψ + O( 2 ), because the principal symbol of N (n) is d/2
j=1 (2n j + 1) βj . Since the symbol of the commutator is of order and supported in suppχ, we have

[N , Op w (χ)]ψ, Op w (χ)ψ ≤ C 2 Op w ( χ)ψ 2 , (6.3)
where χ is a small extension of χ, with value 1 on suppχ and 0 on a neighborhood of ϕ(K ε ). Moreover using Proposition 4.1,

N Op w (χ)ψ, Op w (χ)ψ ≥ (1 -ζ) L 0 Op w (χ)ψ, Op w (χ)ψ ≥ (1 -ζ) b1 Op w (χ)ψ 2 ,
where we used the G • arding inequality because, the symbol of L 0 is greater than b1 on suppχ. Together with (6.2) and (6.3), we get

(1 -ζ) b1 -b 1 Op w (χ)ψ 2 ≤ C 2 Op w ( χ)ψ 2 .
For η small enough, (1 -ζ) b1 > b 1 . Hence, dividing by and iterating with χ instead of χ, we get Op w (χ)ψ 2 = O( ∞ ).

Now we prove the microlocalization of the eigenfunctions of N on a neighborhood of ϕ(Σ) = {(z, w) : z = 0}. Theorem 6.3. Let ∈ (0, 0 ], b 1 ∈ (0, b1 ), and δ ∈ (0, 1/2). Let χ 0 be a smooth cutoff function on R d/2 w supported on V such that χ 0 = 1 on ϕ(K ε ) and χ 1 a real cutoff function being 1 near 0. Then for any normalized eigenpair (λ, ψ) of N such that λ ≤ b 1 , we have: ) )...χ 1 ( -2δ I (d/2) )Op w (χ 0 (w))ψ + O( ∞ ) in L 2 (R d ).

ψ = χ 1 ( -2δ I ( 1 
Moreover, N ε, ,λ ≥ N ε, , so: Together with Theorem 5.1, this theorem concludes the proofs of Theorems 1.3 and 1.5.

Proof. We will prove that ν n ( ) ≤ λ n ( ) + O( δr ), the other inequality being similar. Let 1 ≤ n ≤ N (L , b 1 ), and let us denote ψ 1, , ..., ψ n, the normalized eigenfunctions associated to the first eigenvalues of L . We also denote

V n, = span{χ 1 ( -2δ L )χ 0 (q)ψ j, : 1 ≤ j ≤ n}, where χ 0 and χ 1 are defined in Theorem 6.2. We have the normal form: Ũ * L Ũ = N + R , (7.1) where Ũ = V U , is given by (4.1) and Theorem 4.1.

We will use the min-max principle. For ψ ∈ span 1≤j≤n ψ j, , we denote ψ = χ 1 ( -2δ L )χ 0 (q)ψ ∈ V n, Such a ψ is microlocalized on Ω ⊂ U ⊂ T * M, where Ω = {(q, p) ∈ T * M : |p -A(q)| 2 < c 2δ , q ∈ Ω}.

The total symbol of -i ∂

k -A k is σ(-i ∂ k -A k ) = p k -A k ,
so we can use the star product on symbols to compute the symbol of L : several times to compute the symbol, where {f, g} denotes the Poisson brackets. Of course, we directly deduce the principal symbol:

σ 0 (|g| 1/4 L coord |g| -1/4 ) = k g k (p k -A k )(p -A )
so that σ 0 (L ) = |p -A(q)| 2 g * (q) . To compute the subprincipal symbol, we will use: Thus we can compute

a k g k = g k (p k -A k ) + 2i {p k -A k , g k } + i |g| -1/4 ∂|g| 1/4 ∂q k g k + O( 2 ) = g k (p k -A k ) + 2i ∂g k ∂q k + i |g| -1/4 ∂|g| 1/4 ∂q k g k + O( 2 ),
and 

a k g k b = g k (p k -A k )(p l -A l ) + 2i {g k (p k -A k ), p -A } - i g k (p k -A k )|g| -1/4

Theorem 1 . 2 (

 12 Semiclassical Birkhoff normal form). We denote by z = (x, ξ) ∈ T * R d/2 x and w = (y, η) ∈ T * R d/2 y

2. 1 .

 1 A symplectic reduction of T * M . The zero set of H:

[κ 1

 1 , κ 2 ](z, w, ) = 2 sinh 2i (f (z , w , )g(z , w , ))| z =z =z,w =w =w , (3.3) where [f ] = κ 1 , [g] = κ 2 , and

  (j) , (1 ≤ j ≤ d/2) introduced in(1.14). At the formal level, expression (3.5) becomes e i adτ (H 0 + γ),(3.6) 

4 . 2 .

 42 2) and V V * = I microlocally on U. (4.3) Proof of Theorem 1.2. By (4.1), we are reduced to the pseudodifferential operator L , which has a total symbol of the form

1 ) 1 . 1 .

 111 , ..., I (d/2) , )(4.6) the normal form, and R the remainder.Proof. The pseudodifferential operator L defined by (4.1) has a symbol of the formσ = Ĥ + 2 r on V × B z (ε), so σ = H 0 + r with γ := [r ] ∈ O 3 . We apply Theorem 3.1 with this γ ∈ O 3 . The formal series κ ∈ O 3 that we get commutes with |z j | 2 (1 ≤ j ≤ d/2), so by formula (3.4) we can write it κ = k≥2 l+|m|=k c l,m (w)|z 1 | 2m 1 ...|z d/2 | 2m d/2 l ,and we can change the coefficients to getκ = k≥2 l+|m|=k c l,m (w)(|ẑ 1 | 2 ) m 1 ...(|z d/2 | 2 ) m d/2 l .We define functions: f (w, I 1 , ..., I d/2 , ) with Taylor series k≥2 l+|m|=k c l,m (w)I m 1 , I 1 , ..., I d/2 , ) with Taylor series k≥2 l+|m|=k c l,m (w)I m 1

2 2 j=1 ν j (y 2 j 2 j=1 ν j (y 2 j + η 2 j

 222222 where E j is the j-th eigenvalue of the d/2-dimensional harmonic oscillator associated to the Hessian of b at the minimum. Let us recall the idea of the proof of this result. Since the minimum of b is non degenerate, we can write b(w) = b 0 + 1 Hess 0 b(w, w) + O(|w| 3 ). A linear symplectic change of coordinates changes Hess 0 b into d/+ η 2 j ), for some positive numbers (ν j ) 1≤j≤d/2 . In these coordinates the symbol becomes b(y, η) = b 0 + d/) + O(|w| 3 ) + O( ),

(η - 1 2 .Lemma 6 . 3 . 7 . 7 . 1 .Theorem 7 . 1 .

 126377171 (1-ε) -1 b 1 ) γ N ε, ≤ L( (1-ε)) -d/2-γ b(x)≤ (1+η)b 1 ε(1+C ) ((1+η)b 1 -ε(1+C )b(x)) d/2+γ dx.The right hand side integral is bounded, and finallyN ε, ≤ C -d/The same result holds for N : Let b 1 ∈ (0, b1 ). There exists C > 0 and 0 > 0 such that for all ∈ (0, 0 ),N (N , b 1 ) ≤ C -d/2 .Proof. By Lemma 4.1, we have:N ψ, ψ ≥ (1 -ζ) L 0 ψ, ψ ≥ (1 -ζ) B ψ, ψ , with B = Op w ( b).Using the min-max principle, it follows thatN (N , b 1 ) ≤ N (B , (1 -ζ) -1 b 1 ),and using Weyl estimates ([9] Chapter 9, or[START_REF]Formules de Weyl par réduction de dimension[END_REF]), we getN (B , (1 -ζ) -1 b 1 ) = O( -d/2). Comparison of the spectra of L and N Proof of Theorem 1.3. We denoteλ 1 ( ) ≤ λ 2 ( ) ≤ ...the smallest eigenvalues of L and ν 1 ( ) ≤ ν 2 ( ) ≤ ... the smallest eigenvalues of N . The goal of this section is to prove the following theorem, using the results of section 6. If b 1 < b1 and δ ∈ (0, 1/2), then λ n ( ) = ν n ( ) + O( δr ), uniformly in n such that λ n ( ) ≤ b 1 and ν n ( ) ≤ b 1 .

σ(|g| 1 / 4 L 4 .

 144 coord |g| -1/4 ) = k |g| 1/4 |g| -1/2 (p k -A k ) g k |g| 1/2 (p -A ) |g| -1/Now we will use the formulaσ(f g) = f g + 2i {f, g} + O( 2 )

σ(|g| 1 / 4 L 4 .

 144 coord |g| -1/4 ) = k |g| -1/4 (p k -A k ) |g| 1/4 g k |g| 1/4 (p -A ) |g| -1/Let us compute a k = |g| -1/4 (p k -A k ) |g| 1/4 . a k = (p k -A k ) + 2i {|g| -1/4 (p k -A k ), |g| 1/4 } + {|g| -1/4 , p k -A k }|g| 1/4 + O( 2 ) = (p k -A k ) + 2i |g| -1/4 ∂|g| 1/4 ∂q k -∂|g| -1/4 ∂q k |g| 1/4 + O( 2 ) = (p k -A k ) + i |g| -1/4 ∂|g| 1/4 ∂q k + O( 2 ).We also get the similar result forb = |g| 1/4 (p -A ) |g| -1/4 : b = (p -A )i |g| -1/4 ∂|g| 1/4 ∂q + O( 2 )

  it is reduced in the decomposition (5.2). More precisely, Lemma 5.1. For n = (n 1 , ..., n d/2 ) ∈ N d/2 , there exists a classical pseudodifferential

	operator N	(n) acting on L 2 (R d/2

y ) such that:

  ∂|g| 1/4 ∂q

	+	2i	∂g k ∂q

k (p -A ) + i |g| -1/4 ∂|g| 1/4 ∂q k (p -A ) + O( 2 ).
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Proof. According to Lemma 6.1,

1 ( -2δ I ) := χ 1 ( -2δ I (1) )...χ 1 ( -2δ I (d/2) ) is a bounded operator, we have

1 ( -2δ I )Op w (χ 0 )ψ + O( ∞ ).

It remains to prove that ψ = χ d/2

1 ( -2δ I )ψ for small enough. Using Lemma 5.1, ψ = u ⊗ h n for some u ∈ L 2 (R d/2 y ), n ∈ N d/2 with 0 ≤ |n| ≤ n max , and so

1 ( -2δ I )ψ = χ 1 ( 1-2δ (2n 1 + 1))...χ 1 ( 1-2δ (2n d/2 + 1))ψ.

But χ 1 = 1 on a neighborhood of 0, so there is 0 > 0 such that, for any ∈ (0, 0 ] and any 0 ≤ |n| ≤ n max , χ 1 ( 1-2δ (2n 1 + 1))...χ 1 ( 1-2δ (2n d/2 + 1)) = 1.

1 ( -2δ I )ψ.

6.3. Rank of the spectral projections. We want the microlocalization Theorems 6.2 and 6.3 to be uniform with respect to λ ∈ (-∞, b 1 ]. That is why we need the rank of the spectral projections to be bounded by some finite power of -1 . If A is a bounded from below self-adjoint operator, and α ∈ R, we denote N (A, α) the number of eigenvalues of A smaller than α, counted with multiplicities. It is the rank of the spectral projection 1 ]-∞,α] (A).

The proof of the following estimate is based on the inequality of Assumption 1, together with a magnetic Lieb-Thirring inequality, which can be found in [START_REF] Frank | A simple proof of Hardy-Lieb-Thirring inequalities[END_REF] for instance. Lemma 6.2. Let b 0 < b 1 < b1 . There exists C > 0 and 0 > 0 such that for all ∈ (0, 0 ], we have:

Proof. In this proof C denotes a large positive constant. First, using the inequality in Assumption 1, we have for all ε ∈ (0, 1),

Thus,

where L = (id + -1 A) * (id + -1 A). Moreover, a Lieb-Thirring inequality for the nonmagnetic operator

, which is (see [START_REF] Frank | A simple proof of Hardy-Lieb-Thirring inequalities[END_REF] for instance) :

for λ > 0, and N ε, ,λ = N ( L + ε(1 -ε) -1 -1 (1 + C )b, λ). We apply this inequality with λ = (1 + η) -1 (1 -ε) -1 b 1 for some η > 0:

(Indeed, the symbol of χ 1 ( -2δ L ) is O( ∞ ) where χ 1 ( -2δ |p -A(q)| 2 ) ≡ 0). Thus, since V V * = I microlocally on U (4.3) and U is unitary, we deduce from (7.1) that:

On the first hand, by Theorem 6.2, we can change ψ into ψ up to an error of order ∞ . Indeed, by Lemma 6.2, the estimates of Theorem 6.2 remain true for ψ. We get:

On the other hand, the remainder is:

because V is a Fourier integral operator with phase function associated to the canonical transformation Φ, which is sending Ω (where ψ is microlocalized) on V . Moreover, the symbol of the pseudo

Thus equation (7.2) yields to:

The same arguments give the opposite inequality, replacing Theorem 6.2 and Lemma 6.2 by Theorem 6.3 and Lemma 6.3. Note that

is empty for all but finitely many n. For these n, the G

• arding inequality gives

) by the classical Weyl asymptotics. For the other finitely many n,

is a compact set with positive volume and thus the classical Weyl asymptotics gives

we deduce that

where ϕ is defined in Theorem 1.1. Since ϕ is a symplectomorphism, we have

and thus

Hence

where the sum is finite. It remains to compare

If we apply Theorem 1.3 with some b 1 + δ > b 1 , we get a c > 0 such that for small enough,

), and the proof is complete.

Appendix A Lemma A.1. The principal and subprincipal symbols of the operator

, and σ 1 (L ) = 0. Proof. We will compute these symbols in coordinates, in which L acts as:

The principal symbol is always well-defined. The subprincipal symbol is well-defined if we restrict the changes of coordinates to be volume-preserving. This amounts to conjugating L coord by |g| 1/4 . Thus the subprincipal symbol is defined in coordinates by:

we deduce that:

The following Lemma due to Weinstein [START_REF] Weinstein | Symplectic manifolds and their Lagrangian submanifolds[END_REF] tells that, if two 2-forms coincide on a submanifold, they are equal up to a transformation tangent to the identity. We recall the proof. Proof. First we recall how to find a 1-form σ on a neighborhood of z = 0 such that:

We define the family (φ t ) 0≤t≤1 by: φ t (z, w) = (tz, w).

We have:

Let us denote by X t the vector field associated with φ t :

The Lie derivative of τ along X t is given by φ * t L Xt τ = d dt φ * t τ . From the Cartan formula we have:

L Xt τ = ι(X t )dτ + d(ι(X t )). Since τ is closed, dτ = 0, and:

We choose the following 1-form (where (e j ) denotes the canonical basis of R d ): Then we use the Moser deformation argument. For t ∈ [0, 1], we let ω t = ω 0 + t(ω 1 -ω 0 ). The 2-form ω t is closed and non degenerate on a small neighborhood of z = 0. We look for ψ t such that: ψ * t ω t = ω 0 . For that purpose, let us determine the associated vector field Y t :

The Cartan formula yields:

and we are led to solve:

By non degeneracy of ω t , this determines Y t . ψ t exists until time t = 1 on a small enough neighborhood of z = 0, and

The next Lemma states the Agmon formula (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF]).

Lemma A.3 (Agmon formula). Let ψ be an eigenfunction of L associated to λ, and Φ : M → R is a Lipschitz function such that e Φ ψ be in the domain of q , then dΦ is defined almost everywhere and:

q (e Φ ψ) = λ e Φ ψ 2 + 2 e Φ ψ dΦ 2 .

Proof. First note that:

q (e Φ ψ) = L e Φ ψ, e Φ ψ L 2 (M ) = λ e Φ ψ 2 + [L , e Φ ]ψ, e Φ ψ L 2 (M ) , so we need to compute the bracket.