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Weak Separation, Pure Domains and Cluster
Distance

Miriam Farber1† and Pavel Galashin1‡

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA, USA.

Abstract. Following the proof of the purity conjecture for weakly separated sets, recent years have revealed a variety
of wider classes of pure domains in different settings. In this paper we show the purity for domains consisting of
sets that are weakly separated from a pair of “generic” sets I and J . Our proof also gives a simple formula for the
rank of these domains in terms of I and J . This is a new instance of the purity phenomenon which essentially differs
from all previously known pure domains. We apply our result to calculate the cluster distance and to give lower
bounds on the mutation distance between cluster variables in the cluster algebra structure on the coordinate ring of
the Grassmannian. Using a linear projection that relates weak separation to the octahedron recurrence, we also find
the exact mutation distances and cluster distances for a family of cluster variables.

Résumé. Suite à la preuve de la conjecture de pureté sur les ensembles faiblement séparés, des familles variées de
domaines pures sont apparues récemment dans différents contextes. Dans cet article, nous prouvons la pureté de
domaines formés par les ensembles qui sont faiblement séparés d’une paire d’ensembles “génériques” I et J . Notre
preuve donne aussi une formule simple pour le rank de ces domaines en termes de I et J . Il s’agit d’une nouvelle
instance du phénomène de pureté qui diffère essentiellement de tous les domaines pures connus précédemment. Nous
appliquons notre résultat pour calculer la distance d’amas et pour donner des bornes inférieures sur la distance de
mutation entre les variables d’amas dans la structure d’algèbre amassée sur l’anneau de coordonnées de la Grassman-
nienne. En utilisant une projection linéaire qui relie la séparation faible à la récurrence de l’octaèdre, nous trouvons
aussi les distances de mutation et les distances d’amas exactes pour une famille de variables d’amas.

Keywords. weak separation, purity conjecture, cluster distance, mutation sequences

1 Introduction
In 1998, Leclerc and Zelevinsky introduced the notion of weakly separated collections while studying
quasicommuting families of quantum minors (see Leclerc and Zelevinsky (1998)). They raised the “purity
conjecture”, which states that all maximal by inclusion collections of pairwise weakly separated subsets
of [n] := {1, 2 . . . , n} have the same cardinality. This conjecture was proven independently by both Oh
et al. (2015) and Danilov et al. (2010). Since then, it motivated the search for a wider classes of pure
domains. Such domains have been found (Danilov et al. (2014)), using a novel geometric-combinatorial
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model called combined tilings. Furthermore, the work of Oh et al. (2015) showed that all maximal weakly
separated collections can be obtained from each other by a sequence of mutations. In particular, this result
implies that sets of Plücker coordinates labeled by maximal weakly separated collections form clusters
in the cluster algebra structure on the coordinate ring of the Grassmannian. All the pure domains that
were studied so far have their maximal weakly separated collections lying inside or outside a simple
closed curve (we will recall the definition of this later). In this paper, we discover a new type of pure
domains associated with pairs of subsets of [n]. For these domains the structure of maximal weakly
separated collections is of a different nature than in all of the above cases. Such domains arise naturally
while studying a notion of cluster distance between two cluster variables, and specifically variables that
are Plücker coordinates in the cluster algebra structure on the coordinate ring of the Grassmannian. The
purity of these domains allows us to compute this distance for any “generic” pair of cluster variables. We
further reformulate this distance in the context of general cluster algebras.

Let us first motivate the need for a notion of distance in a cluster algebra, concentrating on the example
of the Grassmannian. A pair of Plücker coordinates can appear together in the same cluster iff they are
labeled by weakly separated subsets of [n]. What about Plücker coordinates that do not appear together
in the same cluster? We would like to estimate how close they are to being weakly separated. In a
more general sense, it would be beneficial to have a notion that would measure how close are two cluster
variables from appearing in the same cluster. When they do appear in the same cluster we say that the
distance between them is zero. Section 2 develops this notion (defined in equation (1)) and introduces
the domains mentioned above. Section 3 introduces our main result. Section 4 provides the necessary
background on domains inside and outside simple closed curves, used in the sketch of the proof of our
main result in Section 5. Finally, Section 6 gives a formula for the mutation distance (introduced in Farber
and Postnikov (2015)) for a family of pairs of cluster variables and relates the corresponding optimal
sequence of mutations with that of the octahedron recurrence.

2 Preliminaries
For 0 ≤ k ≤ n, we denote by

(
[n]
k

)
the collection(i) of k-element subsets of [n]. For two subsets I, J ⊂ [n]

we write I < J if max(I) < min(J). We say that I surrounds J if |I| ≤ |J | and I \ J can be partitioned
as I1 t I2 such that I1 < J \ I < I2. We denote by I 4 J the symmetric difference (I \ J) ∪ (J \ I).

Definition 2.1 (Leclerc and Zelevinsky (1998)) Two sets I and J are said to be weakly separated if
either I surrounds J or J surrounds I (or both).

This definition has a particularly simple meaning when I and J have the same size. Consider a convex
n-gon with vertices labeled by numbers 1 through n. Then it is easy to see that two subsets I and J of the
same size are weakly separated iff the convex hull of the vertices from the set I \ J does not intersect the
convex hull of the vertices from the set J \ I . A collection C ⊂ 2[n] is called weakly separated if any two
of its elements are weakly separated.

Definition 2.2 (Danilov et al. (2014)) A collection A ⊂ 2[n] is called a pure domain if all maximal (by
inclusion) weakly separated collections of sets fromA have the same size. In this case, the size of all such
collections is called the rank of A and denoted rkA.

(i) throughout the paper, we reserve the word “set” for subsets of [n] while we use the word “collection” for subsets of 2[n].
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The following two surprising results go under the name “purity phenomenon” and were conjectured in
Leclerc and Zelevinsky (1998) and Scott (2005), respectively. Both of them were proven independently
in Oh et al. (2015) and in Danilov et al. (2010):

Theorem 2.3 The collection 2[n] is a pure domain of rank
(
n
2

)
+ n+ 1.

Theorem 2.4 The collection
(

[n]
k

)
is a pure domain of rank k(n− k) + 1.

The latter result has a stronger version that relates pairs of maximal (by inclusion) weakly separated
collections by an operation that is called a mutation.

Proposition 2.5 (Leclerc and Zelevinsky (1998), Scott (2005)) Let S ∈
(

[n]
k−2

)
and let a, b, c, d be cycli-

cally ordered elements of [n]\S. Suppose a maximal weakly separated collection C contains Sab, Sbc, Scd, Sda
and Sac. Then C′ = (C \ {Sac}) ∪ {Sbd} is also a maximal weakly separated collection.

Here by Sab we mean S ∪ {a, b}. We say that C′ and C as above are connected by a mutation(ii).

Theorem 2.6 (Oh et al. (2015))
(

[n]
k

)
is a pure domain of rank k(n−k)+1. Moreover, any two maximal

weakly separated collections in
(

[n]
k

)
are connected by a sequence of mutations.

The list of collections of subsets of [n] known to be pure domains is not restricted to just 2[n] and
(

[n]
k

)
.

In Oh et al. (2015) both Theorem 2.3 and Theorem 2.4 above can be seen as special cases of the purity
phenomenon for the collections inside a positroid, while in Danilov et al. (2010) these collections are
inside and outside of a generalized cyclic pattern. Note that in both Oh et al. (2015) and Danilov et al.
(2010), the collections are required to lie, in a sense, inside and outside a specific simple closed curve (we
will define that more rigorously later). In this paper we present a new instance of the purity phenomenon
which does not fit into this context. The domains that we discuss arise naturally when dealing with
distances between cluster variables in the cluster algebra on the coordinate ring of the Grassmannian.

Definition 2.7 For n ≥ k ≥ 0, the Grassmannian Gr(k, n) (over R) is the space of k-dimensional
linear subspaces in Rn. It can be identified with the space of real k × n matrices of rank k modulo row
operations. The k× k minors of k×n-matrices form projective coordinates on the Grassmannian, called
the Plücker coordinates, that are denoted by ∆I , where I ∈

(
[n]
k

)
.

Theorem 2.6 implies the following (Oh et al. (2015)):

Theorem 2.8 For C ⊂
(

[n]
k

)
, C is a maximal weakly separated collection iff the set of Plücker coordinates

{∆I}I∈C is a cluster in the cluster algebra structure on the coordinate ring of Gr(k, n).

This theorem associates maximal weakly separated collections with clusters, and k-tuples in
(

[n]
k

)
with

cluster variables, which are the Plücker coordinates. Two cluster variables can appear in the same cluster
iff they are weakly separated. This trait leads to the following natural question: Given any pair of cluster
variables – how far are they from appearing in the same cluster? More formally, let I, J ∈

(
[n]
k

)
. Define:

d(I, J) = k(n− k) + 1−max
{
|C1 ∩ C2| : C1, C2 ⊂

(
[n]

k

)
and I ∈ C1, J ∈ C2

}
(1)

(ii) Such a mutation is usually called a square move. There is a more general notion of a cluster mutation, but it is beyond the scope
of this paper.
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such that both C1 and C2 on the RHS are weakly separated collections. Theorem 2.4 implies that d(I, J) =
0 iff I and J are weakly separated, in which case we can take C1 = C2 to be any maximal weakly separated
collection containing I and J . Thus, d(·, ·) measures how close a pair of k-tuples is to being weakly
separated. This notion can be extended to any cluster algebra, by replacing k(n− k) + 1 with the rank of
the algebra and C1 and C2 to be clusters. This defines a distance between cluster variables. Another (and
different) notion of distance between clusters was studied in Oh and Speyer (2014).
For a fixed n, we say that I ⊂ [n] is an interval if I is of the form [a, b] = {a, a + 1, . . . , b − 1, b}. If
b < a then we consider the elements in [a, b] modulo n. For example, if n = 6 then [2, 4] = {2, 3, 4} and
[5, 2] = {5, 6, 1, 2}. Note that d(·, ·) does not satisfy the triangle inequality since if I is an interval then
d(I, J) = 0 for any J . In addition, both C1 and C2 always contain the following n boundary sets:

Bk,n =
{
{1, 2, . . . , k}, {2, 3, . . . , k + 1}, . . . , {1, 2, . . . , k − 1, n}

}
,

and thus 0 ≤ d(I, J) ≤ k(n− k) + 1− n = (k − 1)(n− k − 1) for any pair I, J ∈
(

[n]
k

)
.

Definition 2.9 For any pair of k-tuples I, J ∈
(

[n]
k

)
we define the domainAI,J ⊂

(
[n]
k

)
to be the collection

of all k-tuples that are weakly separated from both I and J .

We can now define d(·, ·) equivalently as follows:

d(I, J) = k(n− k) + 1−max
{
|C| : C ⊂ AI,J is weakly separated

}
. (2)

The optimal collection C on the RHS of (2) would be just C1 ∩ C2 for the optimal pair C1 and C2 in (1).

Example 2.10 Let I = {1, 2, 4}, J = {3, 5, 6} ∈
(

[6]
3

)
. Since I and J are not weakly separated,

max
{
|C| | C ⊂ AI,J is weakly separated

}
< k(n− k) + 1 = 10. This maximum actually equals 8 and

is achieved at C = B3,6 ∪
{
{1, 2, 5}, {1, 3, 4}

}
. Therefore, d(I, J) = k(n− k) + 1− 8 = 2.

Let us consider another pair Î = {1, 3, 5}, Ĵ = {2, 4, 6} ∈
(

[6]
3

)
. This time, the maximal size of a

weakly separated collection in AÎ,Ĵ is 6 and the only such collection is just B3,6. Hence, d(Î , Ĵ) =

(k − 1)(n− k − 1) = 4. Note that this value is the largest one that d(·, ·) can take for n = 6 and k = 3.
This example can be generalized to any k with n = 2k: for I := {1, 3, . . . , 2k − 1}, we will see in
Lemma 5.6 that AI,Ī = Bk,2k and thus d(I, Ī) = (k − 1)(n− k − 1).

Thus finding the maximal size of a weakly separated collection in AI,J enables us to calculate d(I, J).
In this paper, we go further and show that for any ”generic” pair I and J , AI,J is a pure domain, and we
find its rank. This not only gives us the value of d(I, J) for such pairs, but also introduces a new class of
pure domains with a different structure from the previously known classes.

3 Main result
In this section we introduce our main result, which deals with the purity of AI,J for balanced pairs
I, J . We first discuss the case in which I and J form a complementary pair of sets (so I ∈

(
[2k]
k

)
and

J = [2k] \ I) and then proceed to the general case.
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{1, 2, 3, 4, 9}

{1, 3, 4, 5, 6} {5, 6, 7, 8, 10}

{2, 7, 8, 9, 10}

C2 C4

C1

C3

Fig. 1:
Elements of AI,I \ B5,10. Edges correspond to weakly separated pairs.

Definition 3.1 Fix any integer k and let I ∈
(

[2k]
k

)
be a set. Then I and its complement I partition

the circle (with numbers 1, 2, . . . , 2k) into an even number of intervals I = P1 ∪ P3 ∪ . . . ∪ P2r−1,
I = P2 ∪ P4 ∪ . . . ∪ P2r for some r ≥ 1, where Pi are intervals for any 1 ≤ i ≤ r and P1 < P2 <
P3 < · · · < P2r−1 < P2r (these inequalities are “modulo 2k”). We say that {Pi}2ri=1 are the intervals
associated with I . We also let pi := |Pi| be their cardinalities and say that (p1, p2, . . . , p2r) is the partition
of the circle associated with I . We say that I is balanced if for any i 6= j ∈ [2r] we have pi + pj < k.

For an even number t, we denote by Pt the collection of all sets I for which 2r = t (2r is taken from the
definition above). I and I are weakly separated iff I ∈ P2. In addition, note that if I ∈ P4 then it is not
balanced, since p1 + p3 = p2 + p4 = k. We study the structure of AI,I and d(I, I) for I ∈ P4 in the last
section, and relate them to the octahedron recurrence.

Example 3.2 Let I = {1, 2, 4, 6, 8}, I = {3, 5, 7, 9, 10} ∈
(

[10]
5

)
. Then I and I partition the circle into

the following intervals associated with I: {1, 2}, {3}, {4}, {5}, {6}, {7}, {8}, {9, 10}. Therefore, I ∈ P8

and (2, 1, 1, 1, 1, 1, 1, 2) is the partition of the circle associated with I . Since both 2+1 and 2+2 are
smaller than 5, I is balanced.

Theorem 3.3 Let I ∈
(

[2k]
k

)
be balanced and let (p1, p2, . . . , p2r) be the partition of the circle associated

with I . Then AI,I is a pure domain of rank

2k +

2r∑
i=1

(
pi
2

)
. (3)

Remark 3.4 This theorem fails for some non-balanced sets. But note that if the set I is chosen uniformly
at random then it is clear that I will be balanced with probability close to 1 for large values of k, so the
“balancedness” property can be thought of as the analogue of being a “generic” set.

Example 3.5 Let I, I be as in Example 3.2. Then

AI,I = B5,10 ∪
{
{1, 2, 3, 4, 9}, {1, 3, 4, 5, 6}, {2, 7, 8, 9, 10}, {5, 6, 7, 8, 10}

}
.

Consider a graph with vertex set AI,I and an edge between S and T iff S and T are weakly separated.
Then the vertices labeled by the elements of B5,10 are connected to each other and to all other vertices
and the remaining four vertices form the square in Figure 1. The are no triangles in Figure 1, so there are
4 maximal weakly separated collections in AI,I :
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C1 = B5,10 ∪
{
{1, 2, 3, 4, 9}, {2, 7, 8, 9, 10}

}
, C2 = B5,10 ∪

{
{1, 2, 3, 4, 9}, {1, 3, 4, 5, 6}

}
,

C3 = B5,10 ∪
{
{1, 3, 4, 5, 6}, {5, 6, 7, 8, 10}

}
, C4 = B5,10 ∪

{
{2, 7, 8, 9, 10}, {5, 6, 7, 8, 10}

}
.

All of them are of size 12, and henceAI,I is a pure domain of rank 2 ·5 +
(

2
2

)
+
(

2
2

)
= 12, which agrees

with the statement of Theorem 3.3.

Next, we generalize Theorem 3.3 to the case of not necessarily complementary subsets. Namely, take
any two subsets I, J ∈

(
[n]
m

)
and put k := |I \ J | = |J \ I|. After we ignore the elements from I ∩ J and

J ∪ I , we get two complementary sets P,Q ∈
(

[2k]
k

)
(so Q = P ). We say that I and J form a balanced

pair if the set P is balanced.

Theorem 3.6 Let I, J ∈
(

[n]
m

)
form a balanced pair and let P,Q, k be as above. Let (p1, p2, . . . , p2r) be

the partition of the circle associated with P . Then AI,J is a pure domain of rank

m(n−m)− k2 + 2k +

2r∑
i=1

(
pi
2

)
.

Note that the additional term m(n−m)− k2 is nothing but the difference of ranks rk
(

[n]
m

)
− rk

(
[2k]
k

)
. We

conclude this section with the following theorem:

Theorem 3.7 Let I, J, P,Q, k be as in Theorem 3.6. Then d(I, J) = 1 + k2 − 2k −
∑2r

i=1

(
pi

2

)
. If I and

J are not balanced then d(I, J) ≤ 1 + k2 − 2k −
∑2r

i=1

(
pi

2

)
.

The first part of this theorem follows from Theorem 3.6. For the second part, we have an even stronger
upper bound which we omit here.

4 Pure domains inside and outside a simple closed curve
In this section we discuss the approaches of (Oh et al., 2015, Section 9) and Danilov et al. (2014) regarding
domains inside and outside simple closed curves. We start by defining a map that appears in both of the
papers and justifies the geometric intuition that we are using, for example, while thinking about simple
closed curves. Let us fix n vectors ξ1, ξ2, . . . , ξn ∈ R2 at the vertices of a convex n-gon in clockwise
order. Define:

Zn = {λ1ξ1 + . . .+ λnξn | 0 ≤ λi ≤ 1, i = 1, 2, . . . , n}.

We identify a subset I ⊂ [n] with the point
∑

i∈I ξi in Zn. Note that if two subsets I and J are weakly
separated, then the corresponding points are different. Now if we have a sequence S = (S0, S1, . . . , Sr =
S0) of subsets, we can always view it as a piecewise linear closed curve ζS obtained by concatenating
the line-segments connecting consecutive points Si−1 and Si for i = 1, 2 . . . , r. An important instance of
such curves are generalized cyclic patterns. (iii)

Definition 4.1 Danilov et al. (2014) A generalized cyclic pattern is a sequence S = (S1, S2, . . . , Sr =
S0) of pairwise distinct and weakly separated subsets of [n] such that

(iii) We will need them only for the case when all sets from S have the same size, so we give simplified versions of the definitions
and a theorem from Danilov et al. (2014).
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1. The sets in S all have the same size;

2. |Si−1 4 Si| = 2 for i = 1, . . . , r.

For a generalized cyclic pattern S ⊂
(

[n]
k

)
, let DS := {X ∈

(
[n]
k

)
| X is weakly separated from S}. All

the generalized cyclic patterns discussed in this work correspond to non self-intersecting curves. For more
details regarding criteria for non-self intersection, see Danilov et al. (2014). The following two theorems
summarize important properties of generalized cyclic patterns. Let S be a generalized cyclic pattern for
which the curve ζS is non-self intersecting. Then ζS subdivides Zn into two closed regionsRin

S andRout
S

such thatRin
S ∩Rout

S = ζS andRin
S ∪Rout

S = Zn. Let us define

Din
S = DS ∩Rin

S and Dout
S = DS ∩Rout

S .

Theorem 4.2 (Danilov et al. (2014)) Let S be a generalized cyclic pattern for which the curve ζS is non-
self intersecting. Then the domains Din

S and Dout
S are pure. Moreover, for every X ∈ Din

S and Y ∈ Dout
S ,

X and Y are weakly separated.

An important instance of generalized cyclic patterns, called Grassmann necklaces, was studied in Oh
et al. (2015) and Postnikov (2006). For the case of Grassmann necklaces, the ranks of Din

S and Dout
S

can be calculated explicitly. We discuss here only connected necklaces and some notions associated with
them. For the general case, we refer the reader to Oh et al. (2015).

Definition 4.3 A generalized cyclic pattern S = (S1, S2, . . . , Sr = S0) forms a connected Grassmann
necklace if for all i ∈ [n], Si+1 = Si \{i}∪{j} for some j ∈ [n]. S can be recorded through a decorated
permutation π : [n]→ [n] for which π(i) = j if Si+1 = Si \ {i} ∪ {j}.

For i, j ∈ [n], {i, j} forms an alignment in π if (i, π(i), π(j), j) are cyclically ordered (and all distinct).
The number of alignments in π is denoted by al(π), and the length `(π) is defined to be k(n− k)− al(π).

This definition applies only to connected necklaces and describes how to associate a decorated permuta-
tion with a given Grassmann necklace. We refer the reader to Oh et al. (2015) for the general case, as well
as construction of the inverse of this map. We use the notation I for Grassmann necklaces and define `(I)
to be `(π), where π is the associated decorated permutation of I.

Theorem 4.4 Oh et al. (2015) Let us fix a Grassmann necklace I. Then Din
I is a pure domain of rank

`(I) + 1. Any two maximal weakly separated collections in Din
I are linked by a sequence of mutations.

Note that Theorem 2.4 is a special case of Theorem 4.4, by setting I := Bk,n. The decorated permutation
that is associated with such I is τk,n, which sends i ∈ [n] to i+ k ∈ [n]. We view permutations as maps
[n] → [n], so if σ and π are two permutations of [n], then (σ ◦ π)(i) = σ(π(i)). Finally, we write each
permutation in one-line notation as follows: σ = (σ(1), σ(2), . . . , σ(n)) .

Definition 4.5 Let I ∈
(

[2k]
k

)
and let (p1, . . . , p2r) be the partition of the circle associated with I . Define

τI := (p1, p1 − 1, . . . , 1, p1 + p2, p1 + p2 − 1, . . . , p1 + 1, . . . , 2k, 2k − 1, . . . , 2k − p2r + 1) .

We say that the permutation τI ◦ τk,2k is the canonical decorated permutation associated with AI,I . We
denote by I(τI ◦ τk,2k) the Grassmann necklace that corresponds to τI ◦ τk,2k and call it the canonical
Grassmann necklace associated with I .
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Example 4.6 Let I = {1, 2, 4, 6, 8} be as in Examples 3.2 and 3.5. Then τI = (2, 1, 3, 4, 5, 6, 7, 8, 10, 9),

τ5,10 = (6, 7, 8, 9, 10, 1, 2, 3, 4, 5) and τI ◦ τ5,10 = (6, 7, 8, 10, 9, 2, 1, 3, 4, 5).

Therefore, the canonical Grassmann necklace associated with I is:

I(τI ◦ τ5,10) =
{
{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}, {5, 6, 7, 8, 10},

{6, 7, 8, 9, 10}, {2, 7, 8, 9, 10}, {1, 2, 8, 9, 10}, {1, 2, 3, 9, 10}, {1, 2, 3, 4, 10}
}
.

Remark 4.7 Note that {i, j} is an alignment in τI ◦τk,2k iff both τk,2k(i) and τk,2k(j) belong to the same
interval Pm for some 1 ≤ m ≤ 2r. Therefore,

`(I(τI ◦ τk,2k)) = k2 −
2r∑
i=1

(
pi
2

)
.

Next, we introduce the notion of an isomorphism between two generalized cyclic patterns.

Definition 4.8 Two generalized cyclic patterns S = (S0, S1, . . . , Sr = S0) and C = (C0, C1, . . . , Cr = C0)
with Si, Ci ⊂ [n] are called isomorphic if there exists a permutation γ : [n]→ [n] such that:

• γ(Ci) = Si for i = 0 . . . r;

• γ is a bijection Din
C → Din

S ;

• Two subsets A,B ∈ Din
C are weakly separated iff γ(A) and γ(B) are weakly separated.

Such a permutation γ is called an isomoprhism between S and C.

In other words, isomorphic generalized cyclic patterns differ by just a relabeling of elements of [n]. Note
that the last two properties may not hold for Dout

C and Dout
S . Clearly, if S and C are isomorphic, then the

ranks of Din
S and Din

C are equal.

5 Sketch of the proof
In this section we sketch the proof of Theorem 3.3. The proof idea is to show that if I is balanced and
W ⊂ AI,I is a maximal weakly separated collection, thenW ⊂ Dout

SW for some generalized cyclic pattern
SW ⊂ W . While SW depends on W , all generalized cyclic patterns of this form will be shown to be
isomorphic. In particular, all of them are isomorphic to the canonical Grassmann necklace associated
with I . As a conclusion, we find that rkDout

SW is independent ofW , and its value equals the one given in
(3). This will imply that AI,I is a pure domain.

Example 5.1 Let I be as in example 3.5. There are four maximal weakly separated collections in AI,I

given by C1, C2, C3, C4. Figure 2 depicts their embedding in the plain, as described in the previous section.
Each one of these collections lies outside of a curve formed by a generalized cyclic pattern. The gener-
alized cyclic pattern that corresponds to C4 is exactly I(τI ◦ τ5,10), the canonical Grassmann necklace
associated with I (see Example 4.6 for the description of this necklace). The generalized cyclic patterns
corresponding to C1, C2 and C3 are isomorphic to I(τI ◦ τ5,10).
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1,2,3,4,10

1,2,3,4,5

5,6,7,8,9

4,5,6,7,8

3,4,5,6,7

2,3,4,5,6

1,2,3,9,10

1,2,8,9,10

1,7,8,9,10
6,7,8,9,10

2,7,8,9,10

1,2,3,4,9

C1

1,2,3,4,10

1,2,3,4,5

5,6,7,8,9

4,5,6,7,8

3,4,5,6,7

2,3,4,5,6

1,2,3,9,10

1,2,8,9,10

1,7,8,9,10
6,7,8,9,10

1,3,4,5,6 1,2,3,4,9

C2

1,2,3,4,10

1,2,3,4,5

5,6,7,8,9

4,5,6,7,8

3,4,5,6,7

2,3,4,5,6

1,2,3,9,10

1,2,8,9,10

1,7,8,9,10
6,7,8,9,10

5,6,7,8,10

1,3,4,5,6

C3

1,2,3,4,10

1,2,3,4,5

5,6,7,8,9

4,5,6,7,8

3,4,5,6,7

2,3,4,5,6

1,2,3,9,10

1,2,8,9,10

1,7,8,9,10
6,7,8,9,10

2,7,8,9,105,6,7,8,10

C4

Fig. 2: The embedding of C1, C2, C3, C4.

One of the main ingredients of the proof is the following “left-right purity phenomenon” which is inter-
esting in its own right.

Definition 5.2 For a positive integer n, denote by LR([0, n]) the collection of all subsets I ⊂ [0, n] :=
{0, 1, . . . , n} such that I contains exactly one of the elements 0, n.

Then we obtain the following description of maximal weakly separated collections inside LR([0, n]):

Theorem 5.3 1. The domain LR([0, n]) is a pure domain of rank
(
n
2

)
+ n+ 1 = rk2[n];

2. For each maximal weakly separated collection M ⊂ LR([0, n]) and for all m = 0, . . . , n−1 there
is a unique set Sm ⊂ [n − 1] of size m such that both Sm ∪ {0} and Sm ∪ {n} belong to M . For
these sets, we have ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 = [n− 1].

Remark 5.4 The second part of Theorem 5.3 follows directly from (Leclerc and Zelevinsky, 1998, Corol-
lary 3.4). An almost identical but slightly different notion appears in (Danilov et al., 2010, Definition 6)
as a left-right pair. However none of these papers mentions the purity of the corresponding domain.

Example 5.5 Let C =
{
{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {4}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}, {0, 2, 3}, {0, 2}, {2, 4}

}
be a maximal weakly separated collection inLR([0, 4]). We have |C| = 11 =

(
4
2

)
+4+1 and the sequence

(S0 ⊂ S1 ⊂ S2 ⊂ S3) provided by Theorem 5.3 is (∅ ⊂ {2} ⊂ {2, 3} ⊂ {1, 2, 3}).
The next lemma describes the structure of the elements in AI,I .

Lemma 5.6 Let I ⊂
(

[2k]
k

)
be balanced, and let {Pi}2ri=1 be the intervals associated with I . Then U ∈

AI,I iff U satisfies

(Pi+1 ∪ Pi+2 ∪ · · · ∪ Pj−1) ⊂ U ⊂ Pi ∪ (Pi+1 ∪ Pi+2 ∪ · · · ∪ Pj−1) ∪ Pj (4)
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for some i and j.

If such i and j exist then they can be (uniquely) chosen so that Pi ∩ U and Pj ∩ U are nonempty. In this
case Pi and Pj are called (resp., left and right) endpoints of U . For example, if I is as in Example 3.2
then {1, 3, 4, 5, 6} ∈ AI,I . Its endpoints are {1, 2} and {6}.

The following lemma is an application of the Left-Right Purity (Theorem 5.3). It explains how to
construct the generalized cyclic pattern SW mentioned in the beginning of the section.

Lemma 5.7 Let I be as in Lemma 5.6, and letW ⊂ AI,I be maximal weakly separated collection. Then
for each 1 ≤ i ≤ 2r, there exists a sequence of subsets ∅ = Si

0 ⊂ Si
1 ⊂ · · · ⊂ Si

pi
= Pi satisfying the

following properties:

(a) for any 1 ≤ i ≤ 2r, 0 ≤ t ≤ pi and for any U ∈ W the sets U ∩ Pi and Si
t are weakly separated;

(b) any set inW is weakly separated from any S ∈ AI,I such that if Pi and Pj are the endpoints of S
then S ∩ Pi = Si

t and S ∩ Pj = Sj
u for some t ≤ pi and u ≤ pj .

Now consider all the sets U ∈ AI,I satisfying property (b). Note that they form a generalized cyclic
pattern: if Sm = Si

t ∪Pi+1 ∪ · · · ∪Pj−1 ∪Sj
u is such a set (with Si

t and Sj
u nonempty) then it is followed

by the set

Sm+1 =

{
Si
t−1 ∪ Pi+1 ∪ · · · ∪ Pj−1 ∪ Sj

u+1, if u < pj ;

Si
t−1 ∪ Pi+1 ∪ · · · ∪ Pj−1 ∪ Pj ∪ Sj+1

1 , if u = pj .

Every subset S ∈ AI,I satisfying property (b) appears somewhere in this sequence SW := (S1, S2, . . . , S2k).
Here S1 is chosen so that its left endpoint is P1 and S1 ∩ P1 = P1. From (Danilov et al., 2014, Theorem
7.4), we know that the domains Din

SW and Dout
SW form a complementary pair and thus

rkDin
SW + rkDout

SW = 1 + k2 + |S| = 1 + k2 + 2k. (5)

To calculate the ranks of Din
S and Dout

S , we prove the following theorem:

Theorem 5.8 The canonical Grassmann necklace associated with I is isomorphic to SW .

By Theorem 5.8 and Remark 4.7, it follows that rkDin
SW = 1 + `(τA ◦ τk,2k) = 1 + k2 −

∑2r
i=1

(
pi

2

)
.

Substituting this into (5) yields rkDout
SW = 2k +

∑2r
i=1

(
pi

2

)
.

Finally, using the geometric definition of domains Din
SW and Dout

SW given in Section 4 we show:

Lemma 5.9
W ⊂ Dout

SW ⊂ AI,I .

This lemma implies thatW is a maximal weakly separated collection insideDout
S and thus |W| = rkDout

S ,
which completes the proof of Theorem 3.3. 2

6 Mutation distance and sets with four associated intervals
In the previous sections, we found the exact value of d(·, ·) for balanced pairs, and an upper bound for
unbalanced pairs. In this section, we evaluate the exact value of d(·, ·) for a wide family of unbalanced
pairs. Recall that for an even positive integer t, Pt is the collection of all sets I for which I and I partition
the circle into t intervals. In this section we concentrate on the structure of P4. This case is particularly



Weak Separation, Pure Domains and Cluster Distance 489

interesting, since t = 4 is the minimal t for which I, I ∈ Pt are not weakly separated. While sets I ∈ P4

can never be balanced, we were still able to find the exact value of d(I, I) as well as the maximal possible
cardinality of a weakly separated collection in AI,I . Moreover, we also find the value of D(I, I), the
mutation distance between I and I introduced in Farber and Postnikov (2015). The following definition
and problem were introduced in Farber and Postnikov (2015).

Definition 6.1 Let I, J ∈
(

[n]
k

)
be any two k-element subsets in [n]. Define the mutation distanceD(I, J)

to be the minimal number of mutations needed to transform a maximal weakly separated collection C1 ⊂(
[n]
k

)
that contains I into a maximal weakly separated collection C2 ∈

(
[n]
k

)
that contains J .

Problem 6.2 How to calculate the mutation distance between any I and J , and how to find the shortest
chain of mutations between maximal weakly separated collections containing these subsets?

Clearly, D(I, J) = 0 iff I and J are weakly separated. In addition, d(I, J) ≤ D(I, J) for any pair
I, J ∈

(
[n]
k

)
. Combining this observation with Theorem 3.7 leads to the following corollary:

Corollary 6.3 Let I, J, P,Q, k be as in Theorem 3.6. Then D(I, J) ≥ 1 + k2 − 2k −
∑2r

i=1

(
pi

2

)
.

We proceed to the results about P4.

Theorem 6.4 Let I ∈
(

[2k]
k

)
for which (p1, p2, p3, p4) is the partition of the circle associated with I . Then

a maximal weakly separated collection in AI,I is of size at most 2k +
∑4

i=1

(
pi

2

)
, and this bound it tight.

Corollary 6.5 Let I be as in Theorem 6.4. Then d(I, Ī) = 1 + k2 − 2k −
∑2r

i=1

(
pi

2

)
.

Theorem 6.6 Let I be as in Theorem 6.4, and assume without loss of generality that p1 ≥ max(p2, p3, p4)
(we can always achieve that by rotation and switching the roles of I and I). Then
D(I, I) = p2p3p4 − 2

(
p3+1

3

)
.

Remark 6.7 For I ∈ P4, Theorem 6.6 implies that D(I, I) is a (piecewise) polynomial of degree 3,
while Corollary 6.5 implies that d(I, I) is a polynomial of degree 2. It would be interesting to figure out
whether both d(·, ·) and D(·, ·) are piecewise polynomials (in the parameters {pi}2ri=1) for the general
case. In addition, Theorems 6.4 and 3.3 give identical values for the maximal cardinality of a maximal
weakly separated collection inAI,I . However, for I ∈ P4, AI,I is not necessarily pure, so there might be
a maximal (by inclusion) weakly separated collection in AI,I with smaller cardinality.

The main tool that is used in the proof of these results is a certain projection of weakly separated collec-
tions in AI,I onto R3, and the relation of this projection with mutation sequences. This projection was
introduced in Farber and Postnikov (2015), where using computer experiments, the values of D(·, ·) were
found for small cases. Here we fully explore the properties of this projection, and this enables us to find
D(I, I) and d(I, I) for any I ∈ P4.

Definition 6.8 Given a partition (P1, P2, P3, P4) of a circle into four intervals, we define the projection
φP1,P2,P3,P4 : 2[n] → R4 such that for S ⊂ 2[n], φP1,P2,P3,P4(S) = (|S∩P1|, |S∩P2|, |S∩P3|, |S∩P4|).

For a weakly separated collection C ⊂
(

[n]
k

)
, φP1,P2,P3,P4

(C) is a certain set of lattice points that all belong
to the three-dimensional hyperplane x1 + x2 + x3 + x4 = k. Let

α1 = (0, 0,−1, 1), α2 = (0, 1,−1, 0), α3 = (−1, 1, 0, 0), α4 = (−1, 0, 0, 1).
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In order to prove the results, we take P1, P2, P3 and P4 to be the intervals associated with I . Then for any
pair of maximal weakly separated collections C1, C2 ⊂

(
[2k]
k

)
such that I ∈ C1, I ∈ C2, we show that all

the points in the projections φP1,P2,P3,P4(C1) and φP1,P2,P3,P4(C2) must lie outside, or on the surface, of
the square pyramids Q1 = {φ(I) +

∑4
i=1 tiαi | ti ≥ 0 ∀i} and Q2 = {φ(I) −

∑4
i=1 tiαi | ti ≥ 0 ∀i}

respectively. We proceed by showing that any mutation either leaves the projection unchanged, or applies
an ”octahedron move”, that is, replacing upper half of the octahedron by its lower half. This enables us
to show that d(I, I) equals to the number of the lattice points on the part of the surface of Q1 that lies
inside Q2, while D(I, I) equals to the number of integer lattice points inside the intersection of Q1 and
Q2. These quantities are exactly the values given in Corollary 6.5 and Theorem 6.6. Figure 3 depicts a a
shortest mutation sequence between two pyramids.

Fig. 3: An example of shortest sequence of mutations on the left and the surface of Q1 that lies inside Q2 on the right.
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