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Plane partitions and the combinatorics of
some families of reduced Kronecker
coefficients.

Laura Colmenarejo1†

1Departamento de Álgebra, Universidad de Sevilla, Sevilla, España

Abstract. We compute the generating function of some families of reduced Kronecker coefficients. We give a combi-
natorial interpretation for these coefficients in terms of plane partitions. This unexpected relation allows us to check
that the saturation hypothesis holds for the reduced Kronecker coefficients of our families. We also compute the
quasipolynomial that govern these families, specifying the degree and period. Moving to the setting of Kronecker co-
efficients, these results imply some observations related to the rate of growth experienced by the families of Kronecker
coefficients associated to the reduced Kronecker coefficients already studied.

Résumé. Nous calculons les fonctions génératrices de certaines familles de coefficients de Kronecker réduits. Nous
donnons une interprétation combinatoire de ces coefficients à l’aide de partitions planes. Cette relation inattendue
nous permet de vérifier que l’hypothèse de saturation est vérifiée pour les coefficients de Kronecker réduits de nos
familles. Nous calculons aussi le quasi-polynôme qui gouverne ces familles en spécifiant le degré et la période. En
passant au coefficient de Kronecker, ces résultats impliquent certaines observations reliées au taux de croissance des
familles de coefficients de Kronecker associés aux coefficients de Kronecker réduits déjà étudiés.

Keywords. Combinatorial representation theory, symmetric functions, Kronecker product, combinatorial interpreta-
tion of coefficients, stability

Introduction
Trying to understand the Kronecker coefficients is one of the most important problems in Representation
Theory. It has captured the attention of mathematicians for almost a century, but it has remained unsolved.
Recently, it has come back to the forefront because of their connections to Geometric Complexity theory,
[BMS13, BI08, PP15, BOR09], and to Quantum Information Theory, [CM06, Kly04, Wig37].

The Kronecker coefficients are the multiplicities appearing in the decomposition into irreducible of the
tensor product of two irreducible representations of the symmetric group. They also appear naturally in
the study of the general lineal group and the unitary group.

In 1938 Murnaghan discovered an intriguing stabilization phenomena for the Kronecker coefficients,
[Mur38, Mur56]. They stabilize when we increase the first rows of its three indexing partitions. The limits

†Email: laurach@us.es. Partially supported by MTM2013-40455-P, P12-FQM-2696, FQM-333, and FEDER.

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html


348 L. Colmenarejo

of these sequences are known as the reduced Kronecker coefficients. They are indexed by the partitions
obtained after deleting the first parts of the original triple.

In [BRR16], Briand, Rattan and Rosas described the effect of increasing the first rows and columns of
the partitions indexing a reduced Kronecker coefficient. They found stability for the first situation, and
linear growth for the second. Trying to go one step further, we investigate what happen when we add
cells to other rows and columns of the partitions indexing reduced Kronecker coefficients. In the present
abstract, we study the following families of reduced Kronecker coefficients:

. Family 1 g
(k)

(ka),(kb)

. Family 2 g
(k)

((k+i)a),(kb)

. Family 3 g
(k)

(kb),(k+i,ka)

After a briefly introduction about the reduced Kronecker coefficients and their relation with the Kro-
necker coefficients, Section 2 focuses on our families of reduced Kronecker coefficients. Definition 2.2
introduces the Kronecker tableaux of C. Ballantine and R. Orellana. They are our main combinatorial
tool: in Theorem 2.3 it is shown that they can be used to compute the reduced Kronecker coefficients that
we are considering.

The generating function related to Families 1, 2 and 3 are shown in Theorem 2.4. For Family 1, we
give the generating function for the reduced Kronecker coefficients g(k)

(ka),(kb)
. This generating function

depends on a and b. In the case of Family 2, we show that after some initial zeros, their generating
function is exactly the generating function of Family 1. Then, results related to Family 1 apply also for
Family 2. Finally, for Family 3 we give the generating function of the stable value in the diagonals. This
phenomenon is explained in Table 3.

In Section 3, we give a striking connection to plane partitions. In Theorem 3.2 we show that the reduced
Kronecker coefficients corresponding to the different families have a combinatorial description in terms
of plane partitions. We obtain this result by comparing the generating function obtained in Theorem 2.4
with MacMahon’s classical formula, Theorem 3.1. Plane partitions have appeared before in the study of
the Kronecker coefficients of E. Vallejo, [Val00], and L. Manivel, [Man10].

Section 4 is dedicated to some applications. We show that the saturation conjecture of Kirillov and
Klyachko holds for these three families of reduced Kronecker coefficients, and that the sequences related
to Families 1 and 3 are weakly increasing. In Theorem 4.4, we show that Family 1 and Family 3 are
described also by quasipolynomials. We specify the period and the degree of those quasipolynomials.

Finally, we make some observations about the rate of growth experienced by the Kronecker coefficients
associated to the families of reduced Kronecker coefficients already studied.

The results concerning Family 1 are joint work with M. Rosas, and were announced in [CR15].

1 Reduced Kronecker coefficients
In 1938, Murnaghan introduced the reduced Kronecker coefficients, gγαβ , through the Kronecker product,
although he did not call them like that.
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Theorem 1.1 (Murnaghan’s Theorem, [Mur38] [Mur56]) There exists a family of non–negative inte-
gers {gγαβ}, indexed by triples of partitions (α, β, γ), such that, for α and β fixed, only finitely many terms
gγαβ are non–zero, and for all n ≥ 0,

sα[n] ∗ sβ[n] =
∑
γ

gγαβsγ[n],

where α[n] = (n− |α|, α1, α2, . . . ).

The reduced Kronecker coefficients are directly related to the Kronecker coefficients. Note that α[n]
is a partition if and only if n ≥ α1 + |α|. Murnaghan’s theorem shows the following stability property
for the Kronecker coefficients: for n big enough the expansion of sα[n] ∗ sβ[n] in the Schur basis does not
depend on the first part of the indexing partitions.

In particular, given three partitions α, β and γ, the sequence
{
g
γ[n]
α[n]β[n]

}
n

is eventually constant. The

reduced Kronecker coefficient gγαβ can be defined as the stable value of this sequence. Therefore, there
exists a positive integer N such that for n ≥ N

gγαβ = g
γ[n]
α[n]β[n].

The point at which the expansion of the Kronecker product sα[n] ∗ sβ[n] stabilizes is denoted by
stab(α, β). In [BOR11], E. Briand, R. Orellana, and M. Rosas prove that stab(α, β) = |α|+|β|+α1+β1.
Like the reduced Kronecker coefficients inherit the symmetry from the Kronecker coefficients, we have
the following bound for N .

Corollary 1.2 Consider three partitions α, β and γ such that, for n ≥ N

gγαβ = g
γ[n]
α[n]β[n].

Then, N ≤ min{stab(α, β), stab(α, γ), stab(β, γ)}.
The reduced Kronecker coefficients are interesting objects of their own right. Littlewood observed that

they coincide with the Littlewood-Richardson coefficients when |α|+ |β| = |γ|, [Mur55, Lit58]. In fact,
it is believed that they are easier to understand than the Kronecker coefficients. Regardless, it has been
shown that they contain enough information to compute from them the Kronecker coefficients, [BOR11].

2 The generating function of several families of reduced Kronecker
coefficients

Before computing the generating functions of these families, we need to introduce the combinatorial tools
that we use in our proofs.

Definition 2.1 An α–lattice permutation is a sequence of integers such that in every initial part of the
sequence the number of occurrences of i plus αi is bigger or equal than the number of occurrences of
i+ 1 plus αi+1.

Definition 2.2 A Kronecker tableau is a semi–standard Young tableau T of shape λ/α and type ν/α, with
α ⊂ λ ∩ ν, whose reverse reading word is an α–lattice permutation, and such that if either α1 = α2 or
α1 > α2 and any one of the following two conditions is satisfied:
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(i) The number of 1’s in the second row of λ/α is exactly α1 − α2.

(ii) The number of 2’s in the first row of λ/α is exactly α1 − α2.

We refer to this last condition as α−condition. The number of Kronecker tableaux of shape λ/α and type
ν/α, with α ⊂ λ ∩ ν, is denoted by kλαν .

For instance, consider λ = (5, 3, 2, 1), ν = (5, 4, 2) and α = (3, 1). Then, on the left, there is an
example of a tableau that is not a Kronecker tableau, because it does not satisfy the α−condition, and on
the right, there is an example of a Kronecker tableau:

3
1 3

2 2
1 2

No Kronecker tableau

3
1 2

1 3
2 2

Kronecker tableau

In [BO07], C. Ballantine and R. Orellana introduce the notion of the Kronecker tableaux to give a combi-
natorial description of a special kind of Kronecker coefficients.

Lemma 2.3 (Theorem 3.2(a), [BO07]) Let n and p be positive integers such that n ≥ 2p. Let λ =
(λ1, . . . , λ`(λ)) and ν be partitions of n. If λ1 ≥ 2p − 1, the multiplicity of sν in s(n−p,p) ∗ sλ equals∑
α`p

α⊆λ∩ν

kλαν .

The families that we study in this article present different stability properties. Firstly, we present these
properties with different examples.

Family 1 has the following stability property for the case b = a: for each fixed k, the sequence obtained
when a grows stabilizes. Moreover, its generating function depends only on a. The following table shows
this phenomenon, specifying the references from On-Line Encyclopedia of Integer Sequences.

Tab. 1: Family 1: Case b = a, for a = 0, . . . , 6

k 0 1 2 3 4 5 6 7 8 9 10 11 12 OEIS
a= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 A000007
a= 1 1 1 2 2 3 3 4 4 5 5 6 6 7 A008619
a= 2 1 1 3 4 7 9 14 17 24 29 38 45 57 A008763
a= 3 1 1 3 5 9 13 22 30 45 61 85 111 150 A001993
a= 4 1 1 3 5 10 15 26 38 60 85 125 172 243 A070557
a= 5 1 1 3 5 10 16 28 42 68 100 151 215 312 A070558
a= 6 1 1 3 5 10 16 29 44 72 108 166 241 357 A070559

For b = a in Family 2, g(k)((k+i)a)(ka), we have that, after some initial zeros, the sequence defined by
the non–zero reduced Kronecker coefficients is independent of i and it is equal to the sequence defined by
Family 1. Let see this phenomenon with an example.
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Tab. 2: Family 2: case a = b = 2.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i= 0 1 1 3 4 7 9 14 17 24 29 38 45 57 66 81 93 111
i= 1 0 0 0 1 1 3 4 7 9 14 17 24 29 38 45 57 66
i= 2 0 0 0 0 0 0 1 1 3 4 7 9 14 17 24 29 38
i= 4 0 0 0 0 0 0 0 0 0 1 1 3 4 7 9 14 17
i= 5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 4 7

We observe that the sequence defined by each row is exactly the third row, when a = 2, in Table 1.
Family 3 shows a stability phenomenon when we look at its diagonals when b = a + 1. This phe-

nomenon can be seen in the following table for a = 2 and b = 3. We look at the sequence formed by the
numbers in bold.

Tab. 3: Family 3: case a = 2 and b = 3.
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 OEIS

i= 0 1 1 3 4 7 9 14 17 24 29 38 45 57 66 A008763
i= 1 0 1 2 4 7 11 16 23 31 41 53 67 83 102 A000601
i= 2 0 0 1 2 5 8 14 20 30 40 55 70 91 112 A006918
i= 3 0 0 0 1 2 5 9 15 23 34 47 64 84 108 A014126
i= 4 0 0 0 0 1 2 5 9 16 24 37 51 71 93
i= 5 0 0 0 0 0 1 2 5 9 16 25 38 54 75 A175287
i= 6 0 0 0 0 0 0 1 2 5 9 16 25 39 55

Each diagonal of the table stabilizes to a value of this sequence. We give the generating function for
the sequence of the stable values of the diagonals. For instance, in Table 3 the sequence of stable values
is 1,2,5,9,16,25,39,. . .

Now we are ready to compute the generating function for the families of reduced Kronecker coefficients
that we consider.

Theorem 2.4 1. For b = a, the generating function of the reduced Kronecker coefficients of Family 1,
g
(k)
(ka),(ka), is

Fa =
1

(1− x)(1− x2)2 · · · (1− xa)2(1− xa+1)
.

2. For b = a, the generating function of the reduced Kronecker coefficients of Family 2, g(k)((k+i)a),(ka),

for k ≥ a(a+1)
2 · i is also Fa.

3. For b = a+1, the stable value of the jth diagonal corresponds to the reduced Kronecker coefficients
g
(k)
(ka),(2k−j,ka−1), when k ≥ 2j. Their generating function is

Ga =
1

(1− x)2(1− x2)3 . . . (1− xa−1)3(1− xa)2(1− xa−1)
.
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Remark 1 For a 6= b in Families 1 and 2, and for b 6= a+1 in Family 3, the reduced Kronecker coefficients
take values 0 or 1.

Proof Sketch of proof:: We present a sketch of the proof for the case corresponding to Family 3.
Fix positive integers a and j. The jth diagonal is described by setting i = k − j. We consider the

reduced Kronecker coefficients g(k)(ka)(2k−j,ka−1). By Corollary 1.2, the reduced Kronecker coefficients

can be seen as Kronecker coefficients. Therefore, g(k)(ka)(2k−j,ka−1) counts the Kronecker tableaux of
shape (3k, ka)/α and type (2k + j, 2k − j, ka−1)/α, with α ` k and `(α) ≤ a+ 1.

Since Ga is the generating function for coloured partitions with parts in Ca = {1, 1, 2, 2, 2, . . . , a −
1, a− 1, a− 1, a, a, a + 1}, it suffices to define a bijection between coloured partitions with parts in Ca
and the Kronecker tableaux counted by g(k)(ka)(2k−j,ka−1).

We define the bijection with the following algorithm: to a partition β of j with parts in Ca, we associate
a Kronecker tableau T (β) as follows. We identify each element of Ca∪{0} with a column of height a+1
according to the following scheme:

a+ 1

...

5

4

3

2

1

0 1

a+ 1

...

5

4

3

1

1

1

a+ 1

...

5

4

2

2

l

a+ 1

...

l + 3

l + 2

1

l

l

a+ 1

...

l + 3

l + 2

l + 1

l

l

a+ 1

...

l + 3

2

l + 1

1

a

a+ 1

a a+ 1

for l = 2, . . . , a− 1.
Letmi, with i ∈ Ca∪{0}, denote the number of times that i appears in β. Using that β is a partition of j

and that the blue boxes on these columns form a partition α of k, we get thatm0 = k−j−m1−
∑a−1
l=2 ml

.
The rest of mi are determined by β. The partition α of k satisfies the following recursion: αa+1 = ma+1,
αl = αl+1 +mi +ml +m

l−1
for l = 3, . . . , a, α2 = α3 +m2 +m2 +m1, and α1 = α2 +m1 +m0.

Note that it is always possible to order these columns in such a way that we obtain a semi–standard
Young tableau. This semi–standard Young tableau defines the first columns of T (β). The rest of the
Kronecker tableau of shape (3k, ka)/α is built as follows: the lth row is filled with l, for l = 2, . . . a+ 1
and the first row is filled with the remaining numbers of the type (2k + j, 2k − j, ka−1)/α in weakly
increasing order from left to right.

For instance, take a = 3, j = 3, k = 7 and the coloured partition β = (2, 1). Then, the corresponding
Kronecker tableau obtained by our algorithm is

2 4 4 4 4 4 4
3 3 3 3 3 3
1 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4

2

By the end of this section, we want to underline a study of C. Ballantine and B. Hallahan. In [BH12],
they study the stability of the Kronecker product of a Schur function indexed by a hook partition and
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another Schur function indexed by a rectangle partition. They use Blasiak’s combinatorial rule, which
describes the Kronecker coefficients in terms of Yamanouchi coloured tableaux, [Bla12] as we do with
the Kronecker tableaux. They are able to give bounds for the size of the partition for which the Kro-
necker coefficients are stable and that once the bound is reached, no new Schur functions appear in the
decomposition of Kronecker product.

3 Plane Partitions and Reduced Kronecker Coefficients
In this section we establish a link between our families of reduced Kronecker coefficients and plane
partitions.

A plane partition is a finite subset P of positive integer lattice points, {(i, j, k)} ⊂ N3, such that if
(r, s, t) lies in P and if (i, j, k) satisfies 1 ≤ i ≤ r, 1 ≤ j ≤ s and 1 ≤ k ≤ t, then (i, j, k) also lies in
P . Let B(r, s, t) be the set of plane partitions fitting in a r × s rectangle, and with biggest part less than
or equal to t. As an illustration we present a plane partition in B4,3,4

4
4

3

2

3
3

2

1

2
2

MacMahon showed the generating function for the plane partitions fitting in a rectangle.

Theorem 3.1 (P. MacMahon, [Mac04]) Let l = min(r, s) and n = max(r, s). Then, the generating
function for the plane partitions fitting inside an r × s rectangle is

n∏
j=l

(
1

1− xj

)l
·
l−1∏
i=1

(
1

1− xi

)i(
1

1− xn+i

)l−i
.

Remark 2 MacMahon did not describe the generating function directly like in Theorem 3.1, but few cal-
culations lead to it.

Denote by ga(j) = g
(k)
(ka)(2k−j,ka−1) with k ≥ 2j the stable value of the jth diagonal associated to the

reduced Kronecker coefficients g(k)(k+i,ka−1),(ka) appearing in Theorem 2.4.

Theorem 3.2 1. The reduced Kronecker coefficient of Family 1, g(k)(ka),(ka), counts the number of plane
partitions of k fitting inside a 2× a rectangle.

2. Consider the reduced Kronecker coefficient of Family 2 after shifting the initial zeros{
g
(k+n·i)
((k+(n+1)i)a),((k+n·i)a)

}
k,i≥0

, with n = a(a+1)
2 . It also counts the number of plane partitions of

k fitting inside a 2× a rectangle.

3. We have the following combinatorial interpretation of the reduced Kronecker coefficients ga(j):

ga(j) =

j∑
l=0

#

{
plane partitions of l

in 3× (a− 1) rectangle

}
#

{
plane partitions of j − l

in 2× 1 rectangle

}
.
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Proof Sketch of proof:: The descriptions corresponding to Families 1 and 2 are proved comparing di-
rectly the generating function of both combinatorial objects. For Family 3, consider the generating func-
tion of the plane partitions fitting inside a 3× (a− 1) rectangle.

Ha =
1

(1− x)(1− x2)2(1− x3)3 . . . (1− xa−1)3(1− xa)2(1− xa+1)
.

By Theorem 2.4, the generating function of the reduced Kronecker coefficients ga(j) is Ga, which is
related withHa by

Ha = (1− x)(1− x2)Ga. (1)

Then, we can express the coefficients appearing in the expansion for Ga in terms of the coefficients ofHa.
Let Ga =

∑
n qnx

n be the expansion for Ga and Ha =
∑
n rnx

n the corresponding for Ha. Then, rn is
the number of plane partitions fitting inside a 3× (a− 1) rectangle.

Expanding both sides of (1) and equating the coefficients, we obtain the following recursive relation

r0 = q0,
r1 = q1 − q0,
r2 = q2 − q1 − q0,
rn = qn − qn−1 − qn−2 + qn−3 for all n ≥ 3.

The coefficients qn can be expressed in terms of the rn coefficients.

Lemma 3.3 With the same notation as above,

qn =

n∑
m=0

(⌊
n−m

2

⌋
+ 1

)
rm.

The proof of Lemma 3.3 proceeds by induction on n. Finally, observe that the coefficients that appears in
Lemma 3.3 count the number of plane partitions fitting inside a 2× 1 rectangle. 2

4 Applications
4.1 Saturation Hypothesis
Denote by {C(α1, . . . , αn)} any family of coefficients depending on the partitions α1, . . . , αn. The
family {C(α1, . . . , αn)} satisfies the saturation hypothesis if the conditions C(α1, . . . , αn) > 0 and
C(s · α1, . . . , s · αn) > 0 for all s > 1 are equivalent, where s · α = (s · α1, s · α2, . . . ). The Littlewood-
Richardson coefficients satisfy the saturation hypothesis, as was shown by Knutson and Tao in [KT99].
On the other hand, the Kronecker coefficients are known not to satisfy it. For example g(n,n)(n,n),(n,n) is equal
to 1 if n is even, and to 0 otherwise, see [BOR09].

In [Kly04] and [Kir04], Kirillov and Klyachko have conjectured that the reduced Kronecker coeffi-
cients satisfy the saturation hypothesis. From the combinatorial interpretation for the reduced Kronecker
coefficients in terms of plane partitions given in Theorem 3.2, we verify their conjecture for our families
of coefficients.
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Corollary 4.1 The saturation hypothesis holds for the coefficients g(k)(ka),(ka). In fact, g(sk)((sk)a),((sk)a) > 0

for all s ≥ 1. Moreover, the sequences of coefficients obtained by, either fixing k or a, and then letting the
other parameter grow are weakly increasing.

For Family 2, we have to consider the reduced Kronecker coefficients after the initial zeros. Let n =
a(a+1)

2 .

Corollary 4.2 The saturation hypothesis holds for the coefficients

g
(k+n·i)
((k+(n+1)i)a),((k+n·i)a).

Finally, for Family 3, we have the corresponding result concerning the stable values of the diagonals.

Corollary 4.3 The saturation hypothesis holds for the coefficients ga(j). In fact, ga(sj) > 0 for all s ≥ 1,
where ga(sj) denotes the associated reduced Kronecker coefficient with its three partitions multiplied by
s. Moreover, the sequences of coefficients obtained by, either fixing i or a, and then letting k grow, are
weakly increasing.

4.2 Quasipolynomiality
In Theorem 2.4 we compute the generating functions Fa and Ga for the reduced Kronecker coefficients
associated to Families 1 and 3. These are the resulting implications of this calculation.

Theorem 4.4 Let Fa be the generating function for the reduced Kronecker coefficients g(k)(ka),(ka). Let Ga
be the generating function for the reduced Kronecker coefficients ga(j).

Let ` be the least common multiple of 1, 2, . . . , a, a+ 1.

1. The generating function Fa can be rewritten as Fa =
Pa(x)

(1− x`)2a
, where Pa(x) is a product of

cyclotomic polynomials. Moreover, deg(Pa(x)) = 2a`− (a+ 2)a < 2a`− 1.

2. The generating function Ga can be rewritten as Ga =
Qa(x)

(1− x`)3a−1
, where Qa(x) is a product of

cyclotomic polynomials. Moreover deg(Qa(x)) = `(3a− 1)− 3
2 (a2 + a) < `(3a− 1)− 1.

3. The coefficients g(k)(ka),(ka) are described by a quasipolynomial of degree 2a− 1 and period dividing
`. In fact, we have checked that the period is exactly l for a less than 10.

4. The coefficients ga(j) are described by a quasipolynomial of degree 3a − 2 and period dividing `.
In fact, we have checked that the period is exactly l for a less than 7.

Remark 3 Family 2 is included in the results concerning to Fa, which is its generating functions after
shifting the initial zeros.

Proof Sketch of proof::

1. We define Pa(x) as Pa(x) = Fa · (1−xl)2a. Then, the generating function Fa can be written as in
the theorem. Let Φi be the ith cyclotomic polynomial. From the well–known identity (xn − 1) =∏
i|n Φi, we express Fa and (1 − xl)2a as product of cyclotomic polynomials. The cyclotomic
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polynomials appearing inFa also appear in (1−xl)2a, with exponent at least equal to their exponent
in Fa. Then, Pa is a polynomial and it can be written as a product of cyclotomic polynomials.
Moreover, deg(Fa) = a(a+ 2), and then, deg(Pa) = 2al − a(a+ 2).

2. We define Qa(x) as Qa(x) = Ga · (1−xl)3a−1. Then, the generating function Ga can be written as
in the theorem. We express Ga and (1−xl)3a−1 as a product of cyclotomic polynomials, observing
that the cyclotomic polynomials appearing in Ga also appear in (1 − xl)3a−1, with at least equal
exponent. Then, Qa is a polynomial and it can be written as a product of cyclotomic polynomials.
Moreover, deg(Ga) = 3

2a(a+ 1), and deg(Qa) = l(a− 1)− 3
2a(a+ 1).

The other two items follow using Proposition 4.13 of [BS16]. 2

Let see some examples.

Example 1 The coefficients g(k)(k2),(k2) are given by the quasipolynomial of degree 3 and period 6.

g
(k)
(k2),(k2) =



1/72k3 + 1/6k2 + 2/3k + 1 if k ≡ 0 mod 6
1/72k3 + 1/6k2 + 13/24k + 5/18 if k ≡ 1 mod 6
1/72k3 + 1/6k2 + 2/3k + 8/9 if k ≡ 2 mod 6
1/72k3 + 1/6k2 + 13/24k + 1/2 if k ≡ 3 mod 6
1/72k3 + 1/6k2 + 2/3k + 7/9 if k ≡ 4 mod 6
1/72k3 + 1/6k2 + 13/24k + 7/18 if k ≡ 5 mod 6

These quasipolynomials are computed applying the binomial identity to expand (1 − x6)4, and then
grouping the monomials in P2 = Φ2

2Φ3
3Φ4

6 according to their degree mod 6. For this, we write each
number as n = 2k + r, with r ∈ {0, . . . , 5}, and rewrite the result in terms of the variable k.

Example 2 The coefficients g2(j) are given by the quasipolynomial of degree 4 and period 6.

g2(j) =



1/288j4 + 1/16j3 + 7/18j2 + j + 1 if j ≡ 0 mod 6
1/288j4 + 1/16j3 + 7/18j2 + 15/16j + 175/288 if j ≡ 1 mod 6
1/288j4 + 1/16j3 + 7/18j2 + j + 8/9 if j ≡ 2 mod 6
1/288j4 + 1/16j3 + 7/18j2 + 15/16j + 23/32 if j ≡ 3 mod 6
1/288j4 + 1/16j3 + 7/18j2 + j + 8/9 if j ≡ 4 mod 6
1/288j4 + 1/16j3 + 7/18j2 + 15/16j + 175/288 if j ≡ 5 mod 6

4.3 On the Kronecker coefficients
Thanks to the classical stability phenomenon for the Kronecker coefficients discovered by Murnaghan,
we can transcribe our results in terms of reduced Kronecker coefficients as results about Kronecker coef-
ficients. These Kronecker coefficients are indexed by partitions whose first parts are large enough. But
we observe that the descriptions given in terms of quasipolynomials only depend on k and a for Family 1,
and on j and a for Family 3. This allows us to finish this section with some observations about the rate of
growth of the Kronecker coefficients.

Murnaghan observed that the sequences obtained by adding cells to the first parts of the partitions in-
dexing a Kronecker coefficients are eventually constant. In [BRR16], they show that fixed three partitions,
the Kronecker coefficients indexed by them stabilize when we increase these partitions with n new boxes
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in their first row and n new boxes in their first column. They also show that the resulting sequence ob-
tained by increasing the sizes of the second rows (keeping the first one very long in comparison) of the
partitions indexing the Kronecker coefficients are described by a linear quasipolynomial of period 2.

An interesting question is then to describe what happens when we add cells to arbitrary rows of the
partitions indexing a Kronecker (and reduced Kronecker) coefficient. The results presented here and in
[CR15] show several cases when we know what happen. For example, for a = 1, the three families of
sequences are described by a linear quasipolynomial of period 2, as is predicted in the work of Briand,
Rattan and Rosas, [BRR16]. But when a = 2, the sequence corresponding to Family 1 is described by
a quasipolynomial of degree 3 and the one corresponding to Family 3 is described by a quasipolynomial
of degree 4. For a = 3, the sequences are described by quasipolynomials of degree 5 and degree 7
(respectively), and show on.

Finally, we remark that the sequences described by both families, Families 1 and 3, when we increase
the parameter a are weakly increasing, and bounded. These sequences correspond to increase the sizes of
the columns.
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