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Abstract
Given an n-vertex m-edge graph G with non-negative edge-weights, a shortest cycle of G is one
minimizing the sum of the weights on its edges. The girth of G is the weight of such a shortest cycle.
We obtain several new approximation algorithms for computing the girth of weighted graphs:

For any graph G with polynomially bounded integer weights, we present a deterministic algorithm
that computes, in Õ(n5/3 + m)-time1, a cycle of weight at most twice the girth of G. This
matches both the approximation factor and – almost – the running time of the best known
subquadratic-time approximation algorithm for the girth of unweighted graphs.
Then, we turn our algorithm into a deterministic (2 + ε)-approximation for graphs with arbitrary
non-negative edge-weights, at the price of a slightly worse running-time in Õ(n5/3polylog(1/ε) +
m). For that, we introduce a generic method in order to obtain a polynomial-factor approximation
of the girth in subquadratic time, that may be of independent interest.
Finally, if we assume that the adjacency lists are sorted then we can get rid off the dependency
in the number m of edges. Namely, we can transform our algorithms into an Õ(n5/3)-time ran-
domized 4-approximation for graphs with non-negative edge-weights. This can be derandomized,
thereby leading to an Õ(n5/3)-time deterministic 4-approximation for graphs with polynomially
bounded integer weights, and an Õ(n5/3polylog(1/ε))-time deterministic (4 + ε)-approximation
for graphs with non-negative edge-weights.

To the best of our knowledge, these are the first known subquadratic-time approximation algorithms
for computing the girth of weighted graphs.
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1 Introduction

The exciting program of “Hardness in P” aims at proving (under plausible complexity
theoretic conjectures) the exact time-complexity of fundamental, polynomial-time solvable
problems in computer science. In this paper, we consider the Girth problem on edge-weighted
undirected graphs, for which almost all what is known in terms of finer-grained complexity
only holds for dense graphs (m = Ω(n2)). We recall that the girth of a given graph G is
the minimum weight of a cycle in G — with the weight of a cycle being defined as the sum

1 The Õ(·) notation suppresses polylogarithmic factors.
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44:2 Approximating the Girth on Weighted Graphs in Subquadratic time

of the weights on its edges (see Sec. 2 for any undefined terminology in this introduction).
For dense graphs this parameter can be computed in time O(n3), and Vassilevska Williams
and Williams [19] proved a bunch of combinatorial subcubic equivalences between Girth
and other path and matrix problems. In particular, for every ε > 0, there cannot exist any
combinatorial (4/3− ε)-approximation algorithm for Girth that runs in truly subcubic time
unless there exists a truly subcubic combinatorial algorithm for multiplying two boolean
matrices. Roditty and Tov completed this above hardness result with an Õ(n2/ε)-time
(4/3 + ε)-approximation algorithm [15], thereby essentially completing the picture of what
can be done combinatorially in subcubic time. However, the story does not end here for at
least two reasons. A first simple but important observation is that as the graphs considered
get sparser, the complexity for computing their girth falls down to O(n2). In fact, when
the edge-weights are integers bounded by some constant M , there is a non-combinatorial
algorithm for computing the girth of any n-vertex graph G in time Õ(Mnω) where ω stands
for the the exponent of square matrix multiplication over a ring [16]. It is widely believed
that ω = 2 [13], and if true, that would imply we can compute the exact value of the girth in
quasi quadratic time — at least when edge-weights are bounded. So far, all the approximation
algorithms for Girth on weighted graphs run in Ω̃(n2)-time [10, 15]. This leads us to the
following, natural research question:

Does there exist a subquadratic approximation algorithm for Girth on weighted graphs?

In this paper, we answer to this above question in the affirmative.

1.1 Our contributions

We present new approximation algorithms for the girth of graphs with non-negative real
edge-weights. These are the first algorithms to break the quadratic barrier for this problem –
at the price of a slightly worse approximation factor compared to the state of the art [15]
— see Sec. 1.2 on the Related work for more details. Our first result is obtained for graphs
with bounded integer edge-weights.

I Theorem 1. For every G = (V,E,w) with edge-weights in {1, . . . ,M}, we can compute a
deterministic 2-approximation for Girth in time Õ(n5/3polylogM +m).

Our starting point for Theorem 1 is a previous 2-approximation algorithm from Lingas
and Lundell [10], that runs in quadratic time. Specifically, these two authors introduced an
Õ(n logM)-time procedure that takes as entry a specified vertex of the graph and needs
to be applied to every vertex in order to obtain the desired 2-approximation of the girth.
Inspired by the techniques used for approximate distance oracles [18] we informally modify
their algorithm as follows. We only apply their procedure to the vertices in a random subset
S: where each vertex is present with equal probability n−1/3 (we can derandomize our
approach by using known techniques from the litterature [14]). Furthermore, for the vertices
not in S, we rather apply a modified version of their procedure that is restricted to a small
subgraph – induced by some ball of expected size O(n1/3). A careful analysis shows this
is a 2-approximation. The reason why this above approach works is that, when we run
the procedure of Lingas and Lundell at some arbitrary vertex s, it will always detect a
short cycle if there is one passing close to s (but not necessarily passing through s itself).
This nice property has been noticed and exploited for related algorithms on unweighted
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graphs [10]2. However, we think we are the first to prove such a property in the weighted
case. We note that one of the two algorithms proposed by Roditty and Tov in [15] also
satisfies such a property. We did not find a way to exploit their algorithm in order to improve
our approximation factor.
Our approach for graphs with bounded integer edge-weights (see Sec. 3.2) is the cornerstone
of all our other results in the paper. We considerably refine this approach so that it also
applies to graphs with arbitrary non-negative edge-weights.

I Theorem 2. For every ε > 0 and G = (V,E,w) with non-negative edge-weights, we can
compute a deterministic (2 + ε)-approximation for Girth in time Õ(n5/3polylog1/ε+m).

We note that in [15], Roditty and Tov introduced a nice technique – that we partly reuse
in this paper – in order to transpose their results for bounded integer-weights to arbitrary
weights. However, we face several new difficulties, not encountered in [15], due to the need
to perform all the intermediate operations in subquadratic time. As a side contribution of
this work, we present an intricate modification of our approach for graphs with bounded
integer edge-weights that we use in order to approximate the girth of graphs with arbitrary
non-negative edge-weights up to a polynomial-factor. This subquadratic-time routine could
be useful to anyone improving our result for the graphs with integer-weights in order to
generalize their results to the graphs with non-negative real weights.
Our algorithms are subquadratic in the size of the graph, but they may be quadratic in
its order n if there are m = Θ(n2) edges. By a folklore application of Moore bounds,
any unweighted graph with O(n1+ 1

` ) edges has girth at most 2`, and so, we can always
output a constant upper-bound on the girth of moderately dense graphs. It implies that the
dependency on m can always be removed in the running-time of approximation algorithms
for the girth of unweighted graphs. However, in the full version of this paper, we prove by
using elementary arguments that any approximation algorithm for the girth on weighted
graphs must run in Ω(m)-time. We study what happens if we have sorted adjacency lists3.

I Theorem 3. Let G = (V,E,w) have sorted adjacency lists.
1. If all edge-weights are in {1, . . . ,M} then, we can compute a deterministic 4-approximation

for Girth in time Õ(n5/3polylogM).
2. If all edge-weights are non-negative then, we can compute a randomized 4-approximation

for Girth in time Õ(n5/3). For every ε > 0, we can also compute a deterministic
(4 + ε)-approximation for Girth in time Õ(n5/3polylog1/ε).

We observe that even assuming sorted adjacency lists, it is not clear whether the algorithm
of Theorem 1 can be implemented to run in time Õ(n5/3polylogM). Indeed, this algorithm
requires to build several induced subgraphs in time roughly proportional to their size,
that requires a different preprocessing on the adjacency lists. We prove that we do not
need to construct these induced subgraphs entirely in order to derive a constant-factor
approximation of the girth. Similarly, for graphs with non-negative edge-weights we cannot
use our polynomial-factor approximation algorithm for the girth directly, as it needs to

2 There is a subtle difference between our approach for weighted graphs and the one formerly applied to
unweighted graphs. Indeed, we need to consider all edges in the subgraphs that are induced by some
small balls in the graph, that might include some large-weight edges not on any shortest-path in G.
For unweighted graphs [10, 16], they mostly consider edges on some shortest-paths in G between a
pre-defined vertex and the other vertices in the ball.

3 Throughout this paper, we call an adjacency list sorted if it is sorted by edge-weight, and ordered if it
is sorted by neighbour index. See also Sec. 2.
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44:4 Approximating the Girth on Weighted Graphs in Subquadratic time

enumerate all edges in the graph. We overcome this difficulty through the help of a classical
density result for the C4-free unweighted graphs [4].

1.2 Related work
Approximation algorithms for the girth. Itai and Rodeh were the first to study the
Girth problem for unweighted graphs [9]. Among other results, they showed how to compute
an additive +1-approximation of the girth in time O(n2). This was later completed by
Lingas and Lundell [10], who proposed a randomized quasi 2-approximation algorithm for
this problem that runs in time O(n3/2√logn). In [17], Roditty and Vassilevska Williams
presented the first deterministic approximation algorithm for the girth of unweighted graphs.
Specifically, they obtained a 2-approximation algorithm in time Õ(n5/3), and they conjectured
that there does not exist any subquadratic (2 − ε)-approximation for Girth. We obtain
the same approximation factor for weighted graphs, and we almost match their running
time up to polylog factors and to an additional term in Õ(m). It would be interesting
to know whether in our case, this dependency on m can be removed while preserving the
approximation factor 2. Very recently, new subquadratic-time approximation algorithms
were proposed for Girth in unweighted graphs (see [7]). It is open whether one can achieve
a constant-factor approximation for the girth in, say, Õ(n1+o(1))-time.

Much less is known about the girth of weighted graphs. The first known subcubic
approximation was the one of Lingas and Lundell [10], that only applies to graphs with
bounded integer edge-weights. Their work somewhat generalizes the algorithm of Itai and
Rodeh for unweighted graphs. The approximation factor was later improved to 4/3 by
Roditty and Tov, still for the graphs with bounded integer weights, and to 4/3 + ε for the
graphs with arbitrary weights [15]. Our algorithms in this paper are faster than these two
previous algorithms, but they use the latter as a routine to be applied on several subgraphs
of sublinear size. Therefore, the approximation factors that we obtain cannot outperform
those obtained in [10, 15].

More recently, a breakthrough logarithmic approximation of the girth of directed weighted
graphs was obtained in [11].

Approximate distances. Finally, approximation algorithms for the girth are tightly related
to the computation of approximate distances in weighted graphs. In a seminal paper [18],
Thorup and Zwick showed that we can compute in expected time O(mn1/k) an approximate
distance oracle: that can answer any distance query in time O(k) with a multiplicative stretch
at most 2k − 1. This has been improved in several follow-ups [2, 5, 12, 14, 20]. However,
the construction of most oracles already takes (super)quadratic time for moderately dense
graphs. A key observation is that we do not need to construct these oracles entirely if we just
want to approximate the girth. This allows us to avoid a great deal of distance computations,
and so, to lower the running time.

1.3 Organization of the paper
We start gathering in Section 2 some known results from the literature that we will use for
our algorithm. Then, in Section 3, we give some new insights on the algorithm of Lingas and
Lundell [10] before presenting our main result (Theorem 1). Our algorithm is generalized
to graphs with arbitrary weights in Section 4. Finally, we remove the dependency on the
number of edges in the time complexity of our algorithms in Section 5. We conclude this
paper with some open perspectives (Section 6). Due to space restrictions, some of the proofs
are omitted. Full proofs can be found in our technical report [8].



G. Ducoffe 44:5

2 Preliminaries

We refer to [3] for any undefined graph terminology. Graphs in this study are finite, simple
(hence, without any loop nor multiple edges), connected and edge-weighted. Specifically, we
denote a weighted graph by a triple G = (V,E,w) where w : E → R+ is the edge-weight
function of G. The weight of a subgraph H ⊆ G, denoted w(H) :=

∑
e∈E(H) we, is the sum

of the weights on its edges. The girth of G is the minimum weight of a cycle in G. The
distance distG(u, v) between any two vertices u, v ∈ V is the minimum weight of an uv-path
in G. By extension, for every v ∈ V and S ⊆ V we define distG(v, S) := minu∈S distG(u, v).
– We will sometimes omit the subscript if no ambiguity on the graph G can occur. – For any
v ∈ V and r ≥ 0, we also define the ball BG(v, r) := {u ∈ V | distG(u, v) ≤ r}. Finally, an
r-nearest set for v is any r-set Nr(v) such that, for any x ∈ Nr(v) and y /∈ Nr(v), we have
distG(v, x) ≤ distG(v, y).

For every v ∈ V , let NG(v) = {u ∈ V | uv ∈ E} be the (open) neighbourhood of vertex
v and let dv = |NG(v)| be its degree. Let Qv = {vu | u ∈ NG(v)} be totally ordered. We
call it a sorted adjacency list if edges incident to v are ordered by increasing weight, i.e.,
Qv = (vu1, vu2, . . . , vudv

) and wvui
≤ wvui+1 for every i < dv. However, we call it an ordered

adjacency list if, given some fixed total ordering ≺ over V the neighbours of v are ordered
according to ≺ (i.e., ui ≺ ui+1 for every i < dv). Throughout the rest of the paper we will
assume that each vertex has access to two copies of its adjacency list: one being sorted and
the other being ordered. The latter can always be ensured up to an Õ(m)-time preprocessing.

2.1 The Hitting Set method

We gather many well-known facts in the literature, that can be found, e.g., in [14, 18, 1, 6].
All these facts are combined in order to prove the following useful result for our algorithms:

I Proposition 4. For any graph G = (V,E,w) with sorted adjacency lists, in Õ(n5/3)-time
we can compute a set S ⊆ V , and the open balls BS(v) := {u ∈ V | dist(v, u) < dist(v, S)}
for every v ∈ V , such that the following two properties hold true:
1. |S| = Õ(n2/3);
2. and for every v ∈ V we have |BS(v)| = O(n1/3).

It is well-known that a set S as requested by Proposition 4 can be constructed randomly as
follows: every vertex in V is added in S with equal probability n−1/3 [18]. This construction
was derandomized in [14, 18, 1, 6]. In what follows we will not only need the balls BS(v) for
every vertex v, but also the subgraphs these balls induce in G. Next, we observe that all
these subgraphs can be obtained almost for free. Namely:

I Lemma 5 (folklore). For every G = (V,E,w) and U ⊆ V we can compute the subgraph
G[U ] induced by U in time Õ(|U |2) (assuming ordered adjacency lists).

3 Case of graphs with bounded integer weights

This section is devoted to the proof of Theorem 1. We start presenting some new properties
of a previous approximation algorithm for the girth of weighted graphs (Section 3.1) as we
will need to use them in our own algorithm. Then, we prove our main result for graphs with
bounded integer weights in Section 3.2.

ICALP 2019



44:6 Approximating the Girth on Weighted Graphs in Subquadratic time

3.1 Reporting a close short cycle

We propose a deeper analysis of an existing approximation algorithm for Girth on weighted
graphs [10]. Roughly, this algorithm applies a same procedure to every vertex of the graph.
In order to derive the approximation factor of their algorithm, the authors in [10] were
considering a run that takes as entry some vertex on a shortest cycle. This is in contrast
with the classical algorithm from Itai and Rodeh on unweighted graphs [9], that also offers
provable guarantees on the length of the output assuming there is a shortest cycle passing
close to the source (but not necessarily passing by this vertex); see [10, Lemma 2]. We revisit
the analysis of the algorithm in [10] for weighted graphs, and we prove that this algorithm
also satisfies such a “closeness property”.

The HBD-algorithm from [10]. Given G = (V,E,w), s ∈ V and t ≥ 0, the algorithm
HBD(G, s, t) is a relaxed version of Dijkstra’s single-source shortest-path algorithm. We are
only interested in computing the ball of radius t around s, and so, we stop if there are no
more unvisited vertices at a distance ≤ t from s. Furthermore, whenever we visit a vertex
u ∈ BG(s, t), we only relax edges e = {u, v} such that dist(s, u) + we ≤ t. Then, a cycle is
detected if we already inferred that dist(s, v) ≤ t (i.e., using another neighbour of v than u).
Overall, the algorithm stops as soon as it encounters a cycle, or all the vertices in BG(s, t)
were visited. Assuming sorted adjacency lists, this algorithm runs in Õ(n)-time [10].

(a) HBD(G, s, t)

1: for all v ∈ V do
2: d(v)←∞; π(v)← NIL

3: d(s)← 0; Q← {s}
4: while Q 6= ∅ do
5: u← Extract-min(Q)
6: Controlled-Relax(u, t)

(b) Controlled-Relax(u, t)

1: Qu ← sorted adj. list
2: uv ← Extract-min(Qu)
3: while d(u) + wuv ≤ t do
4: RelaxOrStop(u, v)
5: uv ← Extract-min(Qu)

(c) RelaxOrStop(u, v)

1: if d(v) 6=∞ then
2: return a cycle and stop
3: else
4: d(v)← d(u) + wuv

5: Q← Q ∪ {v}

I Lemma 6 ( [10]). If HBD(G, s, t) detects a cycle, then its weight is ≤ 2t.

We now complete the analysis of the HBD-algorithm in order to derive a generalization
of [10, Lemma 2] to weighted graphs. Assuming no cycle has been detected, we first gain
more insights on the structure of the ball of radius t centered at s.

I Lemma 7. If HBD(G, s, t) does not detect a cycle then, for any v ∈ BG(s, t), there exists a
unique sv-path of weight ≤ t.

Based on Lemma 7, we state some bounds on the weight of the cycle detected using HBD.
In particular, Corollary 9 will play a key role in the analysis of our algorithms.

I Corollary 8. Given G = (V,E,w), let s ∈ V and let C be a cycle. The minimum t0 such
that HBD(G, s, t0) detects a cycle satisfies t0 ≤ dist(s, C) + w(C).

I Corollary 9. Given G = (V,E,w), let s ∈ V and let C be a cycle. Assume the existence of
a vertex x ∈ V (C) such that maxv∈V (C) distC(x, v) ≥ distG(s, x) > 0. Then, the minimum
t0 such that HBD(G, s, t0) detects a cycle satisfies t0 ≤ w(C).
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Proof. Let Bx = {v ∈ V (C) | distC(x, v) < distG(x, s)}. Since we assume that we have
maxv∈V (C) distC(x, v) ≥ distG(x, s), Bx 6= V (C). Hence there exist uy, vz ∈ E(C) distinct
such that u, v ∈ Bx but y, z /∈ Bx. W.l.o.g. distC(x, y) ≤ distC(x, z). We can bipartition
E(C) in two edge-disjoint xy-paths P1 and P2, with P1 being the xy-subpath passing by
vz (and so, P2 is the other xy-subpath passing by uy). Note that it implies distC(x, y) =
w(P2) ≤ w(C)/2. Then, by Lemma 7 we have t0 ≤ distG(s, x) + max{w(P1), w(P2)} =
distG(s, x) + w(P1) ≤ distC(x, y) + w(P1) = w(P2) + w(P1) = w(C). J

3.2 Subquadratic-time approximation

Proof of Theorem 1. We analyse the following Subquadratic-Approx algorithm:

(a) Approx-Girth(G, s,M)

1: Find the minimum t ∈ [3;M · |V (G)|] such
that: HBD(G, s, t) detects a cycle.

2: Let Cs be the shortest cycle we so computed.
3: return Cs.

(b) Subquadratic-Approx(G,M)

1: Let S and (BS(v))v∈V be as in Prop. 4.
2: for all s ∈ S do
3: Cs ← Approx-Girth(G, s,M)
4:
5: for all v /∈ S do
6: Let G′

v be induced by BS(v).
7: Cv ← Approx-Girth(G′

v, v,M)
8:
9: return a shortest cycle in {Cv | v ∈ V }.

The algorithm starts precomputing a set S ⊆ V and the open balls (BS(v))v∈V as
described in Proposition 4. This takes time Õ(n5/3), plus an additional preprocessing
time in Õ(m) for sorting the adjacency lists. Then, we process the vertices in S and
those in V \ S separately: For every s ∈ S, we compute the smallest ts ∈ [3;Mn] such that
HBD(G, s, ts) detects a cycle by using a dichotomic search (procedure Approx-Girth(G, s,M)).
We store the cycle Cs outputted by HBD(G, s, ts). Since each test we perform during the
dichotomic search consists in a call to the HBD-algorithm, this takes time Õ(n logM) per
vertex in S, and so, Õ(n|S| logM) = Õ(n5/3 logM) in total. We now consider the vertices
v ∈ V \ S sequentially. Let G′v be the subgraph of G induced by the open ball BS(v).
By Lemma 5, this subgraph can be computed in time Õ(|BS(v)|2) = Õ(n2/3) – assuming
a preprocessing of the graph in time O(m) for ordering the adjacency lists. We apply
the same procedure as for the vertices in S but, we restrict ourselves to the ball BS(v).
That is, we call Approx-Girth(G′v, v,M), and we denote by Cv the cycle outputted by this
algorithm. Since we restrict ourselves to a subgraph of order O(n1/3), this takes total time
Õ(n · (n2/3 + n1/3 logM)) = Õ(n5/3 logM).
Let C ∈ {Cv | v ∈ V } be of minimum weight. We claim that w(C) is a 2-approximation of
the girth of G, that will end proving the theorem. In order to prove this claim, we apply
the following case analysis to some arbitrary shortest cycle C0 of G. If V (C0) ∩ S 6= ∅ then,

ICALP 2019



44:8 Approximating the Girth on Weighted Graphs in Subquadratic time

let CS be a shortest cycle among {Cs | s ∈ S}. We prove as a subclaim that w(CS) is at
most twice the weight of a shortest cycle intersecting S. In order to prove this subclaim,
it suffices to prove that for every s ∈ S, we compute a cycle Cs of weight no more than
twice the weight of a shortest cycle passing by s. By Corollary 8, if ts is the smallest t such
that HBD(G, s, t) detects a cycle then, a shortest cycle C passing by s must have weight
≥ ts. Furthermore, by Lemma 6 we get w(Cs) ≤ 2ts, thereby proving the subclaim. Thus,
w(CS) ≤ 2w(C0) if V (C0) ∩ S 6= ∅. From now on we assume V (C0) ∩ S = ∅. Let v ∈ V (C0)
be arbitrary. There are two subcases:

If V (C0) ⊆ BS(v) then, C0 is also a cycle in G′v. Moreover by Corollary 8 applied for
dist(v, C0) = 0, the smallest tv such that HBD(G′v, v, tv) detects a cycle satisfies tv ≤ w(C0).
By Lemma 6, w(C) ≤ w(Cv) ≤ 2w(C0).
Otherwise V (C0) 6⊆ BS(v). This implies that we have: maxu∈V (C0) distC0(u, v) ≥
maxu∈V (C0) distG(u, v) ≥ distG(v, S) > 0. Furthermore, let s ∈ S minimize distG(s, v).
Then, by Corollary 9, the smallest ts such that HBD(G, s, ts) detects a cycle satisfies
ts ≤ w(C0). As a result, by Lemma 6 w(C) ≤ w(Cs) ≤ 2w(C0).

Summarizing, w(C) ≤ 2w(C0) in all the cases. J

4 Generalization to unbounded weights

This section is devoted to the proof of Theorem 2. We divide it into two parts. In Section 4.1
we present a polynomial-factor approximation of the girth in subquadratic time. This part
is new compared to [15] and the techniques used are interesting in their own right. Then,
based on a clever technique from [15], we end up refining this rough estimate of the girth
until we obtain a constant-factor approximation (Section 4.2).

Throughout this section, we will use the main result of Roditty and Tov as a subroutine:

I Theorem 10 ( [15]). For every G = (V,E,w) with arbitrary non-negative edge-weights,
we can compute a (4/3 + ε)-approximation for Girth in time Õ(n2/ε).

4.1 A polynomial-factor approximation.
For simplicity, we first reduce the general case of graphs with non-negative weights to the
subcase of graphs with positive weights. We omit the proof as it quite similar, but simpler,
to the one of Proposition 12 (presented next).

I Lemma 11. Assume there exists an T (n,m)-time α-approximation algorithm for Girth
for graphs with positive edge-weights, where T (n,m) = Ω(m). Then, there also exists
an O(T (n,m))-time α-approximation algorithm for Girth for graphs with non-negative
edge-weights.

We now obtain an approximation of the girth that only depends on the order of the graph.
We stress that for weighted graphs, this is already a non-trivial task.

I Proposition 12. For every G = (V,E,w) with arbitrary positive edge-weights, we can
compute an Õ(n2/3)-approximation for Girth in time Õ(n5/3 +m).

Proof. Let S be as in Proposition 4. We show a significantly more elaborate method that
uses S in order to approximate the girth. We divide this method into five main steps.
Step 1: check the small balls. For every v /∈ S, let G′v be the subgraph induced by the
open ball BS(v). As before, we first estimate the girth of G′v. Since this subgraph has order
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O(n1/3), by Theorem 10 we can compute a constant-factor approximation for its girth in time
Õ(n2/3) (say, a 2-approximation). Overall, this step takes total time Õ(n5/3). Furthermore,
after completing this step the following property (also used in Theorem 1) becomes true:

B Claim 13. Let Cv be a shortest cycle passing through v. If w(Cv) < 2 · dist(v, S) then,
we computed a cycle of weight ≤ 2w(Cv).

Step 2: partitioning into (shortest path) subtrees. Intuitively, what we try to do
next is to approximate the weight of a shortest cycle passing close to S. The difference with
Theorem 1 is that we cannot use directly the algorithm of Roditty and Tov for that. Indeed,
their algorithm has some global steps (e.g., the approximate computation of the girth of some
sparse spanner) that we currently do not know how to do in subquadratic time. So, we need
to find some new techniques. Specifically, we partition the vertex-set V into shortest-path
subtrees (Ts)s∈S such that, for every s ∈ S and v ∈ V (Ts) we have dist(v, s) = dist(v, S).
As noted, e.g., in [18], a simple way to do that is to add a dummy vertex xS /∈ V , edges sxS

for every s ∈ S with weight 0, then to compute a shortest-path tree rooted at xS in time
Õ(m). See Fig. 3 for an example. In what follows, we show how to use this tree structure in
order to compute short cycles.

4

7

9

3

3 3

8 3

2
7

7
9 2

4
3

3

2
2

3

Figure 3 An example of Step 2. The two vertices in S are drawn as rectangles.

Step 3: finding short cycles in a subtree. Let s ∈ S be fixed. Informally, we try to
estimate the weight of a shortest cycle in V (Ts). Note that every such a cycle has an edge
that is not contained in Ts. So, we consider all the edges e = uv such that u, v ∈ V (Ts)
but e /∈ E(Ts). Adding this edge in Ts closes a cycle. Let Ce,s be an (unknown) shortest
cycle passing by e and contained in V (Ts). We output dist(s, u) +we + dist(v, s) as a rough
estimate of w(Ce,s). Indeed, the latter is a straightforward upper-bound on w(Ce,s), and
this bound is reached if s ∈ {u, v}. Overall, this step takes total time O(m).

B Claim 14. Let C∗s be a shortest cycle contained in V (Ts). After Steps 1-3, we computed a
cycle of weight ≤ 2w(C∗s ).

Step 4: finding short cycles in two subtrees. We now want to estimate the weight of
a shortest cycle in V (Ts) ∪ V (Ts′), for some distinct s, s′ ∈ S. We only need to consider the
case where this cycle must contain two edges e, e′ with an end in V (Ts) and the other end in
V (Ts′) (all other cases have already been considered at Step 3).
1. We scan all the edges e = uv ∈ E such that u and v are not in a same subtree. Let

su, sv ∈ S such that u ∈ V (Tsu), v ∈ V (Tsv ). We set `(e) = dist(su, u) + we + dist(v, sv).
2. Group all these above edges with their two ends in the same two subtrees. It takes time
O(m+ |S|) = O(m+ n2/3) by using, say, a linear-time sorting algorithm.

3. Finally, for every distinct s, s′ ∈ S, let E(s, s′) contain all the edges with one end in
Ts and the other end in Ts′ . If |E(s, s′)| ≥ 2 then, we pick e, e′ minimizing `(·) and we
output `(e) + `(e′). Overall, since the sets E(s, s′) partition the edges of G, this last
phase also takes time O(m).
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B Claim 15. Let s, s′ ∈ S be distinct and let C∗s,s′ be a shortest cycle contained in
V (Ts) ∪ V (Ts′). After Steps 1-4, we computed a cycle of weight ≤ 3w(C∗s,s′).

Step 5: the general case. We end up defining a weighted graph HS = (S,ES , w
S), where

ES = {ss′ | E(s, s′) 6= ∅}, and for every ss′ ∈ ES :

wS
ss′ = min

e∈E(s,s′)
`(e) = min

uv∈E(s,s′)
dist(s, u) + wuv + dist(v, s′).

Roughly, wS
ss′ is the smallest weight of an ss′-path with one edge in E(s, s′). We can construct

HS simply by scanning all the sets E(s, s′) (computed during Step 4). Overall, since the
sets E(s, s′) partition the edges of G, this takes total time O(m + |S|) = O(m + n2/3).
Furthermore, by Theorem 10 we can compute a constant-factor approximation of the girth
of HS in time Õ(|S|2) = Õ(n4/3). The graph HS is not a subgraph of G. However, given
a cycle CH for HS , we can compute a cycle C∗H of G as follows. For every s ∈ V (CH) let
s′, s′′ ∈ V (CH) be its two neighbours. By construction, there exist e = uv ∈ E(s′, s) and e′ =
xy ∈ E(s, s′′) such that the edges ss′ and ss′′ in HS have weights dist(s′, u) +we + dist(v, s)
and dist(s, x) + we′ + dist(y, s′′), respectively. – We may assume the edges e, e′ to be stored
in HS so that s′, s′′ will choose the same common edge with s. – Then, we replace s by the
vx-path in Ts. It is important to notice that, by construction, we have w(C∗H) ≤ w(CH). In
particular, we can apply this above transformation to the (approximately shortest) cycle of
HS that has been outputted by the algorithm of Roditty and Tov (Theorem 10).

Overall, let Cmin be a shortest cycle computed by the algorithm above (i.e., after Steps
1-5). In order to finish the proof, we need to show that w(Cmin) is an Õ(n2/3)-approximation
of the girth of G. By Claims 14 and 15, this is the case if there exists a shortest cycle
intersecting at most two subtrees Ts, s ∈ S. From now on assume that any shortest cycle C0
of G intersects at least three subtrees Ts. Write C0 = (v0, v1, . . . , vp−1, v0) and assume w.l.o.g.
v0, vp−1 are not contained into the same subtree Ts. We partition the vi’s into the maximal
subpaths P0, P1, . . . , Pq−1, q ≤ p that are contained into the vertex-set of a same subtree Ts

(in particular, v0 ∈ V (P0) and vp−1 ∈ V (Pq−1)). Furthermore for every j ∈ {0, 1, . . . , q − 1}
let sj ∈ S be such V (Pj) ⊆ V (Tsj

), and let ij be the largest index such that vij
∈ V (Pj).

For instance, iq−1 = p− 1 by construction. Since P0 = Pq and q ≥ 3 by the hypothesis, there
exist distinct indices j1, j2 such that sj1 = sj2+1 and for every j ∈ {j1, j1 + 1, . . . , j2} the
sj ’s are pairwise different (indices are taken modulo q). Then, two cases may arise:

Case j2 = j1 +1. We have: ej1 := vij1
vij1 +1, ej2 := vij2 +1vij2

∈ E(sj1 , sj2). Furthermore,
C0 goes by vij1

(by vij1 +1, vij2 +1, vij2
, respectively), and so, by Claim 13, either we

computed a short cycle of weight ≤ 2w(C0) during Step 1, or we have w(C0) ≥ 2 ·
max{dist(sj1 , vij1

), dist(sj1 , vij2 +1), dist(sj2 , vij1 +1), dist(sj2 , vij2
)}. In the latter case,

there exists a cycle of weight: ≤ dist(sj1 , vij1
) +wej1

+ dist(sj2 , vij1 +1) + dist(sj2 , vij2
) +

wej2
+dist(sj1 , vij2 +1) ≤ 3w(C0) that is fully contained in V (Tsj1

)∪V (Tsj2
). By Claim 15,

we so computed a cycle of weight ≤ 9w(C0) at Step 4.

From now on let us assume j2 6= j1 + 1. For every j we have ej := vij
vij+1 ∈

E(sj , sj+1), and so, the edge sjsj+1 ∈ ES has weight no more than dist(sj , vij
) +

wej
+ dist(vij+1, sj+1) in HS (indices are taken modulo q for the sj ’s and modulo

p for the vi’s). Furthermore, C0 goes by vij
(by vij+1, respectively), and so, by

Claim 13, either we computed a short cycle of weight ≤ 2w(C0) during Step 1, or
we have w(C0) ≥ 2 · max{dist(sj , vij

), dist(sj+1, vij+1} for every j. In the latter case,
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(sj1 , sj1+1, . . . , sj2 , sj2+1 = sj1) is a cycle in HS of weight:

≤ w(C0) +
j2∑

j=j1

(dist(vij−1+1, sj) + dist(sj , vij ))

≤ w(C0)(1 + (j2 − j1 + 1))

≤ w(C0)|S| = Õ(n2/3 · w(C0)).

Then, let CH be a cycle of HS such that w(CH) = Õ(n2/3 ·w(C0)) (obtained by applying
the algorithm of Roditty and Tov to HS). As explained above, we can derive from CH a
cycle C∗H of G such that w(C∗H) ≤ w(CH) = Õ(n2/3 · w(C0)).

Summarizing, we obtain an Õ(n2/3)-approximation of the girth by outputting a shortest
cycle computed during Steps 1,3,4,5. J

4.2 Improving the approximation factor

Sketch Proof of Theorem 2. We may assume that all weights are positive by Lemma 11. Let
g∗ be the Õ(n2/3)-approximation that we computed by using Proposition 12. There exists
some (known) constant c such that the girth of G is somewhere between g∗/(cn2/3 logn) and
g∗. Then, let imin, imax be the smallest nonnegative integers such that g∗/(cn2/3 logn) ≤
(1 + ε/2)imin and in the same way g∗ ≤ (1 + ε/2)imax . We have that:

imax − imin = O
(

log1+ε/2

(
g∗

g∗/(cn2/3 logn)

))
= O(logn/ log (1 + ε/2)) = O(logn/ε).

Let S be as in Proposition 4. For every v ∈ V \ S, we compute a 2-approximation of a
shortest cycle in G′v: the subgraph of G induced by the ball BS(v)4. By Theorem 10, it
can be done in time Õ(n2/3) for each v, and so, this takes total time Õ(n5/3). Then, let
T = {(1 + ε/2)i | imin ≤ i ≤ imax}. For every s ∈ S, we compute the smallest t ∈ T such that
HBD(G, s, t) detects a cycle (if any). It can be done in time Õ(|S|n log |T |) = Õ(n5/3 log 1/ε)
by using a dichotomic search. Finally, let gmin be the value computed by the above algorithm
(with a corresponding cycle). In order to conclude we prove, with a similar case analysis as
for Theorem 1, that the girth of G is at least gmin/(2 + ε). J

5 A subquadratic algorithm for dense graphs

A drawback of the algorithms in Theorems 1 and 2 is that their time complexity also depends
on the number m of edges. It implies that for dense graphs with m = Θ(n2) edges we do
not achieve any improvement on the running time compared to [10, 15]. The main result
of this section is that assuming sorted adjacency lists, the dependency on m can always be
discarded (Theorem 3). Due to lack of space, we will only prove the following weaker result:

I Proposition 16. For every G = (V,E,w) with non-negative edge-weights and sorted
adjacency lists, we can compute:
1. a randomized 4-approximation for Girth in expected time Õ(n5/3);
2. and, for every ε > 0, a deterministic (8 + ε)-approximation for Girth

in time Õ(n5/3polylog1/ε).

4 In fact, this is already done in the proof of Proposition 12, but we restate it here for completeness of
the method.
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Roughly, we can prove Theorem 3 by combining this above Proposition 16 with a natural
modification of the algorithm presented in Section 3.2.

We will need the following well-known result in graph theory:

I Theorem 17 ( [4]). Every unweighted graph with order n and m ≥
( 1

2 + o(1)
)
n3/2 edges

contains a cycle of length four.

Proof of Proposition 16. If G has m = Õ(n5/3) edges then, we can simply apply Theorem 2
for ε = 2 (the latter can be easily verified by scanning the adjacency lists until we read the
end of it or we reach the desired upper-bound). From now on assume this is not the case
and let H be induced by the

⌈( 1
2 + o(1)

)
n3/2⌉ edges of minimum weight in G.

We claim that H can be constructed in time Õ(n3/2) by using a priority queue Q. Indeed,
initially we set E(H) = ∅ and for every v ∈ V we start inserting in Q the edge of minimum-
weight that is incident to v. This way, we ensure that a minimum-weight edge of G \ E(H)
is present in Q (recall that initially, E(H) = ∅, and so, G = G \ E(H)). Then, in order to
preserve this above invariant, each time a minimum-weight edge uv is extracted from Q and
added in H we insert in Q the remaining edge of minimum weight in Qu and the one in
Qv (if any). – Note that in doing so, a same edge can be added in Q twice, but this has no
consequence on the algorithm. –

We now apply Theorem 2 for ε′ = ε/4 to H, and we so obtain a cycle C that is a
(2+ε/4)-approximation of the girth of H. We claim that w(C) is also a (8+ε)-approximation
of the girth of G. In order to prove this claim, we need to consider two different cases:

Assume there exists a shortest cycle C0 of G such that E(C0) ⊆ E(H). By Theorem 2,
w(C) ≤ (2 + ε/4)w(C0) < (8 + ε)w(C0).
Otherwise, any shortest cycle C0 of G has at least one edge that is not contained in H.
Since edges are added by increasing weights, this implies that every shortest cycle contains
an edge of weight at least wmax, where wmax denotes the maximum-weight of an edge in
H. In particular, the girth of G is at least wmax. Furthermore, since H has enough edges
by construction, by Theorem 17 it contains a cycle of four vertices; the latter has weight
at most 4wmax. As a result, w(C) ≤ (2 + ε/4) · 4wmax = (8 + ε)wmax ≤ (8 + ε)w(C0).

The above proves the claim, and so, the deterministic version of the result. In order to obtain
a randomized 4-approximation, it suffices to pick ε ≤ 2 and to output any cycle C ′ of H
with four vertices (then, we output any of C,C ′ that has minimum weight). Up to some
constant multiplicative increase of the number of edges to add in H, this can be done by
using a randomized algorithm of Yuster and Zwick that runs in expected linear time [21,
Theorem 2.9]. Note that this is the only source of randomness in the algorithm. J

We recall that any unweighted graph with O(n1+ 1
` ) edges contains a cycle of length at

most 2`. We could use this density result instead of Theorem 17. In doing so, we could use a
much sparser subgraph H in the proof of Proposition 16. However, our algorithm would still
run in time Õ(n5/3) because the bottleneck is our call to the algorithm of Theorem 2.

6 Open problems

The most pressing question is whether we can achieve a 4/3-approximation for the girth
in subquadratic time. If it is not the case then, what is the best approximation factor
we can get in subquadratic time? We note that in [17], Roditty and Vassilevska Williams
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conjectured that we cannot achieve a (2− ε)-approximation already for unweighted graphs5.
If their conjecture is true then, this would imply our algorithm is essentially optimal (at least
for the non-dense graphs with O(n2−ε) edges). However, for the dense graphs with sorted
adjacency lists, we left open whether a better approximation-factor than 4 can be obtained
in o(n2)-time. Finally, another interesting question is whether a constant-approximation for
the girth can be computed in quasi linear time. We recall that this is wide open even for
unweighted graphs [7].
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