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On Steady-State Cornering Analysis for Motorcycles

Majda Fouka1, Lamri Nehaoua1, Hicham Arioui1 and Said Mammar 1

Abstract— In this paper, a neutral-path departure algorithm
is proposed to define safe handling threshold conditions and
dangerous steering situation for powered two-wheeled vehicles.
Based on this study, a Self Steering Gradient for motorcycles
is proposed as a risk function for neutral-path departure
detection. Furthermore, the motorcycle overturning or under-
steering are analyzed based on the handling index. This index
depends on the intrinsic motorcycle parameters, as well as, the
state outputs. The proposed neutral-path departure algorithm
aims to assess the risk when the motorcycle begins to drift out
of the neutral path. Finally, the effectiveness of the detection
scheme is tested using a high-fidelity software BikeSim©.

Index Terms— Steady cornering, Risk function, Motorcycle
Safety.

I. INTRODUCTION

Recently, car manufacturers are constantly seeking to
design new intelligent safety systems, in order, to detect
malfunctions in riding task and to improve the performance
and reliability of active safety systems. Lane departures case
account for a significant percentage of roadway fatalities.
According to Federal Highway Administration’s Roadway
(FHWA’s), from 2015 to 2017 an average of 19,23 traffic
fatalities resulted from roadway departures crashes [1], [3].
In-Depth Investigations of motorcycle crashes, show that
human errors due to tiredness or temporarily distraction are
the most important factors. This is why the last few years
have seen the emergence of on-board roadway departure
assistance systems in cars as a way of improving security and
helping to avoid damage or even fatal crashes in dangerous
steering situations [4]–[8]. In spite of the fact that road-
departure system is present in every modern car, it is not yet
developed for motorcycle and those implemented for four-
wheeled vehicles are not entirely transferable to motorcycles
due to the fact that motorcycle dynamics is more complex
and unstable. Therefore, departure avoidance systems for
motorcycle are the next step, aimed to detect as early as
possible, when the motorcycle is involuntary getting out of
the lane. Then, the rider corrects his trajectory, maintain
stability and keep acceptable performances by means of this
early detection systems.

Currently, relevant works are intended to study the design
of Lane Departure Warning for Motorcycle (LDWM) from
the control point of view. The control effects of the steer-
by-wire (SBW) system for motorcycles was discussed in
[9]. Lane-keeping controller was evaluated through computer
simulation with a rider-control model in [10], [11], in which
the lane-following performance was improved by using a

1 Authors are with University of Evry Val d’Essonne - Paris Saclay,
IBISC Laboratory, Evry, France majda.fouka@univ-evry.fr

virtual-point regulator. In [12], the authors developed a lane
change decision aid system (LCDAS) under the weather and
environmental change using a single camera. In [13], [14],
author study the motorcycle’s steering behavior, achieved by
the vision-based approach to define the motorcycle dynamic
position on the road and detect under or oversteer situation.
Lane Departure Warning System for a motorcycle is still
under development and needs a more thorough investigation
to be implemented in new bikes.

A key problem in building up departure warning systems
for motorcycle or even vehicles is how to develop a driving
risk function, which can be used to warn the rider in the
case of passive assistance or engage the control action in
the case of active assistance. Car roadway departure system
usually defines a lane crossing Time (TLC) and distance to
lane crossing (DLC) as a risk index, to assess the time for
involuntary trespassing the boundaries, see [5], [6]. Neverthe-
less, the TLC presents some limitations, it requires accurate
road information, moreover, it is approximated geometrically
without vehicle dynamics consideration to integrate driver
corrections. Also the TLC alone is not adequate for im-
minent departure situation or not sufficient to characterize
road-departure situations. Indeed, even in risk situation of
high speed in longitudinal motion and/or overmuch lateral
dynamic, in this case, a great value of TLC can be expected
with no alarm generation, see [15].

Among other, steady-state analysis and handling capabil-
ities issues are very related to vehicle safe trajectory and
roadway departure. Many researches were devoted to study
the steady-state handling for cars, see [16]–[19], either to
define analytical handling criteria or the critical dynamic
variables with which the divergent loss of handling occurs.
The analysis of the properties of handling highlights certain
dynamic aspects that are important to define dangerous/safe
stability threshold conditions [20], as the neutral, overturning
or underturning behavior [18]–[22]. Unfortunately, this keen
interest is not as evident to some other road users. Inspired
by steady-state and the handling analysis for cars, our present
work tackles the question of the motorcycle’s steering behav-
ior based on the stationary cornering condition, followed by
the design of a new risk indicator for motorcycle, to describe
steering neutral, under or over behavior.
In this paper, a detection approach towards getting circular
stationary states and analytical handling conditions is de-
veloped for powered two wheeled vehicles (PTWv). Based
on the established motorcycle model, combined with magic
formula tire cornering forces, a Self Steering Gradient for
motorcycles “SS“ is proposed as a risk function. The handling
index “SS“ is computed from currently available standard
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sensors: Inertial Measurement Unit (IMU), steering encoder
and Global Navigation Satellite System (GNSS) without
the need on state observer. Furthermore, a neutral-path
departure (NPD) algorithm based on the “SS“ is proposed
to characterize the motorcycle steering behavior: over or
under-steering situations. The algorithm monitors signals
from sensors and compares intended neutral (theoretical) and
actual paths. If the trajectories differ from each other, this
means that motorcycle is going out neutral path, in this case,
the algorithm generates an alarm to warn the rider.

The paper is organized as follow: Section II presents the
lateral motorcycle dynamics. Section III presents the steady
steering behavior and handling analysis for motorcycle. In
section IV, the side slip relations are examined to define
a risk function for the steering behavior. From which the
proposed NPD algorithm is analyzed in section V and
evaluated using BikeSim in section VI. Last, section VII
concludes the paper.

II. LATERAL MOTORCYCLE DYNAMICS

In this section, the lateral motion of the motorcycle is
modeled as a single track vehicle, as shown in Fig. 1. This
model has three degrees of freedom, namely the lateral dis-
placement, roll, and yaw motion, including the tire cornering
properties, described by the following differential equations:

m(v̇y + ψ̇vx) = Fy f +Fyr
Izψ̈ = l f Fy f − lrFyr

Ixφ̈ +mh(v̇y + ψ̇vx) = mhgφ

may = Fy f +Fyr

(1)

Where Fy f and Fyr are the lateral forces on the front and
rear wheels, vx is the forward speed, ψ̇ is the yaw rate, ay is
the lateral acceleration, m is the motorcycle mass, l f and lr
are horizontal distances, h is the height of the gravity center,
and Iz and Ix are the moment of inertia with respect to the
z−axis and x−axis respectively.

Fig. 1: Motorcycle kinematics.

The lateral cornering forces are given by:{
Fy f = −C f 1α f +C f 2γ f
Fyr = −Cr1αr +Cr2γr

(2)

where C f 1, C f 2, Cr1 and Cr2 are the cornering stiffness and
camber coefficients, α f and αr are sideslip angles, γ f and γr
are the camber angles of the front and rear tyres, respectively.
With : 

α f =
vy+l f ψ̇

vx
−δ cos(ε)

γ f = φ +δ sinε

αr =
vy−lrψ̇

vx
γr = φ

(3)

After slight calculation, one can obtain:
m(v̇y + ψ̇vx) = a1

vy
vx
+a2

ψ̇

vx
+a3δ +a4φ

Izψ̈ = a5
vy
vx
+a6

ψ̇

vx
+a7δ +a8φ

Ixφ̈ +mh(v̇y + ψ̇vx) = mhgφ

(4)

whereas, ai are function of l f , lr, ε , C f i and Cri with i =
(1,2), given by:

a1 =−(C f 1 +Cr1)
a2 =−(l f C f 1− lrCr1)
a3 = (C f 1 cos(ε)+C f 2 sin(ε))
a4 = (C f 2 +Cr2)
a5 = a2
a6 =−(l2

f C f 1 + l2
r Cr1)

a7 = (l f C f 1 cos(ε)+ l f C f 2 sin(ε))
a8 = (l f C f 2− lrCr2)

(5)

III. STEADY STEERING BEHAVIOUR AND HANDLING
ANALYSIS

The aim of this section is to extract form the above model
(4), the operating steady steering conditions. These charac-
teristics are important and concur to define the sensitivity of
the motorcycle’s handling [23]. Which is commonly judged
by how a vehicle reacts to the rider inputs during cornering.
Under a steady cornering scenario, the yaw rate ψ̇ as well
as the steering angle, the lateral velocity and the side slip
are constants, it follows:

mψ̇vx = a1
vy
vx
+a2

ψ̇

vx
+a3δ +a4φ

a5
vy
vx
+a6

ψ̇

vx
+a7δ +a8φ = 0

ψ̇vx = gφ

(6)

After quick manipulation, one can write :


(

a5m− a5a4−a1a8

g

)
︸ ︷︷ ︸

K1

v2
x−(a5a2−a1a6)︸ ︷︷ ︸

K2

 ψ̇

vx
= (a5a3−a1a7)︸ ︷︷ ︸

K3

δ

(7)

where
K1 = (−(l f C f 1− lrCr1)m−

(l f +lr)(C f 2Cr1−C f 1Cr2)
g )

K2 = (l f − lr)2C f 1Cr1
K3 = (l f + lr)C f 1

(
Cr1 cos(ε)−C f 2 sin(ε)

) (8)
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The steering sensitivity ψ̇

δ
is given by :

ψ̇

δ
=

(K3
K2
)vx

[Kv2
x +1]

(9)

Where K = K1
K3

is the handling factor. The aim of this
part is to extract from the above model (4), the operating
steady steering conditions. The motorcycle steering tendency
depends on the yaw rate, the forward velocity vx and the
stability factor K, it follows:
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Fig. 2: Motorcycle sensitivity gain.

1) K = 0 for Neutral steering, ψ̇

δ
= K3

K2
vx has a linear

relation with motorcycle speed with K3
K2

is the slope.
2) K > 0 Under-steering, the steering sensitivity is below

the neutral steering characteristic. d
dvx

( ψ̇

δ
) = 0→ vch =

1√
K

. It is interpreted as the motorcycle characteristic
speed at which the vehicle reacts most sensitively to
steering inputs.

3) K < 0 Over-steering: when vcr =
1√
−K

, the steering
sensitivity strives toward infinity, where vcr is the crit-
ical speed, for which a motorcycle becomes unstable
because its steering is canceled, as even very small
steering input would lead to infinite yaw rate.

IV. THE SIDE SLIP DYNAMICS

The following study defines a new handling factors proper
to motorcycle. In steady cornering, the state variables are
given by:

φ =
ψ̇vx

g
, ρ =

ψ̇

vx
=

1
R
, ay = ψ̇vx (10)

The side slip relation can be expressed as a function of
motorcycle intrinsic and dynamic variables from equations (1
and 2): α f −αr = f1(φ ,δ ,ay,ε,m, l f , lr,C f i,Cri), as well as
from the kinematics equation (3): α f −αr = f2(δ ,R,ε, l f , lr).
Now, replacing cornering forces (2) into (1), it follows:
[

α f
αr

]
=

[
C f 1 Cr1

l f C f 1 −lrCr1

]−1([ may
0

]
−
[

C f 2 Cr2
l f C f 2 −lrCr2

][
γ f
γr

])
(11)

From the above equation:
α f =

(lrm)
(C f 1l f +C f 1lr)

ay−
C f 2lr+C f 2l f
(C f 1l f +C f 1lr)

γ f

αr =
(l f m)

(Cr1l f +Cr1lr)
ay−

Cr2lr+Cr2l f
(Cr1l f +Cr1lr)

γr

(12)

Replacing the camber angles (γ f = φ + δ sin(ε), γr = φ)
in equation (12), one gets side slip relation:

α f −αr = (
Cr2C f 1−C f 2Cr1

Cr1C f 1
)︸ ︷︷ ︸

EG2

φ −
C f 2

C f 1
sin(ε)︸ ︷︷ ︸

EG3

δ+

(Cr1lr−C f 1l f )

C f 1Cr1

m
(l f + lr)︸ ︷︷ ︸

EG1

ay

= EG1ay +EG2φ −EG3δ

(13)

From the following kinematics equations:

α f =−
vy + l f ψ̇

vx
+δ cos(ε), αr =−

vy− lrψ̇
vx

(14)

The side slip relation is also described as:

α f −αr = − vy+l f ψ̇

vx
+ cos(ε)δ +

vy−lrψ̇

vx

= −(l f + lr)
ψ̇

vx
+ cos(ε)δ

= − (l f +lr)
R + cos(ε)δ

(15)

The self-steering behavior depends on the sideslip difference:{
α f −αr = EG1ay +EG2φ −EG3δ

α f −αr = − (l f +lr)
R + cos(ε)δ

(16)

by identifying the above equations, one get:

δ =
(l f +lr)

R(cos(ε)+EG3)
+ay

EG1
(cos(ε)+EG3)

+φ
EG2

(cos(ε)+EG3)

= δA +ay
EG1

(cos(ε)+EG3)
+φ

EG2
(cos(ε)+EG3)

= δA +∆δ

(17)
With

δA =
(l f + lr)

R(cos(ε)+EG3)
(18)

The steering angle δA resulting from equation (17), is
called the neutral steering angle. The additional ∆δ angle
is caused by the motorcycle’s dynamics.

𝛿 = 0
Left Turn Right Turn

𝛿𝐴 > 0 𝛿𝐴 < 0

𝛿𝐴

𝛿

𝛿𝐴
𝛿

Oversteering

Oversteering
𝛿 > 𝛿𝐴 > 0

0 > 𝛿𝐴 > 𝛿

𝛿

Understeering

𝛿𝑎𝑐𝑘 > 𝛿

𝛿

𝛿 > 𝛿𝑎𝑐𝑘

Fig. 3: Over and Under steering situation.

Now, in order to propose a detection algorithm for the over
and under steer situations, we propose a risk function defined
from the self steer behavior in equation (17). Therefore, the
steering behavior can also be described as follows:

SS =
δ−δA

ay(1+
EG2φ

EG1ay )

(cos(ε)+EG3)
EG1 (19)
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where SS represents the Self-Steer Motorcycle Gradient. In
the straight-line road, the lateral acceleration is small, and SS
values become very large. Thus we use the algebraic function
sign(ay) instead of ay to avoid the detection of false alarms
due to SS→∞. Now, the expression of the steering behavior
(19) is completely defined, a simple analysis of SS makes it
possible to characterize the steering behavior of the PTWv.

Algorithm 1: Neutral Path Departure
(NPD) Algorithm :

1 Input

Recovered



δA, δ , φ , ay⇒ SS,
˙︷︸︸︷

SS
ζ1,ζ2(decision variable)

ζ1 =

 1 Over steer alarm
0 Neutral steer
−1 Under steer alarm

ζ2 =

 1 Counter steering
0 No correction
−1 Under steer correction

(20)

if (SS = 0 &
˙︷︸︸︷

SS = 0 ) then
2 Neutral steer: ζ1 = 0, ζ2 = 0

3 if (δA > 0 → Left turn ) then
4 if (SS > 0 ) then

5 if (
˙︷︸︸︷

SS ≥ 0 ) then
6 Over steer: ζ1 = 1, ζ2 = 0

7 else
8 Counter steer: ζ1 = 1, ζ2 = 1

9 if (SS < 0 ) then

10 if (
˙︷︸︸︷

SS ≤ 0 ) then
11 Under steer: ζ1 =−1, ζ2 = 0

12 else
13 Under steer correction: ζ1 =−1, ζ2 =−1

14 else
15 (δA < 0 → Right turn )
16 if (SS > 0 ) then

17 if (
˙︷︸︸︷

SS ≥ 0 ) then
18 Under steer: ζ1 =−1, ζ2 = 0

19 else
20 Under steer steer: ζ1 =−1, ζ2 = 1

21 if (SS < 0 ) then

22 if (
˙︷︸︸︷

SS ≤ 0 ) then
23 Over steer: ζ1 = 1, ζ2 = 0

24 else
25 Counter steering: ζ1 = 1, ζ2 = 1

V. NEUTRAL PATH DETECTION ALGORITHM

Neutral Path Departure algorithm aims to help a rider in
maintaining safe travel, where the goal is to detect an over or
an understeer behavior compared with the neutral dynamics
and to warn the rider of a lose of friction between the front

and rear wheels. The NPD algorithm depends on a risk
function SS proper for a motorcycle, this index is required to
detect the drift out from the neutral steady dynamics, the sign
of the SS signifies the understeer and oversteer behavior of
the motorcycle in left and right turn. Then, the rider adjusts
the steering angle, rider’s posture and/or forward speed to
recover the neutral trajectory without a controller. Moreover
to improve the confidence of the results, the analysis of the

derivative
˙︷︸︸︷

SS is very interesting to detect the changing in
the steering action if any correction is taken by the rider. This
consideration is made to avoid false alarms when the driver
is already correcting his maneuver. Therefore, the sign of SS

and derivative
˙︷︸︸︷

SS is used to define two decision variables
(ζ1,ζ2). The process of providing a neutral departure warning
is summarized in the following algorithm (1).

The following cases are considered:

1) SS ≈ 0 (
˙︷︸︸︷

SS = 0): The motorcycle is neutral-steering
(α f = αr). In this case, the steering powers are equal
in the front and rear wheels. When cornering, no
change in steering angle is required to maintain the
correct radius when the speed varies.

2) Right turn, δA < 0 (clockwise):

-SS < 0 (
˙︷︸︸︷

SS < 0), when motorcycle steers towards the
right: this reflects over-steering behavior. The actual
cornering radius is smaller than the neutral one. Indeed,
a decrease in lateral acceleration causes a greater in-
crease in the radius of the trajectory. This phenomenon
generates instability which can only be countered by
a decrease in the steering angle to stay on the neutral
radius.

-SS < 0 (
˙︷︸︸︷

SS > 0) reflects counter-steering behavior
(correction of the over steer)

-SS > 0 (
˙︷︸︸︷

SS > 0) reflects under-steering behavior. It
is necessary to steer the steering angle in the clockwise
sense to stay on the right radius.

-SS > 0 (
˙︷︸︸︷

SS < 0) correction of the under-steer.
3) Left turn, δA > 0 (anticlockwise):

-SS > 0 (
˙︷︸︸︷

SS > 0) reflects over-steering behavior, the
actual cornering radius is smaller than the neutral one,
the rider has to turn the front wheel in the right side,
reduce roll angle or accelerate to increase the radius
and catch the neutral path.

-SS > 0 (
˙︷︸︸︷

SS < 0) counter-steering behaviour.

-SS < 0 (
˙︷︸︸︷

SS < 0) reflects under-steering behavior, the
actual cornering radius is greater than the neutral path,
the rider has to steer towards the left side or tilt to
increase roll angle to reach the correct radius.

-SS < 0 (
˙︷︸︸︷

SS > 0) under-steer correction.

Remark 1: Moreover, a hysteresis function Hys(SS) or a
memory block can be used to avoid multiple switching. This
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block holds the value of (SS) when the algorithm switches

to test the rider correction by
˙︷︸︸︷

SS . The use of this block
can minimize unwanted behavior when switching between
the algorithm loops.

SS

Hys(SS)

|
S∗S

1

Fig. 4: Memory block

VI. SIMULATION

The proposed approach is evaluated by co-simulation with
Bikesim© software [24] under different riding maneuver . A
PTWv model is chosen from the dataset Big Sport Baseline
8 bodies and default parameters. It will be assumed that:
• The road is flat with a high friction coefficient of µ =

0.9
• The road curvature of the neutral trajectory is considered

to be constant.
• In these simulations, the motorcycle is driven at a

constant speed of 50km/h.
The simulations are carried out in two subsections:

Scenario 1: Three tests are conducted to evaluate the risk
index: an oversteer scenario, a neutral turning sce-
nario and an understeer maneuver.

Scenario 2: A mixed scenario including neutral, under,
oversteer and rider correction with noise consider-
ation to highlight the detection scheme and alarm
generation.

Note that BikeSim offers several driver models with different
control strategies. In our case, it is an open-loop control
on the steering torque, more suitable to simulate steering
behavior.

A. Scenario 1

In this subsection, it is proposed to validate the risk
function selected for the detection of under and oversteer
on the handlebar of a PTWv. To do this, we have simulated
a circular trajectory with a constant radius of 61.4 meters
for three different riding scenarios, conducted for different
steering torques.

0 5 10 15 20 25 30

-2

0

2

4

6

8

Neutral

Under

Over

| |  3

(a) Rider torque and steering angle.

-60 -40 -20 0 20 40 60 80

-120

-100

-80

-60

-40

-20

0

20 Neutral Under Over Road Edges

(b) Neutral Path Departure.

Fig. 5: Steering behavior.

Figure 5a shows the steering torques applied to the PTWv.
On the same figure, we can also see the steering angle
corresponding to a scale factor of 3.
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0.02
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(a) Steady Outputs.
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-0.1
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-5

0

5

0 10 20 30
-1

-0.5

0

0.5

1

(b) State errors.

Fig. 6: Steady Steering behavior.

The input steering angle used in this tests is defined such
that the wheel lift-off occurs at 13 sec, whereas in neutral
test no wheel lift-off occurs. For the neutral scenario, the
torque applied to the handlebar is τ = 6 N/m. When a
PTWv is oversteer, the torque applied by the rider on the
handlebars is too important compared to the geometry of the
turn. PTWv tends to turn inward of the curve. Conversely,
when understeer the applied torque is lower than the neutral
one, the PTWv tends to increase the trajectory to the road
exit. The vertical dashed line refers to the time from which
the steering behavior is significantly affected by the over or
understeer phenomenon.

Figure 5b shows the different trajectories of the PTWv
during the constant turn. In blue, the motorcycle trajectory
for a neutral turning. In which the motorcycle path is
parallel to that of the road edges. While in red, we show
the trajectories of over turning, respectively in black under
turning.

Figures 6a and 6b show the consequences of the over and
under-steering phenomena on the steady state variables for
the three cases. It can be seen that the slightest action on
the handlebars when cornering has significant consequences
on the complete dynamics of the PTWv (ψ̇ , ay, φ , etc).
Figure 7 shows the steering index calculated from equation
(19) for the three scenarios. It can be noted that the alarm
and correction signals remain at zero when no wheel lift-
off occurs. Then, these signals detect the motorcycle is
drifting out: ζ1 =−1 understeer or ζ1 = 1 oversteer. In these
scenarios, no correction is taken by the ride ζ2 = 0. The SS
shows good efficiency to early detect the steering errors from
the neutral path. This advantage is very interesting since the
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neutral path departure has to be quickly avoided.

0 5 10 15 20 25 30

-0.2

0

0.2

Neutral Under Over

0 5 10 15 20 25 30
-0.04

-0.02

0

0.02

0 5 10 15 20 25 30
-1

0

1 Alarm 
1

Correction 
2

Fig. 7: Alarm and corrections.

B. Scenario 2

This part is devoted to evaluating the neutral path depar-
ture warning algorithm in noisy case.

0 10 20 30 40 50
5.2

5.4

5.6

5.8

6

6.2 Neutral
Actual

  8

(a) Rider torque and steering angle.

0 10 20 30 40 50
-2

-1

0

1

2

3 Longitudinal error
Lateral error

(b) Trajectory errors Departure.

Fig. 8: Steering behavior.

During this scenario, the motorcycle is driven to perfectly
follow the neutral path road until 9 sec. Then, the wheel
drifts out will occurs first as understeer until 30 sec including
a rider correction, then as oversteer until 50 s with some
adjustment from the rider, seeking to catch the neutral line.
Figure 8a shows the steering torques applied by the rider and
the corresponding steering angle.

Fig 8b shows the lateral and longitudinal errors. While,
figures 9 shows the consequences of the neutral path depar-
ture on the motorcycle states.

0 10 20 30 40 50
0.33

0.34

0.35

0 10 20 30 40 50
-3.3

-3.2

-3.1

-3
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0.0135

0.014

0.0145
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-0.235

-0.23
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Fig. 9: Noisy outputs.

Figure 10 illustrates the relevant indicators proposed for
the characterization of steering behavior. The risk indicator
SS is computed here from the noisy measurement of the
actual steering, lateral acceleration, and roll angle of the

PTWv. Moreover, the analysis of
˙︷︸︸︷

SS is very interesting to
characterize the changing in the rider steering action. Note
that the raw data (unfiltered) is difficult to exploit because
of the noise amplified by the derivation. This is why the
SS have been filtered with a simple first-order Butterworth
filter. Therefore, we prefer to use the SS and derivative

˙︷︸︸︷
SS to define two levels of risk: the first level detects

the over/understeering and the second level detects if any
correction is taking by rider.
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Fig. 10: Risk functions, alarm and corrections.

One can see in figures (10) that the used steering risk
indicators and the alarm signal given by the detection algo-
rithm are very interesting to detect the rider errors and the
neutral path drift out even with noisy outputs. It can be noted
that the alarm signal remains at zero when no neutral path
departure is detected SS = 0. Then the alarm signals take the
correct values depending on which direction the motorcycle
is drifting out ζ1 =−1 understeer or ζ1 = 1 oversteer. Also,
one can see the alarm corresponding to rider correction ζ2
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which means that the rider is trying to bring back the PTWv
to the neutral path.

C. Result discussion

Finally, simulation results from the BikeSim software have
shown that the synthesis of the detection algorithm-based
risk function has undeniable potential to characterize the
steering behavior. Indeed, it is much informative since it

is based on the analysis of two parameters SS and
˙︷︸︸︷

SS .
These results attest the effectiveness of the risk indicators
developed for neutral path departure detection algorithm.
These results highlight the effectiveness of the detection
algorithm to detect in an early stage the steering deviation.
This advantage is very interesting since the road departure
has to be earlier avoided. Although the results are really
encouraging, the idea presented in this paper deserves to be
deepened. Indeed, for the validation of the approach, we are
limited to the co-simulation case and improvements should
be made to avoid bad detection in case of using estimated
data instead of measurement outputs in some situations.

VII. CONCLUSION

In this paper, we proposed a synthesis of a new risk
function for the characterization of rider steering behavior.
While conventional approaches use kinematics or geometric
functions, to detect the intersection point on the road edges.
We propose here a new neutral-path departure algorithm to
overcome rider steering errors when the drifts out of the
neutral lane. The motorcycle tendency to under or oversteer
in steady turning is also analyzed, based on handling condi-
tions. Besides, the NPD algorithm is designed based on the

SS and
˙︷︸︸︷

SS . Then, the detection method was tested in co-
simulation using BikeSim© under different steering maneu-
vers to highlight the effectiveness of the proposed algorithm
to detect in an early stage the over/under steering deviation
from the neutral path, to improve motorcycle handling and
correct the unsafe maneuver. Indeed, the proposed solution is
very economical, limiting the amount of energy needed since
it only requires a conventional IMU and a steering encoder
without the need on the state observer.
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