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Abstract. The results on high frequency coherent modes developing at the plasma

edge after L-H transitions are presented. These edge coherent modes (ECMs)

observed in the I-phase, during ELM-free and ELMy H-mode phases have common

characteristics, such as their frequency of 50–200 kHz, radial position and scaling of

the frequency with the pressure gradient. The ultra-fast swept reflectometer with the

sweep time of 1 µs has provided measurements of the mode dynamics and localisation.

The ECMs propagate in the electron diamagnetic direction in the laboratory frame

and are localized in the region between the pedestal top and the steepest pressure

gradient.
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1. Introduction

The modes which can be observed in a confined magnetized plasma are related to

instabilities caused by different drives, like pressure gradient or fast particles. During

the transition from L- to H-mode the strong pressure gradient establishing in the edge

triggers various instabilities which may play a role in the building of the pedestal. In

order to identify such instabilities it is important to characterise their basic properties,

which can be measured in the experiment: the growth rate, the poloidal and toroidal

mode numbers m,n, the mode frequency ω and the modes’ radial structure.

Previous experiments on different devices reported the onset of high frequency

coherent modes with f > 40 kHz in the plasma edge region in high confinement regimes

[1, 2, 3, 4, 5, 6]. The underlying instabilities need to be investigated as they could

be the reason for the limitation of the pedestal gradients after the transition to the

improved confinement. The list of possible candidates includes kinetic ballooning modes

[4] (KBM), resistive ballooning modes [1, 7] (RBM) or microtearing modes [8] (MTM).

In EAST the edge coherent modes were identified as trapped electron modes (TEM)

[9]. In the H-mode, quasi-coherent modes with typical frequencies of about 100 kHz are

thought to play a role in the inter-ELM dynamics by clamping the pressure gradient.

These modes are considered to have a KBM nature [10, 11]. Quasi-coherent modes

observed in Alcator C-Mod matched the resistive ballooning coherent modes simulated

in three dimensional electromagnetic fluid codes[12]. The modes with multiple branches

in the range around 100 kHz can also be Alfvén frequency modes, as seen in neutral

beam heated and in Ohmic plasmas in TFTR tokamak [13] for instance. Thus several

types of oscillations with similar properties can manifest during and after the transition

to the H-mode and the experimental evidence may help to distinguish between various

interpretations.

This contribution summarises the results obtained in a study of coherent modes in

AUG which have common characteristics, such as their frequency range of 50–200 kHz

and their edge radial position, and thus will be grouped under the name of edge coherent

modes (ECM). They appear in different plasma confinement regimes, such as the I-phase

[14, 15] or ELM-free and ELMy H-modes. Section 3.1 describes the general observations,

section 3.2 present the analysis of the modes’ behaviour during the ELM-free phase of

the H-mode and the ELMs. In section 3.3 modes’ nature is discussed.

2. Methods

The mode numbers and frequency can be calculated from the analysis of magnetic

pick-up coil signals giving the temporal derivative of the magnetic field components

Br or Bθ. The main disadvantage of the pick-up coils is their non-local measurement
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outside the plasma, related to their position. Therefore only modes with high amplitude

can be detected and they need an electromagnetic component to be detectible outside

the plasma. In addition the magnetic component can be screened by the plasma.

However, this diagnostic has several advantages: simple calibration, high sensitivity

(10−4 − 10−5 T) and a high number of coils available at different poloidal and toroidal

locations [16]. The system of pick-up coils in AUG includes two poloidal sets of 32

Mirnov’s coils and additionally 5 coils mounted at different toroidal positions close to

the mid plane measuring Ḃθ, one toroidal set of 8 coils measuring Ḃr.

Modes can be detected by reflectometry diagnostics in the frequency spectrum

of the reflected signal. In contrast to the Mirnov coils this measurement has a local

character. Using several probing wave frequencies, the mode can be localised radially.

In AUG two systems of profile reflectometry and a poloidal correlation reflectometer are

installed, which will be introduced in the following.

The FM-CW reflectometer in O-mode in the sector 6 provides electron density

profiles by sweeping the probing frequency in 20 µs. It has antennas installed both on

the low magnetic field side (LFS) and the high field side (HFS). The same system can

be programmed for a fixed probing wave frequency and therefore it can produce density

fluctuation frequency spectra [17]. The main characteristic of density measurements

by reflectometry is the high sub-centimetre precision of the profile allowing a precise

calculation of the local gradients.

The ultra-fast swept reflectometer (UFSR) recently transfered from Tore Supra to

AUG has provided electron density profile measurements with a time resolution of 1 µs.

The system consists of V and W band (50–105 GHz) frequency sweeping reflectometers

[18]. The emitting and receiving bistatic antennas are installed on the mid plane of

AUG at the low-field side with a line of sight in radial direction towards the centre of

the plasma. The frequency bands of the probing waves are chosen such that the signal

propagates from the low-field side into the plasma until it is reflected at the cut-off layer

with the X-mode upper cut-off frequency

ω+ =
Ωce

2

1 +

√
1 +

4ω2
p(ne)

Ω2
ce

 , (1)

where ω2
p = nee

2/ε0me and Ωce = eB/me, with the electron density ne, electron mass me

and magnetic field strength B. The X-mode polarisation provides a large radial access

from the very edge to the centre of the plasma for densities up to 5 · 1019 m−3. Using a

linear frequency sweep and an iterative Bottollier-Curtet procedure [19] a density profile

can be obtained. The turbulent plasma density fluctuations can be extracted from the

fluctuations of the reflected signal [20]. The heterodyne receiver and IQ detection assure

a separation of phase and amplitude of the reflected signal with a signal to noise ratio

of about 40 dB, sufficient for fluctuation measurements. Fast and repetitive sweeps

of 1 µs with 0.25 µs dead time between sweeps provide an equivalent sampling rate of

800 kHz at a given probing frequency. The frequency spectra are obtained by taking the

FFT of the complex signal S = A(t)eiΦ(t) for each probing frequency. For a fixed radial
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position, this permits frequency spectra reconstruction up to a half of the sampling

frequency 1
2
fs = 1

2
(tsweep + tdead)

−1 equal to 166 kHz for the 2014-2015 campaign and

400 kHz since 2016. The time window length for the spectrum reconstruction has to

be adjusted according to the phenomena time scale. There is always a competition

between the time resolution and the reduction of noise in the spectra which can be

reduced by ensemble averaging of several spectra. Applying a fast Fourier transform

(FFT) to successive time windows, the temporal development of the power spectrum

can be obtained and represented as a spectrogram which provides a good overview of the

modes dynamics in frequency and amplitude. Thanks to the reconstruction of density

profiles, the probing frequency can be expressed as a monotonic function of the radial

position F (R). Hence the complex signal can be interpolated to the radial points of the

averaged density profile.

Poloidal correlation reflectometry (PCR) provides measurements of the mode’s

velocity and poloidal size, which allows the identification of the mode number. In

addition the temporal dynamics can be studied on a time scale of the window used

in the FFT. The PCR system on AUG [21] consists of one emitting and 4 receiving

antennas separated poloidally and toroidally. The mode perpendicular wavenumber k⊥
is found from the ratio of phase difference between the oscillation’s maxima for a pair

of antennas to the poloidal separation between these antennas. The poloidal velocity in

the laboratory frame for a mode with frequency f is estimated as v⊥ = 2πf/k⊥ and the

toroidal mode number can be determined as n = R0k⊥sin(α), where α is a pitch angle

and R0 the radial position of the mode.

3. Experimental results

3.1. Observation of modes with the UFSR

Different edge coherent modes (ECMs) have been detected in the reflectometer signals

during the experiments dedicated to L-H transition studies on AUG [22]. First appearing

as sequences of pulsations in the raw reflectometer phase signal the modes could later be

visible in the frequency spectra. Almost in all cases the modes start to be visible in the

pick-up coil signals a few milliseconds later and therefore have an electromagnetic nature.

The modes have been observed in the UFSR signal continuously during the I-phase,

after the transition to the ELM-free phase of the H-mode and in between ELMs. The

mode frequency is in the range of 40–200 kHz and often several branches are observed

simultaneously. This observation is similar to Alfvén eigenmodes [23, 24]. However, the

latter are usually observed when NBI creates a population of fast particles, while the

modes studied here were also found in discharges without NBI. This feature necessitates

to question more accurately their nature. ECMs were previously investigated in AUG

in between ELMs, although they were not yet decisively identified [6, 5].

Figure 1 illustrates the development of ECMs after the L-mode (a) during the I-

phase (b) and in H-mode (c) in a low density discharge #31287 with 1.6 MW of ECRH.
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Figure 1. Density fluctuation frequency power spectra in (a) L-mode, (c) H-mode

and (b) during I-phase, corresponding electron density profiles (d-f), divertor current

indicating the confinement transition (g) and pedestal top density (h), shaded area

correspond to the time windows used for the calculation of the spectra

In the pedestal region during the I-phase the density fluctuation amplitude decreases

and the spectra become narrower compared to typical L-mode spectra (Fig. 1a) which

are more broadband. Modes at about 120 kHz start to grow directly at the transition

from the L-mode to the I-phase in the edge region 0.95 < ρpol < 0.99 (Fig. 1b,e) and their

amplitude saturates during the ELM-free phase of the H-mode (Fig. 1c). The oscillations

occur within the range of 60–80 GHz of UFSR probing frequencies, corresponding to

the edge region inside the separatrix. In between ELMs the modes become saturated

again and disappear during ELM crashes. An important feature of these modes is their

coherency, meaning that in the frequency spectrum they have a distinctive narrow peak

above the noise level with a width ∆f � f . At the same time, the rest of the usual broad

L-mode spectrum is suppressed when the modes increase in amplitude. Summarising

the aforementioned characteristics, the modes were named edge coherent modes.

Note that the radial position for each spectrum is defined from a bijective relation

〈Fprob,i(t)〉 ↔ 〈Ri(t)〉 where the probing frequency Fprob and corresponding radial

positions Ri are averaged over the FFT time window of typically a few milliseconds. In

the example of Fig. 1 this window was 3 ms and included 1000 consecutive frequency

sweeps. Figure 2a shows an example of the frequency spectra for all probing frequencies.

The ECMs are visible between 70 and 125 kHz for the probing frequencies of 67–75 GHz.



High frequency edge coherent modes on ASDEX Upgrade 6

60

70

80

F
p
ro
b
, 
G
H
z

0 50 100 150
55

60

65

70

75

80

85

c)

b)

d)

e)

AUG#31287
a)

t=2.1438 s

t=2.1441 s

t=2.1458 s

average
t=2.143 − 2.146 s

t=2.143 − 2.146 s

ECM

Figure 2. (a) Frequency spectra for all probing frequencies during the I-phase

AUG#31287. The ECMs are measured with probing frequencies of 67–75 GHz within

the time window t =2.143–2.146 s of typical FFT, corresponding to the region from

the strong gradient localisation to the top of the pedestal. Absolute position of UFSR

measurement for different probing frequencies is shown in (b-e), as individual profiles

(b-d) and in average over 3 ms(e). Blue rectangles demonstrate how the probing

frequency range can be interpreted in terms of radial position (b-d) and create an

additional broadening of the mode localisation (e)

Figure 2b-d depicts the dependence of the absolute radial position from the probing

frequency for 3 different sweeps. The probing frequencies of 67–75 GHz (shaded area)

clearly correspond to the top of the pedestal and the upper part of the gradient region
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as it is shown in Figs. 2b-d with the blue rectangles, the absolute position is around

2.10 m, while the magnetic axis of the plasma is at 1.675 m and the separatrix position

is at 2.14 m at the mid plane. Due to the density profile dynamics during 3 ms each

reflectometer frequency Fprob,i probes a different radial position from one sweep to the

next around an average position 〈Ri〉 , hence the actual shift of the profile can introduce

an additional extension of the estimated mode position when the interpolation is made

for the average profile F (R) (Fig. 2e). The radial extension over which the mode affects

the reflectometer signal is within 1.5 cm in the edge for each individual profile (Fig. 2b-

d), which is about 0.03 in terms of normalised radius ρpol. However, when the average

profile is plotted, the modes seem to be located in a region of 2.5 cm with significantly

broader contribution of the pedestal top, which is misleading.

ρ
pol

F
re
q
u
e
n
cy
, 
kH

z

0.85 0.9 0.95 1 1.05
0

20

40

60

80

100

120

140

160

−3

−2

−1

0
AUG#31287  dB

a)

n=-8
n=-7

n=-9

Time, s

0

20

40

60

80

100

120

140

160

2.13 2.15 2.17 2.19 2.21 2.23

b)

−3

−2

−1

0
  dB

L-
H

 t
ra

n
si

ti
o
n

UFSR 
spectra 
time 
window

n=-9

n=-8
n=-7

Figure 3. Frequency spectra of the discharge #31287 from UFSR at 2.150–2.153 s (a)

and a spectrogram from the pick-up coil, the start of the L-H transition is indicated

with the white arrow (b)

The magnetic pick-up coils were used to deduce the toroidal mode numbers as

described in [25]. When examining the pick-up coil spectrogram, the modes are not yet

visible during the first 18 ms after the L-I-phase transition (Fig. 3b). They appear in

the spectrogram only after t = 2.15 s with branches around 65–105 kHz. The mode

at 125 kHz is not visible in the magnetic pick-up coils while being clearly observed

with the UFSR. The toroidal mode numbers vary between n = −5 and −10 (Fig. 3a)

for the lowest to the uppermost branch (the negative sign corresponds to the electron

diamagnetic direction in the laboratory frame). Usually the distance between the coils

does not allow to detect mode numbers higher than 25 [6]. The most pronounced

branches in the magnetic pick-up coil spectrum correspond to n = −6 and −7 at

frequencies of 65–80 kHz, while in the UFSR signal the modes with frequencies of

115–125 kHz have the strongest amplitude. The UFSR frequency spectra (Fig. 3a)

are constructed for the window 2.150–2.153 s. The modes’ locations slightly vary with

mode number: n = −7 is more visible at the top of the pedestal 0.93 < ρpol < 0.96

while n = −9 is shifted to the gradient region 0.97 < ρpol < 0.99. Assuming the

same propagation velocity for the mode visible in the spectra with a frequency around

125 kHz and the modes with n = −7 to −9, the corresponding mode number would
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be n = −12, not detected in the pick-up coil analysis. Similar modes with toroidal

mode numbers from n = −3 to −12 and poloidal mode numbers around m = 30 for

the lower n numbers were described in [25] as MHD activity between ELM bursts in

AUG. Their position was estimated by matching their frequency and mode number to

the q-profile and the background E×B velocity and was found to be between the Er
minimum and the separatrix. The UFSR system identifies these modes in the narrow

region of pedestal top and in the gradient region.

Figure 4. Density fluctuation level for frequencies f < 166 kHz (solid) and f < 50 kHz

(dashed) in the ELM-free phase of the H-mode with ECMs, t = 2.141 s

The analysis of the density fluctuations becomes complicated as the coherent modes

dominate the turbulent spectrum. In order to distinguish density fluctuations due to

these modes and broadband turbulence, a low-pass filter f < 50 kHz, filtering out

the ECM, has been applied to the UFSR signal phase. The density fluctuation profile

shape is unchanged after filtering (Fig. 4), the absolute level of density fluctuations

decreases proportionally to the filter width, hence the ECMs do not contribute to the

selected kr range from 2 to 20 cm−1. The calculation of the density fluctuation level

here uses the closed-loop method where the wavenumber spectra are reconstructed and

then integrated over a selected range of kr. That indicates that the edge coherent modes

have a small radial wavenumber kr < 2 cm−1, corresponding to a size of about 1.5 cm

which is consistent with the mode’s width in Fig.1.

Summarising the observations, ECMs are localised in the edge region 0.92 < ρpol <

0.99, with indications from the UFSR that they are mostly located in the gradient

region. The toroidal mode numbers change from −5 to −12 and the modes propagate

in the electron diamagnetic direction in the laboratory frame. The ECMs have a small

radial wavenumber kr < 2 cm−1. They saturate after the transition to the I-phase or

the H-mode and disappear only during and shortly after ELM crashes.
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Figure 5. Spectrogram of phase fluctuations in the pedestal region during ELM-free

phase of the H-mode reconstructed from the fixed frequency reflectometer signal with

Fprob = 39 GHz (a) from the LFS and (b) from the HFS

3.2. Edge coherent modes throughout the discharge

In an ELM-free phase of an H-mode the observation of ECMs is more convenient as

the plasma is perturbed neither by I-phase bursts nor by ELMs. Usually the ECMs

are simultaneously visible on the spectrogram of the fixed frequency reflectometer

phase and magnetic pick-up coil signals where the different frequency branches are well

distinguishable.

In the fixed frequency reflectometer spectrograms the modes are visible in the edge

region 0.95 < ρpol < 1 at several O-mode frequencies of 22, 36, 39 and 50 GHz both

from the low and high field sides of the torus (see Fig. 5a for Fprob = 39 GHz from the

LFS and Fig. 5b from the HFS ). 22 GHz corresponds to density 0.6·1019 m−3 located in

the SOL, for this channel the amplitude of oscillations is very weak and the frequency

peak looses its coherence. The presence of a weak peak around the same frequency in

the divertor current spectrum suggests that it could be an effect on the transport by the

modes located in the pedestal region. The displacement of the cutoff layer causes the

disappearance of modes from the spectra. The amplitudes are slightly stronger at the

low field side, but this may also be linked to the difference in the channel sensitivities.

Therefore the absolute calibration of the FM-CW reflectometer channels is needed to

draw a conclusion. The modes appear distinctly 80 ms after the transition to the H-

mode (at t = 3.32 s), saturate until the first solitary ELM arrives at t = 3.75 s and

disappear afterwards. After the ELM the mode amplitude starts to grow again until

the next regular type-I ELMs (t = 4.2 s).

From the UFSR data the modes were observed in a narrow radial region 0.95 <

ρpol < 0.99 with the strongest branch around 100 kHz (Fig. 6b). The spectrogram in

Fig. 6 shows an average of 3 spectra within the time window 3.577–3.561 s calculated

for 500 sweeps each. The average spectrum of the complex signal is asymmetric

between positive and negative frequencies, which indicates that the shape of the density

perturbation is rather sawtooth-like. A poloidal tilt angle of the mode structure might
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provide an explanation of this spectra signature [26].
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of the H-mode t =3.557–3.561 s, (b) a frequency power spectrum at Fprob = 69.8 GHz,

ρpol = 0.98 and (c) the reflectometer signal phase showing a 100 kHz oscillation. The

mode numbers have been estimated from the PCR data

Looking at the spectrum (Fig. 6b) at one probing frequency, the main branch at

100 kHz with the width of about 5 kHz is visible with the side branches of 85 and

115 kHz . The reflectometer phase shows sequences of oscillations (Fig. 6c) with a

period about 7–11 µs, with 5–20 periods each. In the frequency spectrum this bursty

behaviour manifests as a broadening of the ECM peaks for longer FFT time windows.

This behaviour is observed both in I-phase and H-mode discharges.

In between ELM crashes the ECMs recover and the UFSR sweep rate allows

to follow their time evolution. The time between two consecutive ELMs of 1–10

milliseconds allows to calculate a few FFT in different phases of the ELM cycle.

Figures 7d–f depict the ECM evolution during ELMs for three time windows. Figure 7g

shows the pedestal top density evolution during two consecutive ELMs. The FFT

is calculated with windows of 1000 reflectometer sweeps of 2.5 µs each (Figs. 7d–f).

The ECMs have frequencies of about 80 and 100 kHz and their amplitude varies from

saturation to disappearance during the ELM relaxation of the pedestal, or after a

sequence of frequent ELMs. The radial position of the modes is located in the region

0.93 < ρpol < 0.99, corresponding to the top of the pedestal and the upper part of the

gradient region as it is seen on Fig. 7a,b where the average density profiles are shown

for each of 2.5 ms time window. A similar kind of modes is investigated in detail in [6]

as MHD activity with several branches with n < 12 and fixed f/n values. These modes

were located in the pedestal region close to the separatrix from a comparison to the

edge plasma rotation. However, the exact position of the modes was not found due to

large uncertainties in the estimate of the plasma rotation velocity and equilibrium close

to the separatrix [6]. Using the ELM synchronization in the same work, it was shown

that dominant toroidal mode numbers sometimes change from high to low n prior to
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ECM ECM

Figure 7. Density profiles (a–c) and density fluctuation frequency power spectra (d–f)

during three phases of an ELM cycle indicated with grey areas (g) on the pedestal top

denisty evolution (ρpol = 0.95)

the ELM crash [27]. The frequency of the ECMs does not change by more than 5 kHz

in between ELMs, a drop of the frequency can be noticed prior to some ELMs.

3.3. Hypotheses on ECM nature

The mode’s frequency also lies in the range of the typically observed toroidal Alfvén

eigenmodes (TAE) in AUG [23]. The Alfvén frequency is given by

fA =
vA
R

n

2m+ 1
∝ q−1ni

−0.5, (2)

where the Alfvén speed is given by vA = B/
√
µ0nimi, q is the safety factor, mi is the

ion mass, ni is the ion density, R is the major radius equal to 1.65 m, µ0 is vacuum

permeability. It is important to note that ECM have been observed in plasmas with

both ECR and NBI heating, with only NBI and only ECRH. Hence, the presence of

ECMs does not rely on energetic ions which usually excite TAEs. Note also, that there
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have been observations of TAE in Ohmically heated AUG plasmas [28]. A possible

explanation of the excitation of Alfven modes without energetic ions is the coupling to

short wavelength drift Alfven turbulence.

In a nonuniform system, the shear Alfven wave frequency constitutes a continuous

spectrum with several branches corresponding to the different values of the toroidal and

poloidal mode number. The continuous spectrum has gaps, where Alfven eigenmodes

can exist practically unaffected by continuum damping [29]. The frequency of the

TAE gap centre can be approximated as fTAE = fA/2 when neglecting the plasma

compressibility. For the discharge #31287, the value of the resulting centre of the TAE

gap is fTAE = 95 kHz in the pedestal region. Here, the compressible effects have been

included with the formula described in [30]. A qualitative picture of the continuous

spectrum in the discharge #31287 at t = 2.14 s, i.e. during the I-phase, has been

derived using the approximated formula of [31]. The ECMs are observed to fall inside

the TAE gap in the edge region 0.9 < ρpol < 1. If we restrict to this consideration only,

this means that we cannot exclude that the observed ECMs are TAEs.
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Figure 8. (a) Frequency evolution for the n = −8 ECM compared to (b) the edge

electron density, (c) temperature and (d) electron pressure dependence of frequency at

ρpol = 0.97 in the discharge #31287

From the same discharge the temporal evolution of the mode frequency (Fig. 8a)

has been compared to the density and temperature dynamics. Figure 8 depicts the

evolution of the electron density (b) and temperature (c) at the top of the pedestal

from Thomson scattering during 170 ms of the discharge after the L-H transition. The

frequency of the ECM with toroidal mode number n = −7 measured with pick-up coils
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follows the temperature and density dynamics, although the temperature is changing

faster than the ECM frequency, while the density starts to decrease later. The frequency

of the mode does not follow the ni
−0.5 dependence of the Alfvén frequency and this seem

to play against the possibility of the ECMs being TAEs, although the TAE frequency

can also be modified by the drive, for a fixed Alfvén velocity. We recall nevertheless

that these are ECRH discharges, and therefore no energetic particles are present, which

represent the typical TAE drive. The data is consistent with a density and temperature

dependence as f ∝ neTe, where the electron pressure is taken at the top of the pedestal

(Fig. 8d), which can be a rough estimate for the pressure gradient, assuming the pedestal

width is not changing much. Note that the MTM frequency scales with the sum of E×B

and electron diamagnetic velocities also proportional to the electron pressure gradient.

Figure 9. Wavenumbers determined with the PCR for different pairs of antennas B,

C, D and E [21] and frequencies of the probing wave of 31 and 36 GHz, corresponding

to ρpol = 0.98 and 0.97 respectively

Using different pairs of the poloidal correlation reflectometer (PCR) antennas, the

perpendicular wavenumber and the mode number can be estimated from the correlation

length for modes with frequencies of 83, 100, 113 and 127 kHz (Fig. 9). The calculation

has been done for probing frequencies of 31 and 36 GHz, corresponding to the radial

positions ρpol = 0.98 and 0.97. Toroidal mode numbers vary from n = −9 to −12,

confirming the propagation in the electron diamagnetic direction. The perpendicular

wavenumbers are of the order of 0.2–0.4 cm−1. Using the electron temperature

measurements, the normalized poloidal wavenumber of the mode is about kθρs ≈ 0.05

which corresponds to the range of RBM, KBM or MTM. The perpendicular velocity

can be estimated as v⊥ = 23± 5 km/s. For a typical H-mode in AUG, the profile of the

radial electric field has its minimum around ρpol = 0.99 [32]. The corresponding E×B

velocity can be estimated through the diamagnetic term of Er for the given discharge

and is about 15 km/s. Er changes its sign from negative in the pedestal region to positive

in the plasma core, therefore the E×B velocity of the plasma changes its direction from

the electron diamagnetic to the ion diamagnetic velocity direction.

The ECMs propagate in the electron diamagnetic direction in the laboratory frame.

If they are located at the top of the pedestal where the E×B velocity is low, the modes
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also propagate in the electron diamagnetic direction in the plasma frame, which would

indicate microtearing modes (MTM) [33]. If the ECMs are located substantially in

the region of large E×B velocities, their phase velocity would be small, which is a

characteristic for resistive ballooning modes (RBM) [33]. The first hypothesis would

be consistent with the gyrokinetic simulations which have shown that MTM can be a

dominant instability responsible of the transport at the pedestal top [34]. The formation

of the pedestal has been described as an interplay between the MTMs regulating the

temperature gradient and transport inside the pedestal and the KBMs limiting the

density gradient in the pedestal foot [35]. It is possible that first the MTMs are

destabilised at the top of the pedestal during the I-phase and the ELM-free H-mode

and that they are not visible in the pick-up coil signal because the level of magnetic

fluctuations is low [33]. Then the KBMs are driven at the pedestal foot and thus are

detectable with Mirnov coils.

4. Conclusions

The observation of ECMs during L-H transitions led to a more detailed documentation

of the edge modes in ASDEX Upgrade in the range of 50–200 kHz. The ECMs are

visible in the reflectometer and magnetic pick-up coil spectra and have several well

reproducible properties. The UFSR data allow to locate the modes in the plasma edge

0.93 < ρpol < 0.99 and, from the comparison between the probing frequencies and

density profiles, from the pedestal top to the gradient region. The radial range in which

the modes are detected might be broader than the actual size of the mode due to the

radial motion of the entire plasma profile. Through a detailed analysis it is shown

that the ECM frequency increases with plasma edge electron pressure. ECMs have low

toroidal numbers between n = −5 and −12 and propagate in the electron diamagnetic

direction. From the analysis of the wavenumber spectra it follows that the ECMs have

a small radial wavenumber kr < 2 cm−1. The perpendicular wavenumber is about k⊥ =

0.2–0.4 cm−1. The fixed frequency reflectometer channels detect the ECM both on the

LFS and the HFS, although the absence of absolute sensitivity calibration of different

channels does not allow to exclude a strong ballooning character. The modes often

have an intermittent character with sequences of 5–20 oscillations observed first in the

reflectometry phase signal and only when the ECMs are saturated, in the magnetic

pick-up coil signal.

The observation of ECMs in discharges additionally heated by microwaves only

(ECRH) indicates that their existence does not depend on energetic particles. This

fact, together with the linear frequency dependence on the electron density, excludes

the hypothesis of a toroidal Alfvén eigenmode. The propagation approximately with

the electron diamagnetic velocity and the localisation close to the pedestal top would

be consistent with microtearing modes as source of the observed coherent fluctuations.

However, as the modes are observed mainly in the gradient region, where the E×B

velocity is also of the order of the electron diamagnetic velocity, a small phase velocity
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would also be consistent with the observations. This would then indicate to resistive

ballooning modes as source of the coherent modes. The impact of ECMs on plasma

confinement is an issue that needs to be investigated in the future.
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