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Monodromy and K-theory of Schubert curves
via generalized jeu de taquin

Maria Monks Gillespie1: and Jake Levinson2;
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Abstract. We establish a combinatorial connection between the real geometry and theK-theory of complex Schubert
curves Spλ‚q, which are one-dimensional Schubert problems defined with respect to flags osculating the rational
normal curve. In a previous paper, the second author showed that the real geometry of these curves is described
by the orbits of a map ω on skew tableaux, defined as the commutator of jeu de taquin rectification and promotion.
In particular, the real locus of the Schubert curve is naturally a covering space of RP1, with ω as the monodromy
operator.

We provide a fast, local algorithm for computing ω without rectifying the skew tableau, and show that certain steps
in our algorithm are in bijective correspondence with Pechenik and Yong’s genomic tableaux, which enumerate the
K-theoretic Littlewood-Richardson coefficient associated to the Schubert curve. Using this bijection, we give purely
combinatorial proofs of several numerical results involving the K-theory and real geometry of Spλ‚q.
Résumé. Nous établissons une connection entre la géométrie réelle et la K-théorie des courbes de Schubert Spλ‚q.
Ces dernières sont des problèmes de Schubert, de dimension 1, définies par rapport à des drapeaux tangents à la
courbe rationelle normale. Le deuxième auteur a démontré auparavant que la géométrie de ces courbes est décrite par
les orbites d’une transformation ω de tableaux de Young gauches : le commutateur de la rectification (au sens du jeu
de taquin de Schützenberger) et de la promotion. Les points réels de Spλ‚q forment alors un revêtement de RP1 avec
ω comme opérateur de monodromie.

Nous introduisons un algorithme local et rapide qui permet de calculer ω sans devoir rectifier le tableau. Nous
démontrons ensuite que certaines étapes de l’algorithme sont en bijection avec les tableaux génomiques de Pechenik-
Yong, lesquels énumèrent le coefficient de Littlewood-Richardson K-théorique associé à Spλ‚q. Finalement, nous
démontrons de façon purement combinatoire certaines propriétés géométriques et K-théoriques de Spλ‚q.

Keywords. Young tableaux, monodromy, Schubert calculus, K-theory, osculating flag, jeu de taquin

1 Introduction
This paper is an abridged version of the full paper [5] by the authors. We study the real and complex
geometry of certain one-dimensional intersections S of Schubert varieties defined with respect to ‘oscu-
lating’ flags. These curves are known to have smooth real points, which naturally cover the circle RP1;
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we give a new combinatorial rule, in terms of certain Young tableaux, for the monodromy operator on the
fibers (a more complicated rule was given in [9]). Our rule is fast and combinatorially ‘local’, making
it easier to count ηpSq, the number of components of SpRq, which fully characterizes the real topology.
Moreover, our rule computes the class of S in the K-theory of the Grassmannian: it explicitly produces
Pechenik and Yong’s genomic tableaux [12]. This connection gives rise to purely combinatorial proofs
of two known geometric relations between ηpSq and the Euler characteristic χpOSq, and also yields new
facts about the real and complex geometry of S.

To define the curve S, recall first that the rational normal curve is the image of the embedding P1 ãÑ

Pn´1 “ PpCnq by the Veronese map

t ÞÑ r1 : t : t2 : ¨ ¨ ¨ : tn´1s.

Let Ft be the osculating or maximally tangent flag to this curve at t P P1, i.e. the complete flag in Cn
formed by the iterated derivatives of this map. Let Gpk,Cnq be the Grassmannian, and Ωpλ,Ftq the
Schubert variety for the condition λ with respect to Ft. The Schubert curve is the intersection

S “ Spλ1, . . . , λrq “ Ωpλ1,Ft1q X ¨ ¨ ¨ X Ωpλr,Ftr q,

where the osculation points ti are real numbers with 0 “ t1 ă t2 ă ¨ ¨ ¨ ă tr “ 8, and λ1, . . . , λr are
partitions for which

ř

|λi| “ kpn´kq´1. For simplicity, we always consider intersections of only three
Schubert varieties, though the results of this paper (in particular, Theorems 1.2, 1.5 and 1.6) extend to
the general case without difficulty. With this in mind, we let α, β, γ be partitions with |α| ` |β| ` |γ| “
kpn´ kq ´ 1, and we consider the Schubert curve

Spα, β, γq “ Ωpα,F0q X Ωpβ,F1q X Ωpγ,F8q.

Schubert varieties with respect to such osculating flags have been studied extensively in the context
of degenerations of curves [2] [3] [11], Schubert calculus and the Shapiro-Shapiro Conjecture [10] [14]
[16], and the geometry of the moduli space M0,rpRq [17]. They satisfy unusually strong transversality
properties, particularly when the osculation points t are chosen to be real [3] [10]; in particular, S is
known to be one-dimensional (if nonempty) and reduced [9]. Moreover, intersections of such Schubert
varieties in dimensions zero and one have been found to have remarkable topological descriptions in terms
of Young tableau combinatorics. [2] [9] [13] [17]

The Schubert curve is no exception: recent work ([9]) has shown that its real connected components
can be described by combinatorial operations, related to jeu de taquin and Schützenberger’s promotion
and evacuation, on chains of skew Young tableaux. Recall that a skew semistandard Young tableau is
Littlewood-Richardson if its reading word is ballot, meaning that every suffix of the reading word has
partition content.

Definition 1.1 We write LRpλ1, . . . , λrq to denote the set of sequences pT1, . . . , Trq of skew Littlewood-
Richardson tableaux, filling a k ˆ pn ´ kq rectangle, such that the shape of Ti extends that of Ti´1 and
Ti has content λi for all i. (The tableaux T1 and Tr are uniquely determined and may be omitted.)

The theorem below describes the topology of Spα, β, γqpRq in terms of tableaux:

Theorem 1.2 ([9], Corollary 4.9) There is a map S Ñ P1 that makes the real locus SpRq a smooth
covering of the circle RP1. The fibers over 0 and 8 are in canonical bijection with, respectively,
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LRpα, , β, γq and LRpα, β, , γq. Under this identification, the arcs of SpRq covering R´ induce the
jeu de taquin bijection

sh : LRpα, β, , γq Ñ LRpα, , β, γq,

and the arcs covering R` induce a different bijection esh, called evacuation-shuffling. The monodromy
operator ω is, therefore, given by ω “ sh ˝ esh.

sh

esh

}{
Figure 1: An example of the covering space of Theorem 1.2. The fibers over 0 and 8 are indexed by chains of
tableaux, with b denoting the single box. The dashed arcs correspond to sliding the b through the tableau using jeu
de taquin. The monodromy operator is ω “ sh ˝ esh.

The operators esh and ω are our objects of study. In [9], the second author described esh as the
conjugation of jeu de taquin promotion by rectification (see Section 2 for a precise definition). Variants of
this operation have appeared elsewhere in [1], [7], [8].

We prove two main theorems. The first is a shorter, ‘local’ combinatorial description of the map esh,
which no longer requires rectifying or otherwise modifying the skew shape. We call our algorithm local
evacuation shuffling. Local evacuation-shuffling resembles jeu de taquin: it consists of successively mov-
ing the b through T through a weakly increasing sequence of squares. Unlike JDT, the path is in general
disconnected. (See Section 3 for the definition, and Figure 2 for a visual description of the path of the b.)

Theorem 1.3 The map esh agrees with local evacuation shuffling. In particular, ω “ sh ˝ local-esh.

Our second main result is related to K-theory KpGpk,Cnqq and the orbit structure of ω. We first recall
a key consequence of Theorem 1.2:

Proposition 1.4 ([9], Lemma 5.6) Let S have ιpSq irreducible components and let SpRq have ηpSq con-
nected components. Let χpOSq be the holomorphic Euler characteristic. Then

ηpSq ě ιpSq ě χpOSq and

ηpSq ” χpOSq pmod 2q.
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*

Figure 2: The path of the b in a local evacuation-shuffle. The black and gray squares are the initial and final locations
of the b; the algorithm switched from “Phase 1” to “Phase 2” at the square marked by a ˚. There is an antidiagonal
symmetry: the Phase 1 path forms a vertical strip, while the Phase 2 path forms a horizontal strip. We give a precise
statement of this symmetry in the full paper.

We note that ηpSq is the number of orbits of ω, viewed as a permutation of LRpα, , β, γq. The state-
ments above are most interesting in the context of K-theoretic Schubert calculus, which expresses χpOSq
in terms of both of ordinary and (K-theoretic) genomic Young tableaux, namely

χpOSq “ |LRpα, , β, γq| ´ |Kpγc{α;βq|.

See Section 4 for the definition of Kpγc{α;βq, due to Pechenik-Yong [12]. In particular, we see that

|Kpγc{α;βq| ě |LRpα, β, , γq| ´ |orbitspωq|, and (1)
|Kpγc{α;βq| ” |LRpα, β, , γq| ´ |orbitspωq| pmod 2q. (2)

We reformulate as follows: recall that the reflection length of a permutation σ P SN is the minimum
length of a factorization of σ into arbitrary (not necessarily adjacent) transpositions. We have

rlengthpσq “
ÿ

OPorbitspσq

p|O| ´ 1q “ N ´ |orbitspσq|.

We also recall that the sign of a permutation is the parity of the reflection length,

sgnpσq ” rlengthpσq pmod 2q,

where we use the convention that the sign of a permutation is 0 or 1 (rather than ˘1). Thus,

|Kpγc{α;βq| ě rlengthpωq, and (3)
|Kpγc{α;βq| ” sgnpωq pmod 2q. (4)

For the case where β is a horizontal strip, a combinatorial interpretation of these facts was given in [9],
indexing all but one step of an orbit by genomic tableaux. Our second main result generalizes this com-
binatorial interpretation, showing that certain steps of local evacuation-shuffling correspond bijectively to
the genomic tableaux Kpγc{α;βq:

Theorem 1.5 As T ranges over LRpα, , β, γq, for either phase of the local description of eshpT q, the
gaps in the b path are in bijection with the set Kpγc{α;βq.
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Using the bijections of Theorem 1.5, we give an independent, purely combinatorial proof of the relations
(3) and (4), by factoring ω into auxiliary operators ωi, which roughly correspond to the individual steps
of local evacuation-shuffling, applied in isolation. If β has `pβq parts, we have the following:

Theorem 1.6 There is a factorization of ω as a composition ω`pβq ¨ ¨ ¨ω1, such that for every i, and every
orbit O of ωi, the bijections of Theorem 1.5 yield exactly |O| ´ 1 distinct genomic tableaux.

By summing over the orbits of the ωi’s, we deduce

rlengthpωq ď
ÿ

i

rlengthpωiq “
ÿ

i,O
p|O| ´ 1q “ |Kpγc{α;βq|,

by the subadditivity of reflection length. The sign computation is analogous.
The remainder of this paper is structured as follows. In Section 3, we define local-esh and sketch the

proof that it agrees with esh. Section 4 contains the link to K-theory and proof sketches of Theorems 1.5
and 1.6. Sections 5 and 6 explore some consequences of the main results.

2 Background
2.1 Tableaux and shuffling
We refer to [4] for the standard definitions of partitions, semistandard Young tableaux and jeu de taquin.
We briefly state some additional conventions that we will use.

Let λ “ pλ1 ě ¨ ¨ ¨ ě λkq be a partition. We will refer to the partition λ and its Young diagram
interchangeably throughout, using the English convention for Young diagrams. If µ is a partition with
µi ď λi for all i, then the skew shape λ{µ is the diagram formed by deleting the squares of µ from that
of λ. Its size, written |λ{µ|, is the number of squares that remain in the diagram. We will occasionally
refer to (co-)corners of a skew shape. The inner (respectively, outer) corners of λ{µ are the corners of λ
(respectively, the co-corners of µ). These are the squares which, if deleted, leave a smaller skew shape.
Similarly, the inner (resp. outer) co-corners are the co-corners of λ (resp. the corners of µ): the exterior
squares which can be added to obtain a larger skew shape.

We write “ ppn´ kqkq to denote a fixed rectangular shape of size k ˆ pn´ kq, and we will always
work with skew shapes that fit inside . The complementary partition to λ Ă , denoted λc, is the
partition pn´ k ´ λk, n´ k ´ λk´1, . . . , n´ k ´ λ1q.

Let T be a semistandard Young tableau of shape λ{µ. The reading word of T is the sequence formed
by reading the rows from bottom to top, and left to right within a row. The suffix of an entry m of T is the
suffix of the reading word consisting of the letters strictly after m. The weak suffix is the suffix including
that letter and those after it. A suffix is ballot for pi, i ` 1q if it contains at least as many i’s as i ` 1’s,
and is tied if it has the same number of i’s as i` 1’s. Finally, T is ballot or Littlewood-Richardson (also
known as Yamanouchi or lattice) if every weak suffix of its reading word is ballot for pi, i` 1q, for all i.

Let S, T be semistandard skew tableaux, such that the shape of T extends the shape of S, that is, T
can be formed by successively adding outer co-corners starting from S. Let S1 and T 1 respectively be the
tableaux formed by performing successive outward (resp. inward) jeu de taquin slides on S (resp. T ),
using the entries of T in ascending (resp. S, descending) order, and ordering equal entries of T from left
to right (resp. S, right to left).

Definition 2.1 The (jeu de taquin) shuffle of pS, T q, denoted shpS, T q, is the pair of tableaux pT 1, S1q.
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The rectification of a skew tableau T , denoted rectpT q, is the straight shape tableau formed by shuffling
T with any straight shape tableau S. It is well known (often called the “fundamental theorem of jeu de
taquin”) that the result does not depend on S.

2.2 Evacuation-shuffling and ω

Note that a straight-shape or rotated straight-shape has only one Littlewood-Richardson tableau, so an
element of LRpα, , β, γq is essentially a pair pb, T q, with T a Littlewood-Richardson tableau of content
β, and b an inner co-corner of T , such that the shape of b \ T is γc{α. Computing eshpb, T q consists
of the following steps: [9]

• Rectification. Treat the b as having value 0 and being part of a semistandard tableau rT “ b\ T .
Rectify, i.e. shuffle pS, rT q to p rT 1, S1q, where S is an arbitrary straight-shape tableau.

• Shuffling, or Promotion. (See [18] for the definition of promotion.) Delete the 0 of rT 1 and rectify
the remaining portion of rT 1. Label the resulting empty outer corner with `pβq ` 1.

• Un-rectification. Un-rectify, i.e. shuffle once more with S1. Replace the entry `pβq ` 1 by b.

Note that the promotion step is equivalent to shuffling the b past the rest of the rectified tableau. Thus,
evacuation-shuffling corresponds to conjugating the ordinary jeu de taquin shuffle (on skew tableaux)
by rectifying the tableau. This procedure outputs an element pT 1,bq P LRpα, β, , γq. Finally, the
monodromy operator ω “ sh ˝ esh is the commutator of rectification and shuffling.

3 Local evacuation-shuffling
We will now define local evacuation-shuffling,

local-esh : LRpα, , β, γq Ñ LRpα, β, , γq,

a local algorithm for computing esh. The base case of our algorithm is the Pieri case, where β is a one-row
partition. In this case, esh was computed in Theorem 5.10 of [9], and we recall it here.

Theorem 3.1 (Pieri case) Let β be a one-row partition. Then eshpb, T q exchanges b with the nearest
1 P T prior to it in reading order, if possible. If there is no such 1, esh instead exchanges b with the last
1 in reading order (a special jump).

We give two examples, illustrating the possible actions of esh and the more familiar sh.

1. If the skew shape contains a (necessarily unique) vertical domino:

ˆ 1 1
1 1

1

esh
ÝÝÑ
ÐÝÝ
sh

1 1 1
1 ˆ

1

2. If it does not, the action of esh ˝ sh cycles the b through the rows of γc{α:

ˆ 1 1
1 1

1

esh
ÝÝÑ

1 1 1
1 ˆ

1

sh
ÝÑ

1 1 1
ˆ 1

1
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1 1 1
1 1

ˆ

esh
ÝÝÑ

1 1 ˆ
1 1

1

sh
ÝÑ

ˆ 1 1
1 1

1

We refer the reader to [5] or [9] for two different proofs of this result.

3.1 The algorithm

We now state our new algorithm for evacuation-shuffling a box past an arbitrary ballot skew tableau.

Definition 3.2 Let pb, T q P LRpα, , β, γq. We define the local evacuation-shuffle, local-eshpb, T q, by
the following algorithm, starting at i “ 1.

• Phase 1. If the b does not precede all of the i’s in reading order, switch b with the nearest i prior
to it in reading order. Then increment i by 1 and repeat Phase 1.

If, instead, the b precedes all of the i’s in reading order, go to Phase 2.

• Phase 2. If the suffix from b is not tied for pi, i` 1q, switch b with the nearest i after it in reading
order. Repeat this process until the suffix becomes tied for pi, i ` 1q. Then increment i by 1 and
repeat Phase 2 until i “ `pβq ` 1.

We say that s is the transition step if the algorithm switches to Phase 2 while i “ s. If the algorithm
remains in Phase 1 throughout, we say the transition step is s “ `pβq ` 1.

Remark 3.3 Phase 1 is identical to the Pieri case unless the Pieri case calls for a special jump.

In Phase 1, b moves down and to the left; in Phase 2, b instead moves to the right and up. (See Figure
2.) We refer to the squares occupied by the box during the algorithm as the evacu-shuffle path.

Note that in Phase 2, it is not obvious that we can find an i after the b in reading order. However, in [5]
we show the following lemma, which states that the tableau essentially remains semistandard and ballot
at each step of the algorithm. Consequently, the topmost i is such a square.

Lemma 3.4 Let Ti be the tableau before the i-th step. Then, omitting the b, the rows (columns) of T are
weakly (strictly) increasing and the reading word of T is ballot.

Example 3.5 The diagram below demonstrates the local-esh algorithm.

ˆ 1 1
1 2 2
3
4

2 3

Ñ

1 1 1
ˆ 2 2
3
4

2 3

Ñ

1 1 1
2 2 2
3
4

ˆ 3

Ñ

1 1 1
2 2 2
3
4

3 ˆ

Ñ

1 1 1
2 2 2
3
ˆ

3 4

.
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3.2 Proof of Theorem 1.3
In this section we outline the proof of the following:

Theorem 3.6 Local evacuation-shuffling agrees with evacuation-shuffling, that is, for any pb, T q,

local-eshpb, T q “ eshpb, T q.

The main idea is as follows. In computing esh, when we first rectify pb, T q, we obtain a tableau R of
the form shown in Figure 3. In particular, the b is in the corner and the total shape of b\R is formed by
adding an outer corner square to β in some row s.

When shuffling the b past R, the b follows a path directly down to row s and then directly over to
the end of row s, as shown. It turns out that this corresponds to a more refined process in which we
shuffle the b past rows 1, 2, . . . , s´ 1, then shuffle it past the βs vertical strips formed by greedily taking
vertical strips from the right of the remaining tableau. We call this decomposition into horizontal and
vertical strips the s-decomposition, and we can similarly form the s-decomposition of the (unrectified,
skew) tableau T into horizontal and vertical strips.

Each step of Phase 1 of local-esh corresponds to a single move of the b past a horizontal strip in the s-
decomposition of β; the transition step then turns out to be s. Using the antidiagonal symmetry suggested
by Figure 2, we show that the movements of the b during Phase 2 correspond similarly to shuffles past
each of the s-decomposition’s vertical strips.

The complete proof given in [5] uses the theory of dual equivalence classes of tableaux (developed
in [6]), which are in bijection with Littlewood-Richardson tableaux. The theory of dual equivalence
allows us to use outwards rather than inwards rectification to compute esh, which leads to the observed
antidiagonal symmetry.

× 1 1 1 1 1

1 2 2 2 2

2 3 3 3 3

4 4 4

5

1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 ×
4 4 4

5

1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 ×
4 4 4

5

Figure 3: An example of a rectified tableau R with transition step s “ 3. The promotion path of the box is down to
row s and then directly right. The corresponding s-decomposition is shown at right.

4 Connections to K-theory
4.1 Generating K-theoretic tableaux
We recall the results we need on K-theory. The structure sheaves Oλ of Schubert varieties in Grpk,Cnq
form an additive basis for the K-theory ring KpGrpk,Cnqq, with a product formula

rOαs ¨ rOβs “
ÿ

|γc|ě|α|`|β|

p´1q|γ
c
|´|α|´|β|kγ

c

αβrOγcs,
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for certain nonnegative integer coefficients kγ
c

αβ . In [12], Pechenik and Yong introduced genomic tableaux
to enumerate kγ

c

αβ , a ‘ballot semistandard’ analog of Thomas and Yong’s earlier theory [15] of increasing
tableaux. We state an equivalent characterization of genomic tableaux when |γc| ´ |α| ´ |β| “ 1.

Lemma/Definition 4.1 Let T be an (ordinary) semistandard tableau of shape γc{α and content equal to
β except for a single extra i. Let tb1,b2u be a pair of squares of T . The data pT, tb1,b2uq corresponds
to a ballot genomic tableau if

(i) The squares are non-adjacent and contain i,

(ii) There are no i’s between b1 and b2 in the reading word of T ,

(iii) For k “ 1, 2, the word obtained by deleting bk from the reading word of T is ballot.

We say that the K-theoretic content is β. We write Kpγc{α;βq for the set of ballot genomic tableaux of
shape γc{α and K-theoretic content β, and Kpγc{α;βqpiq for the tableaux whose extra entry is i.

Theorem 4.2 ([12]) We have kγ
c

αβ “ |Kpγ
c{α;βq|.

We now describe how local-esh generates genomic tableaux.

Theorem 4.3 Let b1,b2 be two successive non-adjacent squares in the evacu-shuffle path of pb, T q in
which the b switches with an i. Let Ti be the tableau before this step in the path, with the b replaced by
i. Then the data pTi, tb1,b2uq corresponds to a ballot genomic tableau TK , as in Lemma 4.1.

Moreover, as T ranges over LRpα, , β, γq, every tableau TK P Kpγc{α;βqpiq arises exactly once this
way in Phase 1 and once more in Phase 2. This gives two bijections:

ϕ1, ϕ2 :
 

non-adjacent b movements past an i
(

Ø Kpγc{α;βqpiq.

In Example 3.5, the second step generates a genomic tableau for ϕ1 and the fourth generates one for ϕ2.

4.2 The sign and reflection length of ω
We now compute the sign of ω “ sh ˝ esh, as a permutation of LRpα, , β, γq, and the bound (3) on its
reflection length. We show:

Theorem 4.4 We have rlengthpωq ď |Kpγc{α;βq| and sgnpωq ” |Kpγc{α;βq| pmod 2q.

Lemma 4.5 Let Xi and X 1i, respectively, be the set of all tableaux arising in local-esh and sh, respec-
tively, when the b is between the pi´ 1q-st and i-th horizontal strips. Then Xi “ X 1i.

Proof: Both sets consist of ‘punctured’ semistandard tableaux of content β and shape γc{α, with ballot
reading word, and where the b is between the pi´ 1q-st and i-th horizontal strips. (See Lemma 3.4.) l

We have X1 “ LRpα, , β, γq and we write Xt`1 “ LRpα, β, , γq, where t “ `pβq. For 1 ď i ď t,
we let `i : Xi Ñ Xi`1 be the composition of the steps of local-esh that switch the b with i’s. Let
si : Xi`1 Ñ Xi be the jeu de taquin shuffle. We have the diagram

X1

`1

88 X2

`2

88

s1
xx

X3

`3

99

s2
xx

¨ ¨ ¨

`t

55

s3
ww

Xt`1,

st
xx
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By definition, ω “ sh ˝ local-esh “ s1 ˝ ¨ ¨ ¨ ˝ st ˝ `t ˝ ¨ ¨ ¨ ˝ `1. It follows directly that

sgnpωq ”
t
ÿ

i“1

sgnpsi ˝ `iq pmod 2q,

rlengthpωq ď
t
ÿ

i“1

rlengthpsi ˝ `iq.

The operators ωi of Theorem 1.6 are the compositions ωi “ s1 ¨ ¨ ¨ si´1psi`iqsi´1 ¨ ¨ ¨ s1. We complete
Theorem 4.4 by describing the orbits of si ˝ `i, a computation interesting in its own right:

Theorem 4.6 Let orbi be the set of orbits of si ˝ `i. Then:

rlengthpsi ˝ `iq “
ÿ

OPorbi

p|O| ´ 1q “ |Kpγc{α;βqpiq|.

Proof sketch: We use the bijection ϕ1 of Theorem 4.3 to generate genomic tableaux. Let T P Xi.
There are two cases. First, if `i does not involve a non-adjacent move, it is easy to check that `ipT q “

s´1
i pT q, so T is a fixed point and does not contribute to either side of the sum.

Otherwise, the orbit resembles the Pieri case: all steps but one move the b down one row, giving a
single genomic tableau; the last step begins in Phase 2 and resets the location of the b, giving no genomic
tableaux. (Unlike the Pieri case, the b moves downwards only until the pi´ 1, iq suffix becomes tied, and
‘jumps’ only far enough upwards to make the pi, i` 1q suffix tied.) Thus eachO P orbi generates exactly
|O| ´ 1 genomic tableaux. Every tableau of Kpγc{α;βqpiq arises once in Phase 1, so we are done. l

4.3 Fixed points of ω
We also characterize the fixed points of ω:

Proposition 4.7 The fixed points of ω are the pairs pb, T q satisfying the (equivalent) conditions:

(i) In the computation of local-eshpb, T q, neither bijection ϕ1, ϕ2 generates a genomic tableau.

(ii) The evacu-shuffle path of the b is connected.

Corollary 4.8 Suppose ω acts on LRpα, , β, γq as the identity. Then Kpγc{α;βq “ ∅; it follows that
the curve Spα, β, γq is (over C) a disjoint union of P1’s, and the map S Ñ P1 of Theorem 1.2 is locally
an isomorphism.

We note that in general, a morphism of real algebraic curves C Ñ D, inducing a covering map on real
points, may have trivial real monodromy but be algebraically nontrivial (i.e., not be a local isomorphism).
Corollary 4.8 shows that this cannot occur for Schubert curves.

5 Geometric constructions
It is considerably easier to analyze the orbit structure of ω, and, therefore, the geometric structure of
the Schubert curve, using local-esh. As examples, we give two families of triples pα, β, γq for which
the Schubert curve Spα, β, γq exhibits ‘extremal’ numerical and geometrical properties. See [5] for full
proofs, which rely on the relative simplicity of local-esh.
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Example 5.1 (Schubert curves of high genus) Let t ě 2 be a positive integer. Let

“ pt` 2qt`1; α “ γ “ pt, t´ 1, t´ 2, . . . , 2, 1q; β “ pt` 1, 2, 1t´2q

so γc{α is a staircase-ribbon. Then ω has only one orbit on LRpα, , β, γq. Hence, the Schubert curve
St Ă Gpt` 1,C2t`3q is integral; moreover, its arithmetic genus is gpStq “ pt´ 1qpt´ 2q.

In [9], the second author asked if Schubert curves are always smooth. K-theory does not in general detect
singularities, but either possibility is interesting: that St gives examples of singular Schubert curves for
t " 0, or that it gives smooth Schubert curves of arbitrarily high (geometric) genus.

Example 5.2 (Schubert curves with many connected components) Let t ě 2 be a positive integer. Let

“ pt` 1qt`1; α “ pt, t´ 1, . . . , 2q; β “ pt, 1, 1q; γ “ pt` 1, t, . . . , 3, 2, 2q

Then ω acts as the identity on LRpα, , β, γq, which has t´1 elements. Consequently, the Schubert curve
St Ă Gpt` 1,C2t`2q is a disjoint union of t´ 1 copies of P1.

6 Conjectures
Numerical evidence suggests that the inequality (3) in fact ‘holds orbit-by-orbit’ for ω:

Conjecture 6.1 Using the bijections ϕ1, ϕ2 of Theorem 4.3, each orbit O of ω generates at least |O| ´ 1
genomic tableaux.

Conjecture 6.1 implies the inequality (3), by summing over the orbits of ω. We have verified it for orbits
of size at most 3, and (computationally) for n ď 10 (for all choices of k, α, β, and γ). We have also
established the conjecture in certain special cases:

Theorem 6.2 Conjecture 6.1 holds for ϕ1 if β has two rows, and for ϕ2 if β has two columns.

Finally, although we have only defined local evacuation-shuffling for Littlewood-Richardson tableaux,
the evacuation-shuffle esh is defined on all tableaux pb, T q as the conjugation of shuffling by rectifica-
tion. Our results do yield local algorithms for certain other Knuth classes of tableaux via straightforward
alterations to local-esh. It would be interesting to understand the actions of esh and ω on semistandard
tableaux in general, and to extend the connection to K-theoretic Schubert calculus. To be precise:

Conjecture 6.3 Let T be any (semi)standard skew tableau and b an inner co-corner of T . There exists
a local algorithm for computing eshpb, T q, which does not require rectifying the tableau, such that:

(i) Each step consists of exchanging the b with an entry of T , of weakly increasing value.

(ii) The Knuth equivalence class of the word of T (omitting b) is preserved throughout the algorithm.

(iii) The algorithm specializes to jeu de taquin (if T is of straight shape) and local-esh (if T is ballot).

Each step should correspond (by conjugating with rectification) to a jeu de taquin slide of b through the
rectification rectpb, T q.

For a straight-shape tableau T that is not highest-weight, it would be interesting to find an analog of the
s-decomposition to describe the path of the b, and to use it to give a local algorithm on any skew tableau
T 1 whose rectification is T . Finally, we ask how to compute eshpS, T q locally, where both S and T may
have more than one box.
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