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The facial weak order in finite Coxeter groups

Aram Dermenjian1,2∗, Christophe Hohlweg1‡, and Vincent Pilaud2§

1LaCIM, Université du Québec À Montréal (UQAM), Canada
2CNRS & LIX, École Polytechnique, France

Abstract. We investigate a poset structure that extends the weak order on a finite Coxeter group W to the set of
all faces of the permutahedron of W . We call this order the facial weak order. We first provide two alternative
characterizations of this poset: a first one, geometric, that generalizes the notion of inversion sets of roots, and a
second one, combinatorial, that uses comparisons of the minimal and maximal length representatives of the cosets.
These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known
result of A. Björner for the classical weak order. Finally, we show that any lattice congruence of the classical weak
order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of its classes.

Résumé. Nous étudions une structure de poset qui étend l’ordre faible sur un groupe de Coxeter fini W à l’ensemble
de toutes les faces du permutoèdre deW . Nous appellons cet ordre l’ordre faible facial. Nous montrons d’abord deux
caractérisations alternatives de ce poset : une première, géométrique, qui généralise la notion d’ensemble d’inversion,
et une seconde, combinatoire, qui utilise des comparaisons entre les représentants minimaux et maximaux des faces.
Ces caractérisations sont ensuite utilisées pour montrer que l’ordre faible facial est en fait un treillis, généralisant ainsi
un résultat bien connu de A. Björner pour l’ordre faible classique. Finalement, nous montrons que toute congruence
de treillis de l’ordre faible classique induit une congruence de treillis de l’ordre faible facial, et nous donnons une
interprétation géométrique de ses classes.

Keywords. Permutahedra, weak order, Coxeter complex

The (right) Cayley graph of a Coxeter system (W,S) is naturally oriented by the (right) weak order
on W : an edge is oriented from w to ws if s ∈ S is such that `(w) < `(ws), see [BB05, Chapter 3] for
details. A celebrated result of A. Björner [Bjö84] states that the weak order is a complete meet-semilattice
and even a complete ortholattice in the case of a finite Coxeter system. The weak order is a very useful
tool to study Coxeter groups as it encodes the combinatorics of reduced words associated to (W,S), and
it underlines the connection between the words and the root system via the notion of inversion sets, see
for instance [Dye11, HL16] and the references therein.

In the case of a finite Coxeter system, the Cayley graph of W is isomorphic to the 1-skeleton of the
W -permutahedron. Then the weak order is given by an orientation of the 1-skeleton of the W -permu-
tahedron associated to the choice of a linear form of the ambiant Euclidean space. This point of view
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was very useful in order to build generalized associahedra out of a W -permutahedron using N. Reading’s
Cambrian lattices, see [Rea12, HLT11, Hoh12].

We study a poset structure on all faces of theW -permutahedron that we call the facial weak order. This
order was introduced by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in [KLN+01] for the
symmetric group then extended by P. Palacios and M. Ronco in [PR06] for arbitrary finite Coxeter groups.
Recall that the faces of the W -permutahedron are naturally parameterized by the Coxeter complex PW
which consists of all standard parabolic cosets W/WI for I ⊆ S. The aims of this article are:

1. To give two alternative characterizations of the facial weak order (see Theorem 10): one in terms of
root inversion sets of parabolic cosets which extend the notion of inversion sets of elements of W ,
and the other using weak order comparisons between the minimal and maximal representatives of
the parabolic cosets. The advantage of these two definitions is that they give immediate global
comparison, while the original definition of [PR06] uses cover relations.

2. To show that the facial weak order is a lattice (see Theorem 13), whose restriction to the vertices of
the permutahedron produces the weak order as a sublattice. This result was motivated by the special
case of type A proved in [KLN+01].

3. To show that any lattice congruence ≡ of the weak order extends to a lattice congruence ≡P of the
facial weak order (see Theorem 18). This provides a complete description (see Theorem 21) of all
cones of the simplicial fan F≡ associated to the weak order congruence ≡ in [Rea05].

The results of this paper are based on combinatorial properties of Coxeter groups, parabolic cosets,
and reduced words. However, their motivation and intuition come from the geometry of the Coxeter
arrangement and of the W -permutahedron. So we made a point to introduce enough of the geometrical
material to make the geometric intuition clear.

1 Preliminaries

We start by fixing notations and classical definitions on finite Coxeter groups. Details can be found in
textbooks by J. Humphreys [Hum90] and A. Björner and F. Brenti [BB05]. The reader familiar with finite
Coxeter groups and root systems is invited to proceed directly to Section 2.

1.1 Finite reflection groups and Coxeter systems

Let (V, 〈 · | · 〉) be an n-dimensional Euclidean vector space. For any vector v ∈ V r {0}, we denote
by sv the reflection interchanging v and−v while fixing the orthogonal hyperplane pointwise. Remember
that wsv = sw(v)w for any vector v ∈ V r {0} and any orthogonal transformation w of V .

We consider a finite reflection groupW acting on V , that is, a finite group generated by reflections in the
orthogonal groupO(V ). The Coxeter arrangement ofW is the collection of all reflecting hyperplanes. Its
complement in V is a union of open polyhedral cones. Their closures are called chambers. The Coxeter
fan is the polyhedral fan formed by the chambers together with all their faces. This fan is complete (its
cones cover V ) and simplicial (all cones are simplicial), and we can assume without loss of generality that
it is essential (the intersection of all chambers is reduced to the origin). We fix an arbitrary chamber C,
called fundamental chamber. The n reflections orthogonal to the facet defining hyperplanes of C are called
simple reflections. The set S of simple reflections generates W . The pair (W,S) forms a Coxeter system.
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1.2 Roots and weights
We consider a root system Φ for W , i.e., a set of vectors invariant under the action of W and contain-
ing precisely two opposite roots orthogonal to each reflecting hyperplane of W . The simple roots ∆
are the roots orthogonal to the defining hyperplanes of C and pointing towards C. They form a linear
basis of V . The root system Φ splits into the positive roots Φ+ := Φ ∩ cone(∆) and the negative roots
Φ− := Φ ∩ cone(−∆) = −Φ+, where cone(X) denotes the set of nonnegative linear combinations of
vectors in X ⊆ V . In other words, the positive roots are the roots whose scalar product with any vector
of the interior of the fundamental chamber C is positive, and the simple roots form the basis of the cone
generated by Φ+. Each reflection hyperplane is orthogonal to one positive and one negative root. For a
reflection s ∈ R, we set αs to be the unique positive root orthogonal to the reflection hyperplane of s.

We denote by α∨s := 2αs/〈αs | αs 〉 the coroot corresponding to αs ∈ ∆, and by ∆∨ := {α∨s | s ∈ S}
the coroot basis. The vectors of its dual basis∇ := {ωs | s ∈ S} are called fundamental weights. In other
words, the fundamental weights of W are defined by 〈α∨s | ωt 〉 = δs=t for all s, t ∈ S. Geometrically,
the fundamental weight ωs gives the direction of the ray of the fundamental chamber C not contained
in the reflecting hyperplane of s. We let Ω :=W (∇) = {w(ωs) | w ∈W, s ∈ S} denote the set of all
weights of W , obtained as the orbit of the fundamental weights under W .

1.3 Length, reduced words and weak order
The length `(w) of an element w ∈W is the length of the smallest word for w as a product of generators
in S. A word w = s1 · · · sk with s1, . . . , sk ∈ S is called reduced if k = `(w). For u, v ∈W , the product
uv is said to be reduced if the concatenation of a reduced word for u and of a reduced word for v is a
reduced word for uv, i.e., if `(uv) = `(u) + `(v). We say that u ∈ W is a prefix of v ∈ W if there is a
reduced word for u that is the prefix of a reduced word for v, i.e., if `(u−1v) = `(v)− `(u).

The (right) weak order is the order on W defined equivalently by

u ≤ v ⇐⇒ `(u) + `(u−1v) = `(v) ⇐⇒ u is a prefix of v.

A. Björner shows in [Bjö84] that the weak order defines a lattice structure on W (finite Coxeter group),
with minimal element e and maximal element w◦ (which sends all positive roots to negative ones and
all positive simple roots to negative simple ones). The conjugation w 7→ w◦ww◦ defines a weak order
automorphism while the left and right multiplications w 7→ w◦w and w 7→ ww◦ define weak order
anti-automorphisms. We refer the reader to [BB05, Chapter 3] for more details.

The weak order encodes the combinatorics of reduced words and enjoys a useful geometric char-
acterization within the root system, which we explain now. The (left) inversion set of w is the set
N(w) := Φ+ ∩ w(Φ−) of positive roots sent to negative ones by w−1. If w = uv is reduced then
N(w) = N(u) t u

(
N(v)

)
. In particular, we have N(w) =

{
αs1 , s1(αs2), . . . , s1s2 · · · sp−1(αsk)

}
for

any reduced word w = s1 · · · sk, and therefore `(w) = |N(w)|. Moreover, the weak order is character-
ized in term of inversion sets by:

u ≤ v ⇐⇒ N(u) ⊆ N(v),

for any u, v ∈W . We refer for instance the reader to [HL16, Section 2] and the references therein.
We say that a simple reflection s ∈ S is a left ascent of w ∈ W if `(sw) = `(w) + 1 and a left descent

of w if `(sw) = `(w)− 1. We denote by DL(w) the set of left descents of w. Note that for s ∈ S
and w ∈ W , we have s ∈ DL(w) ⇐⇒ αs ∈ N(w) ⇐⇒ s ≤ w. Similarly, s ∈ S is a right descent
of w ∈W if `(ws) = `(w)− 1, and we denote by DR(w) the set of right descents of w.



362 Aram Dermenjian, Christophe Hohlweg, and Vincent Pilaud

1.4 Parabolic subgroups and cosets
The standard parabolic subgroupWI is the subgroup ofW generated by I ⊆ S. It is also a Coxeter group
with simple generators I , simple roots ∆I := {αs | s ∈ I}, root system ΦI = WI(∆I) = Φ ∩ vect(∆I),
length function `I = ` |WI

, longest element w◦,I , etc. For example, W∅ = {e} while WS = W .
We denote byW I := {w ∈W | `(ws) > `(w) for all s ∈ I} the set of elements ofW with no right de-

scents in I . For example,W∅ = W whileWS = {e}. Observe that for any x ∈W I , we have x(∆I) ⊆ Φ+

and thus x(Φ+
I ) ⊆ Φ+. We will use this property repeatedly in this paper.

Any element w ∈ W admits a unique factorization w = wI · wI with wI ∈ W I and wI ∈ WI , and
moreover, `(w) = `(wI) + `(wI) (see e.g., [BB05, Prop. 2.4.4]). Therefore, W I is the set of minimal
length coset representatives of the cosets W/WI . Throughout the paper, we will always implicitly as-
sume that x ∈W I when writing that xWI is a standard parabolic coset. Note that any standard parabolic
coset xWI = [x, xw◦,I ] is an interval in the weak order. The Coxeter complex PW is the abstract simpli-
cial complex whose faces are all standard parabolic cosets of W :

PW =
⋃
I⊆S

W/WI =
{
xWI | I ⊆ S, x ∈W

}
=
{
xWI | I ⊆ S, x ∈W I

}
.

We will also need Deodhar’s Lemma: for s ∈ S, I ⊆ S and x ∈ W I , either sx ∈ W I or sx = xr for
some r ∈ I . See e.g., [GP00, Lemma 2.1.2] where it is stated for the cosets WI\W instead of W/WI .

1.5 Permutahedron
Remember that a polytope P is the convex hull of finitely many points of V , or equivalently a bounded
intersection of finitely many affine halfspaces of V . The faces of P are the intersections of P with its
supporting hyperplanes and the face lattice of P is the lattice of its faces ordered by inclusion. The inner
primal cone of a face F of P is the cone generated by {u− v | u ∈ P, v ∈ F}. The outer normal cone
of a face F of P is the cone generated by the outer normal vectors of the facets of P containing F . Note
that these two cones are polar to each other. The normal fan is the complete polyhedral fan formed by the
outer normal cones of all faces of P . We refer to [Zie95] for details on polytopes, cones, and fans.

The W -permutahedron Permp(W ) is the convex hull of the orbit under W of a generic point p ∈ V
(not located on any reflection hyperplane of W ). Its vertex and facet descriptions are given by

Permp(W ) = conv
{
w(p) | w ∈W

}
=
⋂
s∈S
w∈W

{
v ∈ V | 〈w(ωs) | v 〉 ≤ 〈ωs | p 〉

}
.

We often write Perm(W ) instead of Permp(W ) as the combinatorics of the W -permutahedron is in-
dependent of the choice of p and is encoded by the Coxeter complex PW . More precisely, each standard
parabolic coset xWI corresponds to a face F(xWI) of Permp(W ) given by

F(xWI) = x
(
Permp(WI)

)
= Permx(p)

(
xWIx

−1
)
.

Therefore, the k-dimensional faces of Permp(W ) correspond to the cosets xWI with |I| = k and the
face lattice of Permp(W ) is isomorphic to the inclusion poset (PW ,⊆). The normal fan of Permp(W )
is the Coxeter fan. The graph of the permutahedron Permp(W ) is isomorphic to the Cayley graph of the
Coxeter system (W,S). Moreover, when oriented in the linear direction w◦(p) − p, it coincides with the
Hasse diagram of the (right) weak order on W . We refer the reader to [Hoh12] for more details on the
W -permutahedron.
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2 Facial weak order on the Coxeter complex
In this section we study an analogue of the weak order on standard parabolic cosets, which we call the fa-
cial weak order. It was defined in type A by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer
in [KLN+01], then extended for arbitrary finite types by P. Palacios and M. Ronco in [PR06].

Definition 1 ([PR06]) The (right) facial weak order is the order ≤ on the Coxeter complex PW defined
by cover relations of two types: for I ⊆ S and x ∈W I ,

(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I.

e

a b

ab ba

aba

eWa eWb

bWaaWb

abWa baWb

W

(1) (1)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

(2) (2)

(1) (1)

(2) (2)

e

a b

ab ba

aba bab

abab

Wa Wb

aWb bWa

abWa baWb

abaWb babWa

W

(1) (1)

(1) (1)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

(2) (2)

(2) (2)

(1) (1)

(2) (2)

Fig. 1: The facial weak order on the standard parabolic cosets of the Coxeter group of types A2 and B2. Edges are
labelled with the cover relations of type (1) or (2) as in Definition 1.

Remark 2 1. These cover relations translate to the following geometric conditions on faces of the
permutahedron Perm(W ): a face F is covered by a face G if and only if either F is a facet of G
with the same weak order minimum, or G is a facet of F with the same weak order maximum.

2. Under the inclusion x 7→ xW∅ from W to PW , we will see in Corollary 11 that the restriction of
the (right) facial weak order to the vertices of PW is the (right) weak order. It is not obvious at first
sight from Definition 1.

3. It is known that for I ⊆ S the set of minimal length coset representatives W I has a maximal
length element w◦w◦,I . The element w◦,Iw◦,Ir{s} is therefore the maximal length element of the

set W Ir{s}
I = WI ∩ W Ir{s}, which is the set of minimal coset representatives of the cosets

WI/WIr{s}, see [GP00, Section 2.2] for more details.

This paper gives two convenient equivalent definitions for the facial weak order (see Section 2.2). The
first uses sets of roots (see Section 2.1) to generalize the geometric characterization of the weak order with
inversion sets. The second one uses weak order comparisons on the minimal and maximal representatives
of the cosets. The advantage of these definitions is that they give immediate global comparison, whereas
the original definition of [PR06] uses cover relations. We use these new characterizations of the facial
weak order to prove that this poset is in fact a lattice (see Section 2.3).
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2.1 Root and weight inversion sets of standard parabolic cosets
We now define a collection of roots and a collection of weights associated to each standard parabolic coset.
The notion of root inversion sets of standard parabolic cosets generalizes the inversion sets of elements
of W (see Proposition 6). We will use root inversion sets extensively for our study of the facial weak
order. In contrast, weight inversion sets are not as essential and could be ignored for a first reading. We
define them here as they are polar to the root inversion sets and appear naturally in our geometric intuition
of the W -Coxeter arrangement and of the W -permutahedron (see Proposition 4).

Definition 3 The root inversion set R(xWI) and weight inversion set W(xWI) of a standard parabolic
coset xWI are respectively defined by

R(xWI) :=x
(
Φ− ∪ Φ+

I

)
⊆ Φ and W(xWI) :=x

(
∇SrI

)
⊆ Ω.

The following statement gives the precise connection to the geometry of the W -permutahedron and is
illustrated on Figure 2 for the Coxeter group of type A2.

Proposition 4 Let xWI be a standard parabolic coset of W . Then
(i) cone(R(xWI)) is the inner primal cone of the face F(xWI) of Perm(W ),

(ii) cone(W(xWI)) is the outer normal cone of the face F(xWI) of Perm(W ),
(iii) the cones generated by the root inversion set and by the weight inversion set of xWI are polar to

each other: cone(R(xWI))
� = cone(W(xWI)).

R(e)

R(a) R(b)

R(ab) R(ba)

R(aba)

R(Wa) R(Wb)

R(aWb) R(bWa)

R(abWa) R(baWb)

R(W )

W(e)

W(a) W(b)

W(ab) W(ba)

W(aba)

W(Wa) W(Wb)

W(aWb) W(bWa)

W(abWa) W(baWb)

W(W )
•

Fig. 2: The root inversion sets (left) and weight inversion sets (right) of the A2 standard parabolic cosets. Note that
positive roots point downwards.

It is well-known that the map N, sending an element w ∈W to its inversion set N(w) = Φ+ ∩ w(Φ−)
is injective, see e.g., [HL16, Section 2]. The following corollary is the analog for the maps R and W.

Corollary 5 The maps R and W are both injective.
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Our next statement connects the root inversion set R(xW∅) to the inversion set and reduced words
of x ∈W . For brevity we write R(x) instead of R(xW∅).

Proposition 6 For any x ∈W , we have:
(i) R(x) = N(x) ∪ −

(
Φ+ rN(x)

)
where N(x) = Φ+ ∩ x(Φ−) is the (left) inversion set of x.

(ii) If x = s1s2 · · · sk is reduced, then R(xW∅) = Φ−4{±αs1 ,±s1(αs2), . . . ,±s1 · · · sk−1(αsk)}.
(iii) R(xw◦) = −R(x) and R(w◦x) = w◦

(
R(x)

)
.

The next statement gives a characterization of the weak order on W in terms of root inversion sets,
which generalizes the characterization of the weak order in term of inversion sets.

Corollary 7 For x, y ∈W , we have

x ≤ y ⇐⇒ R(x) rR(y) ⊆ Φ− and R(y) rR(x) ⊆ Φ+,

⇐⇒ R(x) ∩ Φ+ ⊆ R(y) ∩ Φ+ and R(x) ∩ Φ− ⊇ R(y) ∩ Φ−.

Finally, we observe that the root and weight inversion sets of a parabolic coset xWI can be computed
from that of its minimal and maximal length representatives x and xw◦,I .

Proposition 8 The root and weight inversion sets of xWI can be computed from those of x and xw◦,I by

R(xWI) = R(x) ∪R(xw◦,I) and W(xWI) = W(x) ∩W(xw◦,I).

2.2 Two alternative characterizations of the facial weak order
Using the root inversion sets defined in the previous section, we now give two equivalent characterizations
of the facial weak order defined by P. Palacios and M. Ronco in [PR06] (see Definition 1). In type A, the
equivalence (i)⇐⇒ (ii) below is stated in [KLN+01, Theorem 5] in terms of half-inversion tables. We
have illustrated the facial weak order by the means of root inversion sets in Figure 3.

Remark 9 In Figure 3, each face is labelled by its root inversion set. To visualize
the roots, we consider the affine plane P passing through the simple roots {α, β, γ}.
A positive (resp. negative) root ρ is then seen as a red upward (resp. blue downward)
triangle placed at the intersection of Rρ with the plane P . For instance, the root set
R(cbWa) = {γ, β+γ, α+β+γ}∪{−α,−β,−α−β−γ,−α−β} is represented
on the right. The star in the middle represents both α+ β + γ and −α− β − γ.

4
4

5

5
5
54

−α γ

−α− β β + γ

−β

Theorem 10 The following conditions are equivalent for two standard parabolic cosets xWI , yWJ ∈ PW :
(i) xWI ≤ yWJ in facial weak order,

(ii) R(xWI) rR(yWJ) ⊆ Φ− and R(yWJ) rR(xWI) ⊆ Φ+,
(iii) x ≤ y and xw◦,I ≤ yw◦,J in weak order.

Proof of Theorem 10 : We give a brief outline of the proof. The implication (i)⇒(iii) is immediate by
looking at each cover relation separately.

Combining Corollary 7 and Proposition 8 gives the implication (iii)⇒(ii).
Finally, for the implication (ii)⇒(i) we consider two standard parabolic cosets xWI and yWJ which sat-

isfy (ii) and construct a path of cover relations as in Definition 1 between them. We proceed by induction
on the cardinality |R(xWI)4 R(yWJ)|. If |R(xWI)4 R(yWJ)| = 0, then R(xWI) = R(yWJ),
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Fig. 3: The facial weak order on the standard parabolic cosets of the Coxeter group of type A3. Each coset xWI is
replaced by its root inversion set R(xWI), represented as follows: down blue triangles stand for negative roots while
up red triangles stand for positive roots, and the position of each triangle is given by the barycentric coordinates of the
corresponding root with respect to the three simple roots (α1 on bottom left, α2 on top, and α3 on bottom right);see
Remark 9 for a more detailed discussion.
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which ensures that xWI = yWJ by Corollary 5. Assume now that |R(xWI)4 R(yWJ)| > 0. So
either R(xWI) rR(yWJ) 6= ∅ or R(yWJ) rR(xWI) 6= ∅. We consider only the first case, the other
one being symmetric. To proceed by induction, we find a new coset zWK so that:
• xWI <· zWK is one of the cover relations of Definition 1,
• zWK and yWJ still satisfy (ii), and
• R(zWK)4 R(yWJ) ( R(xWI)4 R(yWJ).

The new coset is constructed by adding or deleting at least one root from R(xWI). We first show that
there exists s ∈ S such that −x(αs) /∈ R(yWJ). We then fix such an s and look at two cases, on whether
or not s ∈ I . Each case produces one of the two cover relations in P. Palacios and M. Ronco’s Definition 1.
As each case produces a cover relation we see that by induction we have a path from xWI to yWJ as we
already have a path from zWK to yWJ and a cover between xWI and zWK . 2

Using our characterization (ii) of Theorem 10 together with Corollary 7, we obtain that the (right) facial
weak order and the (right) weak order coincide on the elements of W . Note that this is not obvious with
the cover relations from Definition 1.

Corollary 11 For any x, y ∈ W , we have x ≤ y in (right) weak order if and only if xW∅ ≤ yW∅ in
(right) facial weak order.

The weak order anti-automorphisms x 7→ xw◦ and x 7→ w◦x and the automorphism x 7→ w◦xw◦ carry
out on standard parabolic cosets. The following statement gives the precise definitions of these maps.

Proposition 12 The maps xWI 7−→ w◦xw◦,IWI and xWI 7−→ xw◦,Iw◦Ww◦Iw◦ are anti-automorphisms
of the weak order on parabolic cosets of W . Consequently, the map xWI 7−→ w◦xw◦Ww◦Iw◦ is an au-
tomorphism of the weak order on parabolic cosets of W .

2.3 The facial weak order is a lattice
In this section, we show that the facial weak order on standard parabolic cosets is actually a lattice. It
generalizes the result for the symmetric group due to D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and
S. Schwer [KLN+01] to the facial weak order on arbitrary finite Coxeter groups introduced by P. Palacios
and M. Ronco [PR06]. The characterizations of the facial weak order given in Theorem 10 are key here.

Theorem 13 The facial weak order (PW ,≤) is a lattice. The meet and join of two standard parabolic
cosets xWI and yWJ are given by:
• xWI ∧ yWJ = z∧WK∧ , where z∧ = x ∧ y and K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
;

• xWI ∨ yWJ = z∨WK∨ , where z∨ = xw◦,I ∨ yw◦,J and K∨ = DL

(
z−1
∨ (x ∨ y)

)
.

Note that in the second point of the previous statement, the minimal representative of the coset z∨WK∨

is in fact z∨w◦,K∨ , not z∨. Unlike in the rest of the paper, we take the liberty to use another coset repre-
sentative than the minimal one to underline the symmetry between meet and join in facial weak order.

Example 14 Before proving the above statement, we give an example of a computation of the meet in the
facial weak order. Consider the Coxeter system

〈
a, b, c

∣∣ a2 = b2 = c2 = (ab)3 = (bc)3 = (ac)2 = 1
〉

of
type A3. To find the meet of cbaWbc and acbW∅, we compute:

z∧ = cba ∧ acb = c,

K∧ = DL

(
z−1
∧ (cbaw◦,bc ∧ acbw◦,∅)

)
= DL

(
c(cbabcb ∧ acb)

)
= DL(c(acb)) = {a}.

Thus we have that cbaWbc ∧ acbW∅ = z∧WK∧ = cWa.
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Proof of Theorem 13: Throughout the proof we use the characterization of the facial weak order given
in Theorem 10 (iii): xWI ≤ yWJ ⇐⇒ x ≤ y and xw◦,I ≤ yw◦,J . We first prove the existence of the
meet, then use Proposition 12 to deduce the existence and formula for the join.

Existence of meet. For any s ∈ K∧, we have

`(xw◦,I ∧ yw◦,J)− `(sz−1
∧ ) ≤ `

(
sz−1
∧ (xw◦,I ∧ yw◦,J)

)
= `(xw◦,I ∧ yw◦,J)− `(z−1

∧ )− 1.

Therefore, we have z∧ ∈WK∧ .
Since K∧ = DL(z−1

∧ (xw◦,I ∧ yw◦,J)), we have w◦,K∧ ≤ z−1
∧ (xw◦,I ∧ yw◦,J). Since z∧ ∈ WK∧ , we

obtain z∧w◦,K∧ ≤ xw◦,I ∧ yw◦,J . We thus have z∧ = x∧ y ≤ x and z∧w◦,K∧ ≤ xw◦,I ∧ yw◦,J ≤ xw◦,I ,
which implies z∧WK∧ ≤ xWI , by Theorem 10 (ii). By symmetry, z∧WK∧ ≤ yWJ .

It remains to show that z∧WK∧ is the greatest lower bound. Consider a standard parabolic coset zWK

such that zWK ≤ xWI and zWK ≤ yWJ . We want to show that zWK ≤ z∧WK∧ , that is, z ≤ z∧
and zw◦,K ≤ z∧w◦,K∧ . The first inequality is immediate since z ≤ x and z ≤ y so that z ≤ x ∧ y = z∧.
For the second one, we consider the reduced words x = zx′, y = zy′, and z∧ = zz′∧ where z′∧ = x′ ∧ y′.
Since zw◦,K ≤ xw◦,I and zw◦,K ≤ yw◦,J , we have

zw◦,K ≤ xw◦,I ∧ yw◦,J = zx′w◦,I ∧ zy′w◦,J = z(x′w◦,I ∧ y′w◦,J).

Thus w◦,K ≤ x′w◦,I ∧ y′w◦,J , since all words are reduced here. Therefore K ⊆ DL(x′w◦,I ∧ y′w◦,J).
We now claim thatDL(x′w◦,I∧y′w◦,J) ⊆ DL(z′∧w◦,K∧). To see it, consider s ∈ DL(x′w◦,I ∧ y′w◦,J)

and assume by contradiction that s /∈ DL(z′∧w◦,K∧). Then s does not belong to DL(z′∧), since the expres-
sion z′∧w◦,K∧ is reduced. By Deodhar’s Lemma (see Section 1.4) we obtain that either sz′∧ ∈ WK∧ or
sz′∧ = z′∧t where

t ∈ DL

(
z′−1
∧ (x′w◦,I ∧ y′w◦,J)

)
= DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
= K∧.

In the first case we obtain

1 + `(z′∧) + `(w◦,K∧) = `(sz′∧w◦,K∧) = `(z′∧w◦,K∧)− 1 = `(z′∧) + `(w◦,K∧)− 1

a contradiction. In the second case, we get

1 + `(z′∧) + `(w◦,K∧) = `(sz′∧w◦,K∧) = `(z′∧) + `(tw◦,K∧) = `(z′∧) + `(w◦,K∧)− 1,

a contradiction again. This proves that DL(x′w◦,I ∧ y′w◦,J) ⊆ DL(z′∧w◦,K∧).
To conclude the proof, we get from K ⊆ DL(x′w◦,I ∧ y′w◦,J) ⊆ DL(z′∧w◦,K∧) that w◦,K ≤ z′∧w◦,K∧ ,

and finally that zw◦,K ≤ zz′∧w◦,K∧ = z∧w◦,K∧ since all expressions are reduced. Since z ≤ z∧ and
zw◦,K ≤ z∧w◦,K∧ , we have zWK ≤ z∧WK∧ so that z∧WK∧ is indeed the greatest lower bound.

Existence of join. The existence and the formula for the join follow from that of the meet, using the
anti-automorphism Ψ : xWI 7−→ w◦xw◦,IWI from Proposition 12. 2

Remark 15 It is well-known that the map x 7→ xw◦ is an orthocomplementation of the weak order:
it is involutive, order-reversing and satisfies xw◦ ∧ x = e and xw◦ ∨ x = w◦. In other words, it
endows the weak order with a structure of ortholattice; see for instance [BB05, Corollary 3.2.2]. This is
not anymore the case for the facial weak order: the map xWI 7−→ w◦xw◦,IWI is indeed involutive and
order-reversing, but is not an orthocomplementation: for a (counter-)example, consider x = e and I = S.
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3 Lattice congruences of the facial weak order
In this section we observe that any lattice congruence ≡ of the weak order extends to a lattice congru-
ence≡P of the facial weak order. Let us first recall the definition of lattice congruences, see e.g., [Rea05].

Definition 16 An order congruence is an equivalence relation ≡ on a poset P such that:
(i) Every equivalence class under ≡ is an interval of P .

(ii) The projection π↑ : P → P (resp. π↓ : P → P ), which maps an element of P to the maximal
(resp. minimal) element of its equivalence class, is order preserving.

The quotient P/≡ is a poset on the equivalence classes of≡, where the order relation is defined byX ≤ Y
in P/≡ if and only if there exists representatives x ∈ X and y ∈ Y such that x ≤ y in P . If P is
moreover a finite lattice, then ≡ is automatically a lattice congruence, i.e., for any x ≡ x′ and y ≡ y′, we
have x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. The poset quotient P/≡ then inherits a lattice structure.

Consider a lattice congruence ≡ of the weak order on W whose up and down projections are denoted
by π↑ and π↓ respectively. We want to extend≡ to a lattice congruence≡P of the facial weak order onPW .
We need the following technical statement.

Lemma 17 For any coset xWI , there are unique subsets Σ↑(x, I) of S r DR

(
π↑(x)

)
and Σ↓(x, I) of

DR

(
π↓(xw◦,I)

)
such that xw◦,I ≤ π↑(x)w◦,Σ↑(x,I) ≤ π↑(xw◦,I) and π↓(x) ≤ π↓(xw◦,I)w◦,Σ↓(x,I) ≤ x.

Based on this lemma, we define two maps Π↑ : PW → PW and Π↓ : PW → PW by

Π↑(xWI) = π↑(x)WΣ↑(x,I) and Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I).

We again write Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I) instead of Π↓(xWI) = π↓(xw◦,I)w◦,Σ↑(x,I)WΣ↓(x,I) to
make apparent the symmetry between Π↑ and Π↓.

Theorem 18 The maps Π↑ and Π↓ fulfill the following properties:
(i) Π↓(xWI) ≤ xWI ≤ Π↑(xWI) for any coset xWI .

(ii) Π↑ ◦Π↑ = Π↑ ◦Π↓ = Π↑ and Π↓ ◦Π↓ = Π↓ ◦Π↑ = Π↓.
(iii) Π↑ and Π↓ are order preserving.
Therefore, the fibers of Π↑ and Π↓ coincide and define a lattice congruence ≡P of the facial weak order.

N. Reading proved in [Rea05] that ≡ naturally defines a complete simplicial fan which coarsens the
Coxeter fan. Namely, for each congruence class γ of ≡, consider the cone Cγ obtained by glueing the
maximal chambers cone(x(∇)) of the Coxeter fan corresponding to the elements x in γ. It turns out that
each of these cones Cγ is convex and that the collection of cones {Cγ | γ ∈W/≡}, together with all their
faces, form a complete simplicial fan which we denote by F≡. We now use the congruence ≡P of the
facial weak order to describe all cones of F≡ (not only the maximal ones). This shows that the lattice
structure on the maximal faces of F≡ extends to a lattice structure on all cones of the fan F≡. As in
Section 2.1, we first introduce the root and weight inversion sets of the congruence classes of ≡P .

Definition 19 The root inversion set R(Γ) and the weight inversion set W(Γ) of a congruence class Γ
of ≡P are defined by R(Γ) =

⋂
xWI∈Γ R(xWI) and W(Γ) =

⋃
xWI∈Γ W(xWI).

Proposition 20 For any two congruence classes Γ,Γ′ of≡P , we have Γ ≤ Γ′ in the quotient of the facial
weak order by ≡P if and only if R(Γ) rR(Γ′) ⊆ Φ− and R(Γ′) rR(Γ) ⊆ Φ+.

Theorem 21 The collection of cones {cone(W(Γ)) | Γ ∈ PW /≡P} forms the complete simplicial fanF≡.
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