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Toric matrix Schubert varieties and root
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Abstract. Start with a permutation matrix π and consider all matrices that can be obtained from π by taking downward
row operations and rightward column operations; the closure of this set gives the matrix Schubert variety Xπ . We
characterize when the ideal definingXπ is toric (with respect to a 2n−1-dimensional torus) and study the associated
polytope of its projectivization. We construct regular triangulations of these polytopes which we show are geometric
realizations of a family of subword complexes. We also show that these complexes can be realized geometrically
via regular triangulations of root polytopes. This implies that a family of β-Grothendieck polynomials are special
cases of reduced forms in the subdivision algebra of root polytopes. We also write the volume and Ehrhart series
of root polytopes in terms of β-Grothendieck polynomials. Subword complexes were introduced by Knutson and
Miller in 2004, who showed that they are homeomorphic to balls or spheres and raised the question of their polytopal
realizations.

Résumé. En partant d’une matrice de permutation π, considérons toutes les matrices qui peuvent être obtenues à
partir de π en effectuant des opérations de ligne vers le bas et des opérations de colonne vers la droite ; l’adhérence
de cet ensemble donne la variété Schubert de matrices Xπ . Nous caractérisons la situation où l’idéal définissant Xπ
est torique et étudions le polytope associé de sa projectivisation. Nous construisons des triangulations régulières de
ces polytopes et nous montrons qu’elles sont des réalisations géométriques d’une famille de complexes de sous-mots.
Nous montrons également que ces complexes peuvent être réalisés géométriquement par des triangulations régulières
de polytopes de racines. Cela implique qu’une famille de polynômes β-Grothendieck sont des cas particuliers de
formes réduites dans l’algèbre de subdivision de polytopes des racines. On peut aussi écrire le volume et la série
d’Ehrhart des polytopes des racines en termes de β-Grothendieck polynômes. Les complexes de sous-mots ont été
introduits par Knutson et Miller en 2004, qui ont soulevé la question de leurs réalisations polytopales.

Keywords. subword complex, root polytope, matrix Schubert variety, toric variety

1 Introduction
This is an extended abstract based on Escobar and Mészáros (2015a) and Escobar and Mészáros (2015b).
We study the geometry of matrix Schubert varieties and give geometric realizations of a family of subword
complexes. Matrix Schubert varieties were introduced by Fulton (1992) to study the degeneraci loci of
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flagged vector bundles. Knutson and Miller (2005) showed that Schubert polynomials are multidegrees of
matrix Schubert varieties. Knutson and Miller (2004, 2005) introduced subword complexes to illustrate
the combinatorics of Schubert polynomials and determinantal ideals, building up on the work of Fomin
and Kirillov (1994); Bergeron and Billey (1993). Knutson and Miller proved that any subword complex
is homeomorphic to a ball or a sphere and asked about their geometric realizations.

Given a matrix Schubert variety Xπ , it can be written as Xπ = Yπ×Cq (where q is maximal possible).
Our main results are as follows. We characterize when Yπ is toric (with respect to a (C∗)2n−1-action) and
study the polytope Φ(P(Yπ)) corresponding to its projectivization. We construct a regular triangulation
of Φ(P(Yπ)), induced from a degeneration to a root polytope, which we show are geometric realizations
of a family of subword complexes. The following papers have partially answered the question about
the geometric realization of spherical subword complexes: Stump (2011); Ceballos (2012); Pilaud and
Pocchiola (2012); Pilaud and Santos (2012); Serrano and Stump (2012); Ceballos et al. (2014); Bergeron
et al. (2015). This submission is based on Escobar and Mészáros (2015a,b), where we give the first
realizations of a family of subword complexes which are homeomorphic to balls.

The roadmap of this paper is as follows. In Section 2 we define matrix Schubert varieties Xπ and
calculate the moment polytope Φ(P(Yπ)) of the projectivization of Yπ . In Section 3 we characterize when
Yπ is toric and construct a regular triangulation of Φ(P(Yπ)). In Section 4 we define subword complexes,
give geometric realizations of subword complexes homeomorphic to balls, and show how to express the
volume and Ehrhart series of root polytopes in terms of Grothendieck polynomials. Finally, in Section
5 we give canonical triangulations of Φ(P(Yπ)) and show they are geometric realizations of pipe dream
complexes for all π such that Yπ is toric.

2 Matrix Schubert varieties
Given a matrix Schubert variety Xπ we define a variety Yπ ↪→ Xπ and characterize for which π, the vari-
ety Yπ is toric using the diagram of π. For such π, we construct a regular triangulation of its corresponding
polytope, which we show is a geometric realization of a family of subword complexes, see Proposition
3.1 and Theorem 5.3.

Let Mn denote n × n matrices over C, B+ denote upper triangular invertible n × n matrices and B−
denote lower triangular invertible n × n matrices. We let π ∈ Sn denote both a permutation and its
corresponding permutation matrix, where its (i, j)-th entry is

(π)(i,j) =

{
1, if π(j) = i,

0, else.

The multiplication on the left by matrices in B− corresponds to downward row operations and multi-
plication on the right by matrices in B+corresponds to rightward column operations. This multiplication
gives a left action of B− ×B+ on Mn defined by

(X,Y ) ·M := XMY −1. (1)

Given 1 ≤ a ≤ m and 1 ≤ b ≤ m, let M(a,b) denote the upper left a × b submatrix of the matrix M .
Define a rank function of a matrix M to be rM (a, b) := rank(M(a,b)). We then have that M ∈ B−πB+

if and only if rM (a, b) = rπ(a, b) for all (a, b) ∈ [m]× [m].
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Definition 2.1 The matrix Schubert variety of π is Xπ := B−πB+, i.e. the Zariksi closure of its
(B− ×B+)-orbit inside Mn = Cn2

.

Fulton studied this affine variety in Fulton (1992). We summarize some of his results here.

Theorem 2.2 (Fulton, 1992, Proposition 3.3) The matrix Schubert variety Xπ is an irreducible variety of
dimension n2 − `(π) defined as a scheme by the equations rM (a, b) ≤ rπ(a, b) for all (a, b) ∈ [n]× [n].

Some of these inequalities are implied by others, and Fulton described the minimal set of rank condi-
tions.

Definition 2.3 The (Rothe) diagram of a permutation π is the collection of boxes D(π) = {(πj , i) : i <
j, πi > πj}. It can be visualized by considering the boxes left in the n × n grid after we cross out the
boxes appearing south and east of each 1 in the permutation matrix for π.

•

•
•

•

•

Fig. 1: The diagram for π = [25413].

Definition 2.4 Fulton’s essential set Ess(π) is the set consisting of the south-east corners of D(π).

Theorem 2.5 (Fulton, 1992, Lemma 3.10) The ideal defining the varietyXπ is generated by the equations
rM (a, b) ≤ rπ(a, b) for all (a, b) ∈ Ess(π).

We now define some regions inside the (n×n)-grid and some varieties corresponding to these regions,
including Yπ .

Definition 2.6 The dominant piece, denoted dom(π), of a permutation π is the connected component of
the diagram of π containing the box (1, 1), or empty if π(1) = 1.

Definition 2.7 Let NW (π) denote the union over the entries north-west of some box in D(π). Let
L(π) := NW (π)− dom(π) and let L′(π) := L(π)−D(π).

See Figure 2 for an example.

•

•

•
•

•

Fig. 2: Given π = [25413], L(π) consists of all the gray boxes and L′(π) consists of only the darker gray boxes.

Definition 2.8 Given a permutation π, let Yπ be the projection of Xπ onto the entries inside L(π) and
let Vπ be the projection onto the entries not north-west of any box of D(π).
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Theorem 2.5 implies that the entries in Vπ are free in Xπ and thus Vπ ∼= Cq , where q is the number of
boxes in the region defining Vπ , and that Xπ = Yπ × Vπ . This, together with Theorem 2.2, imply that
dim(Yπ) = |L′(π)| and that Yπ is irreducible.

Let Tn consist of n × n diagonal invertible matrices. The action defined in Equation (1) restricts to a
(Tn×Tn)-action onMn. This yields a (Tn×Tn)-action onXπ with Stab(T 2n) = {(a·I, a·I) : a ∈ C∗},
as well as an action on Yπ and Vπ . In Theorem 3.3 we characterize the π for which Yπ is a toric variety
with respect to T 2n/Stab(T 2n) in terms of the shape of L′(π). In other words, we characterize the π such
that Yπ has a dense T 2n-orbit. We denote the quotient T 2n/Stab(T 2n) by T 2n−1. Note that Xπ and Yπ
are normal varieties by Fulton’s realizations in Fulton (1992) as subvarieties of Schubert varieties, which
are normal by De Concini and Lakshmibai (1981); Ramanan and Ramanathan (1985).

Since Yπ is an irreducible variety and toric varieties are also irreducible, in order to show that Yπ is a
toric variety with respect to T 2n−1, it suffices to show that it has the same dimension as some T 2n−1-
orbit. When p is a general point of Yπ , then T 2n · p ⊂ Yπ is the affine toric variety associated to the
T 2n-moment(i) cone of Yπ , which we denote by Φ(Yπ), and dim(T 2n · p) = dim(Φ(Yπ)). In Theorem
3.3 we classify when Yπ is a toric variety by classifying the π for which dim(Φ(Yπ)) = dim(Yπ).

To compute the dimension of the cone Φ(Yπ), we start by describing the cone Φ(Xπ) corresponding to
a T 2n-orbit of a general point q in Xπ; without loss of generality q = (1, . . . , 1). The orbit T 2n · q is the
Zariski closure of the image of a map ϕ : T 2n → Cn2

where ϕ(t) = (ta(1,1)q(1,1), . . . , t
a(n,n)q(n,n)) and

Φ(Xπ) is the cone spanned by the exponents a(i,j) of the monomials. Notice that the exponents are xi−yj ,
where the xi are the standard basis for Rn × 0, and the yj are the standard basis for 0 × Rn, because if
A and B are the diagonal matrices with diagonal entries (a1, . . . , an) and (b1, . . . , bn), respectively, then
for any matrix M the (i, j)-th entry of AMB−1 is aib−1j M(i,j). It follows that the moment cone Φ(Xπ)

is the cone spanned by the vectors in the set {xi − yj | (i, j) ∈ [n]× [n]}. Now Yπ ↪→ Xπ by restricting
Xπ to the entries inside L(π), and so Φ(Yπ) is the cone spanned by the set {xi − yj | (i, j) ∈ L(π)}.

The variety Xπ is a cone, meaning that for any z ∈ Xπ and c ∈ C, we have that cz ∈ Xπ . We can
therefore projectivize it, that is, we can take the projective variety

P(Xπ) := {[z(1,1), . . . , z(n,n)] : (z(1,1), . . . , z(n,n)) ∈ Xπ} ⊂ CPn
2−1,

and the same is true for Yπ . In this paper we study the moment(ii) polytope Φ(P(Yπ)) of the projec-
tivization of Yπ . This polytope is the convex hull of (xi − yj) for (i, j) inside L(π). The next section
studies the properties of the moment polytopes Φ(P(Yπ)).

3 Understanding the polytope Φ(P(Yπ))

In this section we describe the polytope Φ(P(Yπ)) = ConvHull(xi − yj | (i, j) ∈ L(π)) for π ∈ Sn,
the moment polytope of the projectivization of Yπ . This polytope is a root polytope, since its vertices are
positive roots of type An−1. We will encounter slightly different root polytopes (acyclic root polytopes)
in Section 4.2 when describing the realizations of a family of pipe dream complexes. In Section 5 we will
give a map that transforms the root polytope Φ(P(Yπ)) into an acyclic root polytope for π = 1π′ with π′

dominant. We set our notation for the first root polytopes now.

(i) The reason we use the word moment for these convex objects is because they arise in the context of symplectic and pre-symplectic
geometry. For readers interested in the connection, we refer them to Cannas da Silva (2001, 2003); Berline and Vergne (2011).

(ii) See footnote (i).
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3.1 Root polytopes and their triangulations
A root polytope (of type An−1) is the convex hull of some of the points ei−ej for 1 ≤ i < j ≤ n. Given
a graph G on the vertex set [n] we associate to it the root polytope

QG = ConvHull(ei − ej | (i, j) ∈ E(G), i < j). (2)

Note that for every π ∈ Sn we have that L(π) is a skew Ferrers diagram. Given a skew Ferrers
diagram D with r rows and c columns, label its rows by 1, 2, . . . , r from top to bottom and its columns by
1, 2, . . . , c from left to right. Define

GD = ({x1, . . . , xr, y1, . . . , yc}, {(xi, yj) | (i, j) ∈ D}). (3)

Then
Φ(P(Yπ)) = QGL(π)

. (4)

Note that an edge (xi, yj) ∈ GD yields the vertex ei − er+j of the root polytope QGD .
Given a drawing of a graph G so that its vertices v1, . . . , vn are arranged in this order on a horizontal

line, and its edges are drawn above this line, we say that G is noncrossing if it has no edges (vi, vk) and
(vj , vl) with i < j < k < l. A vertex vi of G is said to be nonalternating if it has both an incoming
and an outgoing edge; it is called alternating otherwise. The graph G is alternating if all its vertices are
alternating.

Since being noncrossing depends on the drawing of the graph it is essential that we set a way to draw
GD. For the purposes of this paper the vertices of GD are drawn from left to right in the following order:
xr, . . . , x1, yc, . . . , y1.

Lemma 3.1 Given a skew diagram D for which GD has k components, the root polytope QGD =⋃
F QF , where the union runs over all noncrossing alternating spanning forests of GD with |V (GD)|−k

edges and the simplices QF are interior disjoint and of the same dimension as QGD .

Fig. 3: For D the unshaded region, GD is disconnected. In this case, D′ equals D together with the shaded square.

We call the triangulation of QGD given in Lemma 3.1 the noncrossing alternating triangulation, or
NAT for short. These triangulations are closely related to the triangulations appearing in Gelfand et al.
(1997) and Cellini and Marietti (2014). Recall that a triangulation of a polytope P is regular if there
exists a concave piecewise linear function f : P → R such that the regions of linearity of f are the
maximal simplices in the triangulation.

Proposition 3.1 For a skew diagram D, the NAT triangulation of QGD described in Lemma 3.1 is a
regular triangulation.
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3.2 Characterizing when Yπ is a toric variety
Now we are ready to use the above lemmas in order to characterize when Yπ is a toric variety.

Lemma 3.2 Given a skew diagram D with r rows and c columns, for which GD has k components, the
dimension of QGD is r + c− k − 1.

Theorem 3.3 Yπ is a toric variety with respect to the T 2n−1-action if and only ifL′(π) consists of disjoint
hooks that do not share a row or a column with each other.

Proof: We have that dim(Yπ) = |L′(π)|. Lemma 3.2 yields that the dimension of Φ(P(Yπ)) equals
|L′(π)| − 1 if and only if L′(π) consists of disjoint hooks that do not share a row or a column with each
other. This suffices to prove the theorem. 2

A dominant permutation is one for which its diagram has empty dominant piece and is in the shape
of a partition. An immediate corollary of Theorem 3.3 is the following.

Corollary 3.4 If π′ is a dominant permutation on 2, 3, . . . , n then Y1π′ is a toric variety.

4 On geometric realizations of subword complexes
In this section we give some geometric realizations of subword complexes homeomorphic to balls. In
Section 4.1 we show that the NAT triangulations studied in the previous section geometrically realize
certain subword complexes. In Section 4.2 we use acyclic root polytopes to give geometric realizations
for pipe dream complexes of permutations π = 1π′ with π′ dominant.

The symmetric group Sn is generated by the adjacent transpositions s1, . . . , sn−1, where si transposes
i ↔ i + 1. Let Q = (q1, . . . , qm) be a word in {s1, . . . , sn−1}. A subword J = (r1, . . . , rm) of Q is
a word obtained from Q by replacing some of its letters by −. There are a total of 2|Q| subwords of Q.
Given a subword J , we denote by Q \J the subword with k-th entry equal to− if rk 6= − and equal to qk
otherwise for, k = 1, . . . ,m. For example, J = (s1,−, s3,−, s2) is a subword of Q = (s1, s2, s3, s1, s2)
and Q \J = (−, s2,−, s1,−). Given a subword J we denote by

∏
J the product of the letters in J , from

left to right, with − behaving as the identity.

Definition 4.1 Knutson and Miller (2004, 2005) Let Q = (q1, . . . , qm) be a word in {s1, . . . , sn−1} and
π ∈ Sn. The subword complex ∆(Q, π) is the simplicial complex on the vertex set Q whose facets
are the subwords F of Q such that the product

∏
(Q \ F ) is a reduced expression for π. The pipe

dream complex PD(π) is the subword complex ∆(Q, π) corresponding to the triangular word Q =
(sn−1, sn−2, sn−1, . . . , s1, s2, . . . , sn−1) and π.

4.1 Realization by NAT triangulations
Given a permutation π ∈ Sn, let L(π) be the mirror image of the skew shape L(π). Fill in the boxes
of L(π) with transpositions starting with s1, s2, . . . on the first column, s2, s3, . . . on the second column,
and so on. Let Q(L(π)) be the word given by reading the transpositions in the boxes of L(π) from left
to right and from bottom to top. Let P (π) = L(π)− B(π) where B(π) is as follows. In each connected
part of L(π) draw the lowestmost path from its top left box to its bottommost rightmost box. These boxes
constitute B(π). Let p(π) be the permutation obtained from reading the transpositions in the boxes of
P (π) from left to right and from bottom to top. See Figure 4.
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s2 s3
s4

Fig. 4: On the left we have L(π) and on the right L(π) for π = [14325]. Note that p(π) = s4s2s3 = [13524].

Theorem 4.2 For π ∈ Sn, the noncrossing alternating triangulation of the root polytope QGL(π)
is a

geometric realization of the subword complex ∆(Q(L(π)), p(π)).

4.2 Realizations for pipe dream complexes of dominant permutations by acyclic
root polytopes

In this section we give a geometric realization for a different family of subword complexes using acyclic
root polytopes. We show that the pipe dream complex PD(π) of a permutation π = 1π′, with π′ dom-
inant, can be geometrically realized as the canonical triangulation of an acyclic root polytope P(T (π)).
These polytopes are closely related to the root polytopes of Section 3.1.

We begin by defining acyclic root polytopes. LetG be an acyclic graph on the vertex set [n+1]. Define

VG = {ei − ej | (i, j) ∈ E(G), i < j}, a set of vectors associated to G;

cone(G) = 〈VG〉 := {
∑

ei−ej∈VG

cij(ei − ej) | cij ≥ 0}, the cone associated to G; and

VG = Φ+ ∩ cone(G), all the positive roots of type An contained in cone(G),

where Φ+ = {ei − ej | 1 ≤ i < j ≤ n + 1} is the set of positive roots of type An. The acyclic root
polytope P(G) associated to the acyclic graph G is

P(G) = ConvHull(0, ei − ej | ei − ej ∈ VG). (5)

Theorem 4.3 Mészáros (2011) Let T1, . . . , Tk be the noncrossing alternating spanning trees of the di-
rected transitive closure of the acyclic graph G. Then P(T1), . . . ,P(Tk) are top dimensional simplices
in a regular triangulation of P(G) called the canonical triangulation.

The main tool developed in Mészáros (2011) which is used to construct the canonical triangulation of
Theorem 4.3 is the subdivision algebra. Subdivision algebras have since been utilized in solving various
problems in Mészáros (2014); Mészáros (2015); Mészáros (2015); Mészáros (2016); Mészáros (2015);
Mészáros and Morales (2015).

When PD(π) is not a ball, it is usually a cone over a list of its vertices, namely those that are in all
its facets. Let cone(π) denote the set of vertices of PD(π) that are in all its facets. We define the core
of π to be the restriction of PD(π) to the set of vertices not in cone(π). Then PD(π) is obtained from
its core by iteratively coning core(π) over the vertices in cone(π). Translating to pipe dream complexes,
the core is the restriction to the entries in the n × n matrix that are a cross in some reduced pipe dream
for π. We refer to the region itself as the core region, and denote it by cr(π). Let π = 1π′, where π′ is
dominant. Denote by S(π) the subword complex which is the core(π) coned over the vertex of PD(π)
corresponding to the entry (1, 1). Denote the region which is the union of (1, 1) and cr(π) byR(π).
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Proposition 4.1 Let π = 1π′ with π′ dominant. Then R(π) = NW (π)− Ess(π).

The SE boundary of the core region starting from the southwest (SW) corner of it to the northeast (NE)
corner can be described as a series of east (E) and north (N) steps. We construct the graph T (π) by looking
at the E and N steps bounding the SE boundary of NW (π)−Ess(π). Let A be the set consisting of all
the N steps together with the E steps that do not bound a box in Ess(π). Suppose |A| = m, as we travel
the SE boundary from the SW corner, we label, in order, the E steps and N steps in A with the elements
of the sequence (α1, . . . , αm). For the E steps that we did not assign an αi, we consider their label to be
the αi assigned to the N step directly preceding them. See Figure 6 for an example of the labelling.

Given a diagram of a permutation there are two reduced pipe dreams for π with special names: the
bottom reduced pipe dream of π obtained by aligning the diagram to the left and replacing the boxes
with crosses, and the top reduced pipe dream of π obtained in a similar fashion, but by aligning the
diagram up. See Figure 5 for an example of the bottom reduced pipe dream.

1 4 5 2 3

1 �� �� �� �� �
2 �� �
3 �
4 �� �
5 �

Fig. 5: The bottom reduced pipe dream for [14523] obtained by aligning the diagram to the left.

Consider the bottom reduced pipe dream drawn inside R(π) and with elbows replaced by dots. Drop
these dots south. Define T (π) to be the tree with vertices V = {α1, . . . , αm} such that there is an edge
between vertices αi and αj with i < j if there is a dot in the entry in the column of the E step labeled αii
and in the row of the N step labeled αij. See Figure 6 for an example.

α1 α2

α3

α4

α5

α1 α2 α3 α4 α5

• • •
•

Fig. 6: On the left we have NW (π)−Ess(π) for π = [14523] with its SW boundary labelled by (α1, . . . , αm) and
the bottom reduced pipe dream drawn inside NW (π)− Ess(π) with dots instead of elbows. We then drop the dots
to the south to get the edges of T (π), which is depicted on the right.

Theorem 4.4 Let π = 1π′ ∈ Sn, where π′ is dominant. Let C2(π) be the core of PD(π) coned over
twice. The canonical triangulation of the root polytope P(T (π)) is a geometric realization of C2(π).

We now mention some of the corollaries to this Theorem.

Corollary 4.5 The volume of the root polytope P(T (1π′)), for π′ dominant is equal to the number of
reduced pipe dreams of 1π′.
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Recall that for a polytope P ⊂ RN , the tth dilate of P is tP = {(tx1, . . . , txN ) | (x1, . . . , xN ) ∈ P}.
The number of lattice points of tP , where t is a nonnegative integer and P is a convex polytope, is given
by the Ehrhart function i(P, t). If P has integral vertices then i(P, t) is a polynomial.

In the spirit of Knutson and Miller (2004); Fomin and Kirillov (1994), the double β-Grothendieck
polynomial Gβw(x,y) for w ∈ Sn, where x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1) is

Gβw(x,y) =
∑

P∈Pipes(w)

βcodimPD(w)F (P )wtx,y(P ), (6)

where Pipes(w) is the set of all pipe dreams of w (both reduced and nonreduced), F (P ) is the interior
face in PD(w) labeled by the pipe dream P , codimPD(w)F (P ) denotes the codimension of F (P ) in
PD(w) and wtx,y(P ) =

∏
(i,j)∈cross(P )(xi − yj), with cross(P ) being the set of positions where P has

a cross. Note that in the product
∏

(i,j)∈cross(P )(xi − yj) we are assuming a certain labeling of rows
and columns. Conventionally, rows are labeled increasingly from top to bottom and columns are labeled
increasingly from left to right.

Corollary 4.6 Let π = 1π′, where π′ is a dominant permutation. Then

Gβ−1π (1,0) =
∑
m≥0

(i(P(T (π)),m)βm)(1− β)dim(P(T (π)))+1. (7)

5 Degeneration of moment polytopes into acyclic root polytopes
In this section we explain how to map the root polytope Φ(P(Yπ)) to the acyclic root polytope P(T (π)).
We then use this map to triangulate Φ(P(Yπ)) based on the triangulation of P(T (π)).

Theorem 5.1 Given π = 1π′, with π′ dominant, the moment polytope Φ(P(Yπ)) can be degenerated into
the root polytope P(T (π)).

Proof: Consider the linear map from Φ(P(Yπ)) → P(T (π)) that is the composition of the maps K and
L, where L is the map

L(xi) = −ej , where αj is the label of step N on row i, and

L(yi) =

{
0 if (a, i) ∈ Ess(π) for some a,
−ej where αj is the label of step E on column i,

and K is the map given by

K(yj) =

{
xi if (i, j) ∈ Ess(π),

yj if there is no a such that (a, j) ∈ Ess(π).

K(xi) = xi.

See Figure 8 for an example of these maps. Then this maps Φ(P(Yπ)) to P(T (π)). 2

The degeneration L ◦K : Φ(P(Yπ)) → P(T (π)) consists of contracting the face of Φ(P(Yπ)) corre-
sponding toEss(π) to a point and moving this point to the origin while tweaking the vertices of Φ(P(Yπ))
that are of the form 1

2 (xi − yj) where (i, j) is north of an entry of Ess(π) and not in dom(π).
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1
2
x3 − y1
x2 − y1
x1 − y1

x3 − y2
x2 − y2
x1 − y2

x3 − y3
x2 − y3
x1 − y3

K7−→
x3 − y1
x2 − y1
x1 − y1

x3 − y2
x2 − y2
x1 − y2

0

x2 − x3
x1 − x3

Fig. 7: The map K for Y[1243].

x3 − y1
x2 − y1
x1 − y1

x3 − y2
x2 − y2
x1 − y2

0

x2 − x3
x1 − x3

L7−→
e1 − e3
e1 − e4
e1 − e5

e2 − e3
e2 − e4
e2 − e5

α3

e3 − e4
e3 − e5

α1 α2

α4

α5

Fig. 8: The map L for Y[1243].

5.1 Triangulating Φ(P(Yπ)) and geometric realization of subword complexes
The preimage of the canonical triangulation of P(T (π)) for π = 1π′, with π′ dominant, under the linear
map L◦K is a triangulation of Φ(P(Yπ)). This is yet another way to geometrically realize the pipe dream
complex PD(π) for these permutations.

Theorem 5.2 Let ∆1, . . . ,∆k be the top dimensional simplices in the canonical triangulation ofP(T (π))
for π = 1π′, where π′ is dominant. Then Pi := (L◦K)−1(∆i), i ∈ [k], are the top dimensional simplices
in a triangulation of Φ(P(Yπ)) which we call its canonical triangulation.

Denote by C(π) the core of the pipe dream complex PD(π) and by Ci(π) the core C(π) coned over i
times.

Theorem 5.3 The canonical triangulation of Φ(P(Yπ)), for π = 1π′, with π′ dominant, is a geometric
realization of C|Ess(π)|+1(π). Using the characterization of toric Yπ of Theorem 3.3, one can extend this
geometric realization to realizations of pipe dream complexes for all π such that Yπ is toric.
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N. Bergeron, C. Ceballos, and J.-P. Labbé. Fan realizations of type A subword complexes and multi-
associahedra of rank 3. Discrete Comput. Geom., 54(1):195–231, 2015. ISSN 0179-5376. doi: 10.
1007/s00454-015-9691-0. URL http://dx.doi.org/10.1007/s00454-015-9691-0.

http://projecteuclid.org/euclid.em/1048516036
http://dx.doi.org/10.1007/s00454-015-9691-0


Toric matrix Schubert varieties and root polytopes 465

N. Berline and M. Vergne. Hamiltonian manifolds and moment map. 2011. http://www.math.
polytechnique.fr/˜berline/cours-Fudan.pdf.

A. Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2001. ISBN 3-540-42195-5. doi: 10.1007/978-3-540-45330-7. URL http:
//dx.doi.org/10.1007/978-3-540-45330-7.

A. Cannas da Silva. Symplectic toric manifolds. In Symplectic geometry of integrable Hamiltonian
systems (Barcelona, 2001), Adv. Courses Math. CRM Barcelona, pages 85–173. Birkhäuser, Basel,
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K. Mészáros. Product formulas for volumes of flow polytopes. Proc. Amer. Math. Soc., 143(3):937–954,
2015. ISSN 0002-9939. doi: 10.1090/S0002-9939-2014-12182-4. URL http://dx.doi.org/
10.1090/S0002-9939-2014-12182-4.
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