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HiePaCo: Scalable hierarchical exploration in abstract parallel coordinates under budget
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Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France

Abstract

In exploratory visualization systems, interactions allow to manipulate a visual representation and thereby gain insight into its sup-

porting data. The responsiveness of these interactions is crucial, but achieving it on common hardware becomes increasingly

difficult with the ever-growing size of datasets. Moreover, the representation of a large dataset itself is challenging since screen

space is limited and, past a certain size, the number of items exceeds the number of pixels available or may render the represen-

tation unhelpful. The focus of this paper is on multidimensional data and parallel coordinates. For the system to be scalable, we

propose a multiscale representation based on hierarchical aggregation on the client-side and distributed computing on a horizontally

scalable infrastructure on the server-side. Multiscale visualization builds on several levels of abstraction to provide interactive and

incremental changes in the level of detail. Horizontal scalability refers to the ability to increase the resources of the computing

infrastructure by connecting additional computers. This paper presents: (1) a graph-based formalism for describing multiscale

representations of parallel coordinates and their interactions and (2) a client-server system with a focus+context representation for

multiscale parallel coordinates and distributed computation on a remote data-intensive infrastructure. We leverage the proposed

formalism to describe several design possibilities for usual interactions in parallel coordinates, hierarchical navigation, and edition.

We illustrated the scalability and usage of the representation in a real-world case. Performance experiments demonstrate that on a

15-computer cluster, the prototype system can scale to billion-item datasets while preserving the interactivity for analysis.

Keywords: interactive visualization, big data, large-scale visualization, parallel coordinates, hierarchical aggregation, multi-scale

visualization

1. Introduction

In many application fields, the rapid democratization and

development of powerful computers and sensors have led to an

increase in the number of collected data and the size of datasets,

now reaching petabytes. Visual data exploration systems aim

to help analysts gain insights from a dataset through a visu-

alization paired with interactive means to manipulate the data

through its representation. The exploratory process is incre-

mental therefore it is essential for interactions to be responsive

such that latencies do not interfere with the analyst train of

thought. However, achieving responsive interactions on com-

mon hardware becomes increasingly difficult with the increas-

ing size of datasets. Latencies may come from the cost of com-

puting the data layout and rendering it or from data processing

(filtering, clustering, etc) requested by interaction. Moreover,

the representation of a large dataset itself is challenging since

display space is inherently limited by screen resolution. Past a
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Richer), joris.sansen@u-bordeaux.fr (Joris Sansen),

frederic.lalanne@u-bordeaux.fr (Frédéric Lalanne),

david.auber@u-bordeaux.fr (David Auber),

romain.bourqui@u-bordeaux.fr (Romain Bourqui)

certain size, the number of items render the representation un-

helpful and even exceeds the number of pixels available. We

say that such system requires (data) processing scalability and

perceptual (or visual) scalability [2, 3] that is, it needs tech-

niques to adapt to an ever-growing number of data items while

maintaining interactivity and legibility.

In this paper, we take interest in large multidimensional

data and parallel coordinate visualization. Multidimensional

data is a form common in many application fields. It encom-

passes all lists of individuals composed of several attributes,

possibly temporal. Different aspects of such data may be stud-

ied: the particular behavior of individual tuples relative to the

whole, the relationship between values from two dimensions,

or the distribution of values along each dimension [4]. Paral-

lel coordinates, introduced by Inselberg and Dimsdale [5], is

a well-known technique of visualization for multidimensional

data. Each data item is represented by a polyline which anchors

are positioned on each axis, at the corresponding attribute value

of the data item (see Figure 1b which is a parallel-coordinate

plot of the data on Figure 1a). Axes are usually aligned in par-

allel, forming a sequence of two-dimensional subplots sharing

one axis with their predecessor. Parallel coordinates usually

come with interactive operations for the user to manipulate the

data. Usual interactions are axis reordering (Figure 1d) to an-

alyze relationships between all dimension pairs and selection
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(a) Example matrix.

d1 d2 d3 d4

(b) Line-based. (c) Abstract.

d1 d3 d2 d4

(d) Axis reordering.

d1 d2 d3 d4

�

(e) Selection.

Figure 1: Examples of (b) line-based and abstract (c) parallel coordinates for

a simplistic dataset (a) with two usual interactions: (d) axis reordering and (e)

selection. On the line-based plot, colors match those of tuples on (a). On the

abstract plot, the height of aggregates corresponds to the number of tuples they

cover. On (d), the positions of axes for d2 and d3 have been switched. On (e),

the first and third tuples have been selected by brushing the second axis.

(Figure 1e) to trace subsets of tuples across axes. Axis reorder-

ing allows to display different pairs of dimensions, i. e. study

different axis-aligned 2D subspaces of the data. Notice that

the relationship between d2 and d4 is displayed on Figure 1d

but not on Figure 1b. Selection relates to interactive means of

choosing subsets of tuples and enhancing them such that they

can be discriminated from the rest. Highlighting on Figure 1e

makes apparent that the tuples sharing the same value for d2
also overlap on d3 and d4.

We are interested in supporting the interactive visual explo-

ration of large datasets with a moderate number of dimensions

but a challenging number of items or tuples, typically larger

than a billion. We built upon the assumption that this num-

ber of tuples leads to major line overplot and clutter when dis-

played using the traditional line-based parallel coordinate rep-

resentation (see Figure 2a). Line overplot corresponds to the

loss in density information induced by drawing multiple lines

over the same pixels. Clutter corresponds to the plot becoming

overcrowded which conceal interesting patterns and thus hin-

der analyzes [6]. Abstraction is one solution to address this

problem [7] that is widely used for multiple visualization tech-

niques. It consists in the display of visual aggregates instead

of single lines [8, 9, 10, 11]. Figure 2b and Figure 2c shows

examples of abstract parallel coordinates using per-dimension

clustering to aggregate polylines with two different levels of

detail (LoD).

Despite the aggregation, these plots successfully provide an

overview similar to a traditional plot and perceptually scale for

any size of input data. Since they are based on reduced data,

they decrease rendering time [9] and suit client/server architec-

ture by bounding the size of the data transferred between client

and server [11]. Sansen et al. [11] also leverage aggregation to

bound the storage requirements of some precomputed interac-

tions. Precomputing interactions reduces the cost of interactive

processing as it remove their dependency on linear scans of the

data which is particularly interesting when data does not fit in

a desktop computer memory. Indeed, in this case, linear scans

over the data affect performance more negatively since access

to memory is usually more expensive as it implies e. g. reads on

disk or network transfer between several computing units.

Abstract representations, i. e. representations of aggregated

data, is a solution for perceptual scalability but limits in-depth

analyses since visual aggregates only convey a reduced amount

of information. Specific interactions are commonly provided to

manipulate the abstraction and alleviate this limitation: chang-

ing the level of detail (show more details) and adjusting the

aggregation (show different details). Supporting these interac-

tions is essential but strongly increases the number of states of

the visualization. Then, straightforwardly precomputing and

storing these states as proposed by Sansen et al. [11] is no

longer efficient. Rübel et al. [12] presented a system based on

a modern high-performance computing (HPC) platform for ad-

dressing processing scalability. HPC platforms are large and

expensive computing systems suited for highly complex and

real-time computation. They are composed of multiple pro-

cessors connected through a fast network and use fast mem-

ory. As such, they are particularly adapted to tightly coupled

tasks where several processors work on the same task and ex-

change data. Distributed systems, on the contrary, are networks

of computing units, usually commodity hardware, connected in

a shared-nothing architecture (memory and storage are inde-

pendent to each unit). On these systems, data transfer between

computing units uses a slower network connection and thus is

critical for performances. Consequently, they are most adapted

to loosely coupled data-parallel tasks on large amounts of data.

In addition to being cheaper alternatives for data-intensive com-

puting, they offer easier horizontal scalability (allocation of ad-

ditional computing units) as their hardware and architecture are

less sophisticated. The filtration and aggregation problems at

stake in abstract parallel coordinates are data-parallel tasks. In

this work, we focus on these less expensive and more accessi-

ble platforms to address processing scalability with on-the-fly

distributed computing.

This work is motivated by the fact that abstract visualization

is inherently limited in the amount of conveyed information and

relies on interaction to provide more detail and, in particular, to

retrieve item-level information. Without dedicated interactions,

increasing the level of detail implies redrawing the whole view

at a finer level of detail (for instance from Figure 2b to Fig-

ure 2c) which may be cognitively expensive for the user and

also tends to result in the same overplotting and clutter issues

the line-based plot has. A common manner of addressing this

problem is to propose hierarchical focus+context interactions

that increase the level of detail locally instead of globally [13].

On one hand, several abstract parallel coordinate represen-

tations based on aggregation have been proposed [8, 9, 10, 11,

14, 15, 16], some together with hierarchical exploration inter-

actions [14, 15, 16]. On the other hand, parallel-coordinate vi-

sualization systems targeting large-scale datasets [11, 12] have

not addressed the implementation of such interaction in a re-

mote-visualization setting. The aim of this paper is to address

the scalable implementation of such interaction in a remote-vi-

sualization context backed by a distributed platform. To this

end, we first propose a conceptual model for hierarchical data

abstraction in parallel coordinates, that links the base data to
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(a) Line-based parallel coordinates with polylines drawn semi-transparent.

(b) Abstract parallel coordinates with 5 clusters per dimension.

(c) Abstract parallel coordinates with 20 clusters per dimension.

Figure 2: The three plots are representations of a medium-sized dataset of 7638 food items and their amount of nutrients. On abstract parallel coordinates (b-c),

aggregation allows avoiding the overplotting occurring on line-based parallel coordinates (a) at the expense of some loss of information. c presents an abstract

parallel coordinate plots using a larger number of aggregates than (b).
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the data supporting the abstract plot. The aim of the model is

to (i) facilitate the expression of hierarchical navigation opera-

tions, and (ii) allow to evaluate the minimal data necessary to

transfer, from server to client, to help compare different interac-

tion designs. Secondly, we present a hierarchical focus+context

interaction backed by a distributed platform implementing this

interaction as well as other interactions. More precisely, the

contributions of this paper are as follows:

• a graph-based formalism for data abstraction in abstract

parallel coordinate that proposes a graph form for con-

ceptually representing the aggregated data necessary to

construct an abstract plot. The model presents a new per-

spective on several existing works on abstract parallel-

coordinate representations, and can be used to devise and

evaluate the costs of other interactions for these represen-

tations ;

• a comparison of several design possibilities for inter-

active operations for abstract parallel coordinates ex-

pressed using the proposed model and compared from a

computational perspective. Interactions include hierar-

chical navigation and edition of the hierarchy.

• a prototype client/server visualization system with a

focus+context interaction augmenting the representation

of Sansen et al. [11]. The server computes interactions,

including drill-down and roll-up, by running on-the-fly

computation on a horizontally scalable infrastructure. The

system guarantees bounded transfer between client and

server.

We first present previous work on perceptual scalability in

parallel coordinate plots and their interactions with a focus on

multi-scale approaches (section 2). Then, we describe the pro-

posed graph-based formalism (section 3). In section 4, we study

different interactions under this formalism and compare them

under the light of computational complexity and size of data

transfer. This yields a prototype implementation and design of

a scalable parallel coordinate plot based on hierarchical aggre-

gation, using a so-called big data infrastructure, described in

section 5. Finally, in section 6 we present a case study and a

performance evaluation with some implementation discussion,

and section 7 presents directions for future work.

2. Related Work

Recent works have focused on the scalability of visualiza-

tion applications for large-scale data with different techniques,

among which are: data reduction, multi-threading, GPU–acce-

leration, and incremental or approximate data processing. In

the case of visualization, the scalability of a system often refers

to its capacity to accommodate and handle growing amounts of

data. Handling massive datasets brings about two main chal-

lenges for exploratory visualization: perceptual scalability and

processing scalability as noted by [17, 2, 3]. The first is con-

cerned with the legibility of visualizations representing numer-

ous items relative to the space available on a screen (so-called

screen real-estate problem) and human capabilities to appre-

hend them. The second relates to the computational cost of

processing numerous items on each user input, that can cre-

ate latencies responsible for decreasing user performances [18].

A taxonomy of different techniques regarding the perceptual

scalability aspect was established by Ellis et al. [6]. A gen-

eral solution is data reduction, which can be categorized into

two approaches: either representing a subset of the data items

(sampling, filtering) or meta-items (aggregation, mathematical

models). Several works proposed methods (called multiresolu-

tion, multiscale, hierarchical or even stratified) for navigating

through multiple levels of detail supported by precomputation

(e. g. [17, 19, 3]). For graphs, which are the basis of the pro-

posed model, interactive navigation in aggregated views based

on hierarchies has been studied in both the database community

(e. g. for ontologies [20]) and the visualization community (e. g.

TugGraph [21]). This work is related to general techniques

addressing perceptual and processing scalability for interactive

parallel coordinates.

2.1. Perceptual scalability in parallel coordinates

Various approaches have been proposed to improve the leg-

ibility of parallel coordinate plots by either reducing the clutter

produced by the multiplicity of overlapping and crossing lines

or enhancing their patterns. Approaches can be categorized

into geometry-based relying on computer graphics techniques

and data reduction approaches that use approximation or sum-

mary of the data. Geometry-based approaches display all items

with shape or position modifications to alleviate overdraw in-

between axes, for instance by bundling lines (e. g. [22]). These

techniques have the advantage of resulting in few losses of in-

formation but have the drawback of still being prone to over-

plot since no reduction of the number of displayed items is

performed. Data reduction approaches limit the number of vi-

sual items either by sampling items [23] or using meta-items.

Model-based approaches mathematically reduce the data to a

continuous function, and meta-items usually represents the den-

sity of the underlying data (e. g. [24]). Aggregation approaches

have been presented for parallel coordinates through different

schemes: aggregation of dimensions [25], aggregation of items

or values [14, 9, 10] or combinations of both [26, 27].

In this paper, we are interested in scalability relative to the

number of items, not dimensions; hence we focus on aggrega-

tion over items and their values. Previous work using aggrega-

tion have used kernel density estimation, independently applied

to dimension [10], different hierarchical clustering algorithms

over multidimensional items or dimension [14] but also bin-

ning on two-dimensional subspaces [9, 28]. Aggregates have

been represented by their statistical properties: extrema [29],

cardinality [8], mean [14], or other metrics [10]. As reflected

by previous work, parallel coordinates support different lev-

els of grouping: the item level (multi-dimensional), the value

level (one-dimensional or per-dimension), the line level (two-

dimensional). Figure 3 illustrates how these different cluster-

ings relate to visual elements of parallel coordinates: items

relates to polylines, and values to axis points. In the case of

1-dimensional clustering, aggregating dimension points along
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the clustering entails an aggregation of lines. The value level

(a) No clustering. (b) Item level:

multi-dimensional clustering.

(c) Line level:

2-dimensional clustering.

(d) Value level:

1-dimensional clustering.

Figure 3: Parallel coordinate visually support different aggregation schemes.

Multidimensional clustering correspond to grouping polylines, i. e. items (b),

clustering of each axis-aligned 2-dimensional subspace aggregates lines from

the same subplot (c), and clustering of values on each dimension aggregates

points on the same axis (d).

has the advantages of losing less information, preserving con-

tinuity on axes (potentially broken by two-dimensional aggre-

gation) as well as an idea of the pair-wise relationship between

dimensions (broken by item-level aggregation). With the value

and line levels, together with selection interactions, the user

can analyze how the items of one subspace cluster are close in

other represented subspaces. Generally, the approach of these

aggregation-based methods is to cluster axis-aligned subspaces

of the data that hold visual meaning on the parallel coordinate

representation (points, lines or polylines) and render the result-

ing cluster as a visual aggregate.

2.2. Multiscale parallel coordinates

Abstract representations usually depend on a parameter that

controls the resolution of the display. Multiscale visualization

is common paradigm for navigating between multiple levels of

abstraction, using a drill-down/roll-up interaction (respectively

for increasing and decreasing levels of detail). Elqvist et al. [13]

provided general guidelines for multiscale representations and

interactions, based on such hierarchical aggregation. Bikakis et

al. [30] presented a framework for hierarchical aggregation ori-

ented towards the computational aspects of hierarchical naviga-

tion. Interactively changing the level of detail can be integrated

into different ways (see [31] for a general review).

A first approach, similar to geometry zooming, either (1)

filters part of the representation to maintain a fixed number of

visual items on display, or instead (2) purposely displays in-

creasing number of items (e. g. [15, 10, 16]). Filtering has

the advantage of being scalable when the amount of displayed

items is controlled; however, the overview and context are lost

along the way. One drawback of displaying an unlimited num-

ber of items is that the screen’s pixel limitation could always be

reached for a sufficiently massive dataset and then, information

would be lost. Additionally, past a certain number, that may

overwhelm human cognitive abilities. Consequently, zoom-

ing globally without filtering does not allow interactive explo-

ration to the item-level complying with perceptual scalability.

For zooming with filtering, an alternative to the loss of con-

text is the overview+detail approach which displays both the

filtered zoomed view and an overview (e. g. dimension zoom-

ing [14]). Among previous work based on hierarchical cluster-

ing, HVN (Hierarchical Virtual Nodes) [32] materialized the hi-

erarchy computed over multidimensional items on each axis as

dendrograms. The dendrograms allows to directly select groups

of items or single items as their nodes are clickable. Then,

the line of each selected multidimensional item is drawn routed

trough its corresponding parent nodes of the axis dendrograms.

Overplot is reduced by displaying item lines solely for the se-

lection since the dendrograms represent the data distribution.

For categorical data, Parallel Hierarchies [16] provide an inter-

active mean to navigate the relationship between different hier-

archies by cross-filtering items.

A second approach, called focus+context, consists in dis-

playing heterogeneous levels of detail: a selected portion of the

data is shown with greater details to the detriment of the rest.

This approach increases the level of detail locally while pre-

serving the overview. Fisheye lenses used by Long et al. [33]

are an example applied in screen space. In data space, Fua et

al. [14] and Novotný and Hauser and [9], although using differ-

ent aggregation strategies, presented techniques where a subset

of items can be enhanced and displayed with fine-scale details

layered over the rest of the data, abstracted to some level.

To the best of our knowledge, none of these solutions pro-

pose to interactively change the level of detail locally, in a fo-

cus+context fashion, while bounding the number of visual items.

Additionally, these solutions do not discuss the possibility for

the user to interactively edit the aggregation at one specific level

such as by merging two aggregates.

2.3. Processing scalability of multi-scale parallel coordinates

For the past ten years, large-scale or massive has been used

to qualify increasingly big data, now up to tera or petabytes

in size [2]. For multidimensional data, above about 107 items,

with a dozen dimensions, perceptual scalability and processing

scalability becomes problematic for interactive analysis. Ab-

stract representation and precomputation of interactions are so-

lutions respectively addressing perceptual and processing scal-

ability, as [11] presented. In addition to the enhancement of

subsets of items and the reordering of axes, abstract representa-

tions require a drilling interaction to allow a fine data analysis.

Processing scalability can be tackled by parallelism, dis-

tributed processing and precomputing of complete or partial re-

sults for instance. For parallel coordinates, most interactions

can be applied to two-dimensional subplots independently and

on separate portions of the dataset without needing any commu-

nication (they are pleasantly parallel). This property has been

exploited by Rübel et al. [12] on a HPC platform, and Sansen et

al. [11] on a distributed platform. Rübel et al. [12] addressed

both scalability challenges with a histogram-based represen-

tation adapted from Novotný and Hauser [9]. Histograms are

two-dimensional aggregations of the data, precomputed in par-

allel, potentially for different resolutions. On more affordable

hardware, Sansen et al. [11] addressed the same challenges with
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a parallel sets representation for a Hadoop+Elasticsearch ecosys-

tem that also relies on full precomputation of certain types of

interactions. Both works presented good scalability evaluations

relative to the number of computing units used. However, these

techniques only support the display of balanced levels of detail

i. e. drill-down is global and necessarily increases the number

of displayed items. With this approach, gaining detail at the

item-level is not practical past a certain size of dataset and level

of detail as it incur considerable latencies. In contrast, in this

paper, we present a technique that supports local drill-down up

to the item-level, and edition of the aggregates at a given level

of detail.

3. The Graph-Based Formalism

In this section, we detail how we formalize an abstract par-

allel coordinates plot as a graph, based on the aggregation of

tuple values. The goal of this formalism is to connect the data

to visualize to the information that support an abstract parallel

coordinate representation, and its multiple states resulting from

user interactions.

Let us start with a small example made of four tuples and

two dimensions as presented on Figure 4a and represented by

the red and gray parallel coordinate plot on Figure 4b. By merg-

ing together identical values on each axis, we obtain the finest

abstract plot represented on Figure 4c, that is essentially a flat

version of the original plot. Grouping dimension values using

clustering or existing classification allows to generate coarser

representations. For instance, Figure 4b represents an example

of such grouping in blue, with each blue node defining a group

corresponding to its directly connected red nodes and Figure 4d

shows the abstract parallel coordinate plot for this grouping.

Notice that aggregating values on each dimension leads to ag-

gregation of the lines connecting them, thus forming a structure

that can be seen as a graph, here with two nodes on each axis

and three edges connecting them. Likewise, the graph of Fig-

ure 4c have 7 nodes and 4 edges. This graph object holds the

structure of the abstract representation ; together with meta-

data associated to its nodes and edges, it corresponds to the

information sufficient for a visualization client to display the

abstract plot to the user. Using the same value grouping, other

graphs can be computed by presenting different level of detail

between dimensions as on Figure 4e or intra-dimension as Fig-

ure 4f. The idea of the formalism described in the following is

to show how different interactions on abstract parallel coordi-

nate representation, including hierarchical navigation, translate

to construction of such graphs.

On a traditional parallel coordinate plot, only a fraction of

the input data 2D subspaces is represented. Here as in the rest

of the paper, subspaces strictly refers to axis-aligned subspaces.

Figure 5c and 5d show two examples of representations that

display all 2D subspaces at once: respectively the parallel co-

ordinate matrix [34] and the many-to-many plot [35]. To sup-

port these representations, the proposed graph model should be

able to integrates all 2D subspaces of the data, without assump-

tion on the layout of axes. Additionally, to support abstract

1 1

2 2

3 2

4 3

























(a) (b) Parallel representation.

(c) Finest. (d) Coarsest. (e) 6= inter. (f) 6= intra.

Figure 4: Aggregation at different levels of detail for 4 tuples with 2 dimen-

sions, each augmented by 2-level hierarchies. The finest-level nodes are in red,

and coarsest-level nodes in blue. (a) two-dimension data augmented by a di-

mension grouping, (b) with a parallel coordinate representation with a tree for

each dimension grouping. Aggregating tuples along different levels of detail

leads to different line aggregation. (c) shows the abstract plot at the finest level

of detail, i. e. based on the leaves of the hierarchy trees, (d) shows the abstract

plot at the coarsest level of detail, i. e. based on the hierarchy nodes closest

to the roots. The levels of detail of dimension clusters can be different inter

dimensions (e), and intra dimension, like d1 on (f).

representations, it should support aggregation of tuples. Val-

ues can also be aggregated along dimensions, however we fo-

cus on abstraction based on aggregation of tuples since dimen-

sions hold semantic meaning not embedded in their numerical

content. Therefore, automatically and meaningfully aggregate

them is not straightforward: some types of values may not make

sense aggregated together. Consequently, we target datasets

that challenge scalability by their size in tuples and hold moder-

ate amounts of well-chosen dimensions, i. e. n ≫ d for datasets

with n tuples and d dimensions. .

3.1. Abstraction in parallel coordinates

In parallel coordinates, the values of the input matrix are

placed on labeled axes and connected to each other by lines

that materialize tuples. As we presented before, this metaphor

can be extended to transform an n × d matrix in an undirected

graph which nodes are the matrix values and which edges con-

nect values from the same tuple, i. e. same row in the matrix.

For instance, Figure 5e shows such graph for the matrix X of

Figure 5a. Each line of a traditional parallel coordinates plot

like on Figure 5b translates to a filled edge in this graph. The

dashed edges correspond to the hidden lines, that only appear

when duplicating the axes of a traditional plot, reordering them

(Figure 5c) or using alternative representations such as Many-

to-Many plots (Figure 5d). Notice that a polyline of a parallel

coordinate plot translates to a clique in this graph, when hidden

lines are included. Thus, this graph is composed of n separate

cliques of d nodes, that is, n complete graphs. We note this

graph G = (V,E,w), where V denotes the nodes, E the edges,

w is the weighting function: w : V → R that stores the value

of a node. We note D = {Vi, i ∈ J1, dK} the partition of V that

groups nodes along their origin dimension. Given a sequence of

dimension indices, a parallel coordinate plot results from taking

the subgraph of G composed of only the edges joining nodes

of dimensions consecutive in the sequence. Any repetition in
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c2 = 2
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a3 = 2

b4 = 6c4 = 6

a4

a1

c1

b2

b1

(e)

a2, c2 a3, c3, b3

b4, c4

a4

a1

c1

b2

b1

2

2

(f)

Figure 5: Rationale behind the graph model. (a) Example data. (b) Opacity-

based parallel coordinates. (c) Parallel coordinates matrix [34] where all 2-

dimensional subspaces are represented. (d) Many-to-many plot [35]. (e) Graph-

based representation G(X). Shadowed areas cover identical values from the

same dimension and form the partition R. (f) Quotient graph G/R(X) (cardi-

nality mapped to size).

the dimension sequence implies that some nodes and edges are

replicated. On the corresponding parallel coordinate plot, the

nodes are positioned based on the order of their dimension in

the sequence (horizontally) and their weight (vertically).

An abstraction of a parallel coordinate plot depends on a

clustering or partition of tuples or dimension values. Similarly,

abstracting the clique graph depends on a node partition that

should be consistent with the partition D introduced before for

the result to be drawable onto distinct axes. An example of such

node partition is illustrated on Figure 5e by shadowed regions

on grouping identical values from the same dimension. A node

partition R consistent with D is called a refinement of D, noted

R < D. Abstracting a graph G based on such node partition

consists in merging the nodes of G belonging to the same sub-

set of a partition R and merging edges in consequence. For

instance, abstracting the graph G from Figure 5e based on its

shadowed regions leads to the graph of Figure 5f. This process

corresponds to taking the quotient graph of G relative to R, de-

fined as the graph whose nodes are the parts of R and where a

subset S ∈ R is adjacent to a subset S′ ∈ R , and only if, some

node in S is adjacent to a node in S′ with respect to the edges of

G. The quotient graph of G relative to R is noted G/R. We call

meta-nodes and meta-edges the nodes and edges of a quotient

graph.

The quotient graph holds the structure of an abstract plot.

To draw a complete abstract parallel coordinate plot, properties

are computed for meta-nodes and meta-edges along the aggre-

gation, and then mapped to the visual properties of their visual
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Figure 6: Aggregation of dimension values. (a) Example data (b) Parallel co-

ordinate plot of the example data, augmented by per-dimension partitions. (c)

Quotient graph. (d) Value-oriented abstract representation. Visual meta-node

covers the vertical space of their interval and the opacity of visual meta-edges

encode their cardinality.
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(b)

Figure 7: Aggregation of tuples. (a) Translation of the tuple partition (color)

into a node partition refining D (shadowed regions). (b) Tuple-oriented abstract

representation using mean and extrema values.

representations. To this end two aggregation functions are de-

fined to compute the properties of the meta-nodes and meta-

edges. Given a set of edges or nodes as input, they return a

sequence of weights (cardinality, extrema, mean, etc) that are

subsequently used for assigning visual properties to meta-edges

and meta-nodes. For instance, on Figure 5b, the opacity of lines

on the parallel coordinate plot depends on the cardinality of

meta-edges. In this example, the aggregation of identical val-

ues allows finding the optimal number of lines to draw. Indeed,

the aggregation done here in data-space relates to the one done

in screen-space when rendering the polylines with alpha com-

posing. The same process is applied to obtain an abstract repre-

sentation given some aggregation functions and a valid partition

R of V , that is, refinement of D. Note that the obtained quo-

tient graph is d-partite: the nodes of each subset of D are inde-

pendent since they belong to different tuples and this property

remains true for quotient graphs since only nodes that are not

connected are contracted into meta-nodes. Figure 6 presents

an example of partition obtained with per-dimension cluster-

ing and another type of representation based on extrema values.

Tuple-oriented approaches are incorporated into the formalism

by refining the input tuple partition into a refinement of D. Each

subset of the tuple partition can be decomposed into d groups

along their membership in D. Figure 7 shows an example of

tuple partition refinement and a tuple-oriented representation.
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Using the formalism, the abstract representation for some

data is entirely defined by: (i) a valid partition R of the nodes

of the clique graph G for the data, (ii) two aggregate functions

assigning weights to meta-nodes and meta-edges of the quotient

graph G/R, (iii) an axis layout and visual encodings for meta-

node and meta-edge weights (vertical position, color, etc).

3.2. Hierarchical abstraction in parallel coordinates

Hierarchical aggregations are precomputation of different

levels of abstraction that naturally support multiscale represen-

tations. Such precomputation outputs a rooted tree structure

whose leaves are the data objects to aggregate. Every node of

a rooted tree is said to cover the leaves of the subtree it is the

root of. An antichain (also called cut) in a tree is a set of nodes

S, such that no node of S is an ancestor of another node of S.

An antichain is maximal if no node can expand it without vio-

lating the antichain property. The subsets covered by the nodes

of a maximal antichain form a partition of the tree leaves: the

antichain property makes them pairwise disjoint, the maximal

property ensures that their union is the set of leaves.

In our model, an abstraction is directed by a partition refin-

ing the partition D which is equivalent to d partitions, one for

each Vi of D. By augmenting each subset Vi with a tree, such

partition can be defined by one maximal antichain for each tree.

This is equivalent to defining a single maximal and non-trivial

antichain in the unified tree where the root’s children are the

roots of all dimension trees. We note this unified tree T (V ),
and call its direct subtrees dimension hierarchies.

Overall, for some input data modeled by the clique graph

G = (V,E,w) and its associated hierarchy T (V ), an abstrac-

tion is defined as previously described with the valid partition of

V induced by a maximal antichain in T (V ). This unifying ap-

proach accommodates multiple layouts of parallel coordinates

(see Figure 5) and several abstract parallel coordinates repre-

sentations. We presented two abstract representations: per-

dimension aggregation (Figure 6d) that corresponds to the tech-

nique presented by Palmas et al. [10], and tuple aggregation (

Figure 7) like presented by Fua et al. [14]. For tuple aggrega-

tion, the hierarchy defined on tuples is used to form all dimen-

sion hierarchies. Figure 7 is obtained by cutting all dimension

hierarchies at the same level.

4. Envisioning Interactions

For some input data which graph is G = (V,E,w), an ab-

stract view is defined by: a node partition R linked to a hierar-

chy T (V ), a sequence of dimensions, and optionally a selection

of items to be emphasized. These parameters all have a preset

value (e. g. the predefined hierarchy, the empty selection) that is

to be modified incrementally by a corresponding user operation:

hierarchy edition and navigation, axis re-ordering and subset

selection. Figure 8 shows how these parameters and operations

participate in the process of defining an abstraction using the

graph model described in the previous section: axis reordering

changes which meta-edges are displayed, selection translates to

computing a subgraph and hierarchy navigation corresponds to

edition of the node partition. Effectiveness and expressiveness

are orthogonal objectives when designing an operation and how

it modifies a parameter of the process. Expressiveness refers

to the flexibility of an operation and can be conceived as the

number of states possibly induced from one state by the opera-

tion. In our context, limiting the expressiveness of an operation

may be motivated by the following: (1) usability, limitation to

queries that can be expressed solely over displayed aggregate

nodes and edges rather than the whole data, (2) efficiency, limi-

tation of the extents to which an operation changes the abstrac-

tion to limit the induced network transfer or computation cost.

In this section, we take advantage of the formalism to ex-

plore different designs for these operations. In particular, we

investigate the size of the incremental change induced on the

abstract view and the complexity of the computation. The ul-

timate goal is the adequate limitations in expressiveness that

guarantee bounded network transfer and linear computation on

the server-side. Since computation costs depend on the data

structure manipulated by the computing server and the structure

of the hierarchy, they are further discussed in the next section.

Since the model rests upon an automatically precomputed hier-

archy, we consider that the weights (cardinality, extrema, etc) of

all of the tree nodes are precomputed at the same time as the hi-

erarchy. Then, operations that do not modify the hierarchy only

amount to computing meta-edges for the current parameters.

4.1. Axis reordering

On a regular parallel coordinate plot of a d-dimension data

set with d axes, only d − 1 of the 1
2 (d − 1) 2D-subspace of

the data are visible. A usual tool to explore the relationship

between dimension with non-adjacent axes is axis reordering.

Conceptually, a plot of abstract parallel coordinates for a given

sequence of axes is obtained by taking the subgraph of the cur-

rent quotient graph induced by the edges connecting nodes from

neighboring axes in the sequence (step 4 on Figure 8). In prac-

tice, only the necessary meta-edges can be computed instead.

Similarly, axis reordering can be conceived as the computation

of the meta-edges that were not displayed on the previous or-

dering of axes. With axis insertion for instance, this applies to

meta-edges joining two pairs of axes at most.

In the general case, computing the meta-edges of a sub-

plot, i. e. the meta-edges connecting nodes from different di-

mensions, conceptually corresponds to contracting n bottom-

level edges of the clique graph, where n is the number of tuples.

In practice, it requires one pass over the n tuples to aggregate

those that belong to the same meta-node on both dimensions.

The size of the transferred data depends on the number of nec-

essary meta-edges. On each subplot, the number of meta-edges

depends on the number of meta-nodes of both axes of the sub-

plot and the values of their covered tuples. If the number of

meta-nodes per-dimension is bounded by a certain k, then the

maximum number of meta-edges per-subplot is k2.

4.2. Hierarchy navigation: drill-down and roll-up operations

The main limitation of abstract parallel coordinates is the

limited amount of information conveyed by a certain level of
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clique graph
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& hierarchy T (V ))
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displayed axes transfer view

Figure 8: Schematic pipeline of the definition of an abstract view. The parameters of the pipeline are modified incrementally by their corresponding user operation:

hierarchy edition and navigation, axis re-ordering and subset selection. (1) Modification of the current hierarchy. (2) Modification of the current node partition.

(3) Aggregation functions for the quotient graph are separately computed over the subset of nodes S that correspond to the selected tuples. (4) Filtration of the

meta-edges to retain only those shown given the provided ordering of dimensions. (5) The quotient graph is transferred with its associated properties (for the base

graph and the selection).

detail. Using a hierarchy that connects different levels of ab-

straction is a common manner of supporting smooth transition

from one level of detail to another but also to enable chang-

ing the level of detail of parts of the view resulting in views

with varying levels of detail. Drill-down and roll-up refers to

operations that change the level of detail at which the data is

rendered. In the context of an abstraction based on a hierarchy,

drilling-down means showing nodes sitting deeper in the hier-

archy, i. e. closer to the leaves, compared to those shown pre-

viously. On the contrary, rolling-up means showing nodes sit-

ting upper in the hierarchy than those presented before. Deeper

nodes present a finer aggregation of the base data, while upper

nodes present a coarser aggregation of the data. If the aggregate

functions are associative, at least parts of a roll-up can be com-

puted based on the previous state rather than from the whole

data.

Defining node partitions along a hierarchy, for instance with

maximal antichains, helps create coherent changes from one

partition to another. In general, the number of maximal an-

tichains of a tree is still exponential relative to the number of

leaves. For example, complete binary trees, i. e. binary trees

with every level full except the last, have Ω(2n) maximal an-

tichains where n is their number of leaves. This makes the pre-

computation of all quotient graphs with respect to every possi-

ble maximal antichain for the given hierarchy not possible for

the scale of data we aim to tackle.

In our model, the displayed level of detail is given by the

maximal antichain of the hierarchy on which is based the cur-

rent node partition R. In general, this level of detail is unbal-

anced, meaning that the nodes of the maximal antichain do not

necessarily sit at the same distance from the root in the hierar-

chy. A drill-down operation that globally increases the level of

detail by replacing each meta-node of the antichain with its di-

rect children may result in an uncontrolled number of elements

on display, independently of the arity and depth of hierarchies.

Moreover, the incremental changes required are exponentially

larger as the antichain nodes come closer to the leaves. There-

fore, this approach does not offer satisfying guarantees on the

size of transferred data. Drilling-down on a single meta-node

at once reduces the size of the incremental change but lives to

the user the responsibility to manage the number of visual ag-

gregates on display by rolling-up on parts that are no longer of

his interest.

In the following, we detail three drilling approaches that

aim to limit the increase in the number of visual elements when

changing the level of detail by reducing the context. Figure 9

illustrates these approaches on 2-dimensional data. Each tuple

is represented by a line linking a point from the left axis (first

dimension) to a point from the right axis (second dimension).

Each axis is augmented by its corresponding dimension hierar-

chy with the leaves connected to a tuple point. On hierarchies,

we represent in grey the set of nodes that form the current max-

imal antichain, and the corresponding node partition or meta-

nodes are represented in orange on the axes. The arity of the

tree is defined as an upper bound on the number of children

found in the tree and the depth of the tree is the maximal dis-

tance between a node and the root.

Detail & filter. A first approach is to define drill-down on a

meta-node as a filtering operation. Here the context corresponds

to all tuples not covered by the drilled node and is removed from

all meta-nodes and meta-edges. This corresponds to computing

the next quotient graph over the filtered clique-graph that only

contains the cliques for the tuples covered by the drilled node.

A the same time, the drilled node is replaced by its children in

the maximal antichain. Figure 9a presents an example on two

axes. The drilled node, circled, covers three tuples therefore

only these three tuples are aggregated after drill-down. Notice

that on the left axis only the children of the drilled-node remain

while on the right axis, one node was removed and the subset of

tuples covered by the two others changed. This method effec-

tively bounds the number of aggregates on an axis: throughout

drill-down, each axis displays no more nodes than those ini-
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(a) Detail & filter. The clique of the tuples not covered by the drilled node are filtered out:

the drilled abstraction corresponds to three cliques.

(b) Budgeted detail. The top three nodes are automatically rolled-up (in red) due to the

budget being exhausted by the three children of the drilled node.

(c) Dynamic context aggregation detail. Nodes from the maximal antichain that are the

deepest in the hierarchy are called focus nodes (in orange). Other nodes from the maximal

antichain are merged into context meta-nodes (in red).

Figure 9: Examples of the three drill-down strategies applied to 2-dimensional

data. The clique graph and its hierarchies are represented in black. On both

sides, the current maximal antichain is shadowed in gray and the correspond-

ing meta-nodes are represented as shadowed regions over their covered leaves.

Meta-edge are not represented. On the left, denotes the drilled node.

tially presented or the arity of the hierarchy. In turn, this bounds

the number of meta-edges which offers a guarantee on the size

of the transferred data for this operation and others. The com-

putational and transfer costs of the operation are the same as the

cost of a meta-node selection, i. e. a selection of the set of tuples

covered by the drilled node. The limit of this approach is that

context information is removed from all subplots at once to ac-

count for the change of displayed tuples and thus preserve the

coherence of the plot. Since the resulting abstraction is com-

puted on less tuples, the weights of the displayed meta-nodes

are updates and thus their visual properties as well. For in-

stance, on Figure 9a, the nodes remaining on the right axis after

the operation have changed cardinality and extrema which may

change the size and position of their visual items. A drawback

of this approach is that the whole plot undergoes visual changes

which may be unpredictable on all axes other than the one of the

drilled node and therefore difficult to apprehend.

Budgeted detail. A second approach lies in constraining the

definition of maximal antichains such that their size complies

with a predefined budget. Indeed, the size of the current an-

tichain relates to the number of meta-nodes of the quotient graph

and therefore the number of aggregates transferred and dis-

played. With this approach, drilling potentially implies modi-

fying the current maximal antichain in multiple points such that

previously acquired detail automatically collapses for new de-

tail to be added when the budget would have been exceeded

otherwise. For instance, Figure 9b present an example with a

budget of 6 nodes per axis. Before drill-down the left and right

axes respectively display 6 and 5 nodes. Without automatic

roll-up, the left axis would display 8 nodes after drill-down on

the circled node. To meet the budget, the three top nodes are

rolled-up, resulting in 6 nodes on the left axis. The right axis

remain unchanged. If these changes are restricted to a single

dimension hierarchy, the visual changes only affect one or two

subplots, which addresses the limitation of the detail & filter

method. Computing these subplots costs a pass over all tuples

for each subplot, in addition to the cost of finding a suitable

maximal antichain. To achieve item-level detail, the current

maximal antichain should contain at least one leaf. The mini-

mal budget allowing to define such maximal antichain depends

on the arity and depth of the tree. In a k-ary tree with n leaves

and depth h, a maximal antichain containing at least one leaf

and being minimal in size can have between h and k · h nodes.

Considering the example of binary trees which nodes all have

either 0 or 2 children, the minimum depth is ⌈log2(n)⌉+ 1 and

the maximum depth is n. Consequently, a visual budget al-

lowing gaining detail up to the leaf level has to be chosen with

respect to the depth of the hierarchy. For instance, on Figure 9b,

the budget has to be at least 5 to display item-level detail on any

leaf of the left and right dimensions. Since this depth can reach

orders of magnitude same as the number of tuples in general,

budgeted detail does not scale without strong constraints on the

properties of the hierarchy.

Dynamic context aggregation. An alternative solution to col-

lapsing nodes when focusing on deeper nodes is to aggregate

them dynamically. The nodes from the chosen antichain that

are not in focus are displayed aggregated which lowers their

impact on the visual item budget. In general, these aggregates

do not correspond to existing nodes in the hierarchy. For in-

stance, on Figure 9, the bottom context node does not directly

correspond to a single node in the hierarchy, but to two. With

an additional constraint on the arity of dimension hierarchies,

this approach enables drill-down up to the deepest level while

complying with a visual budget. Indeed, with f foci per axis

and a k-ary hierarchy, an axis hold at most f − 1 context nodes

and fk focus nodes, i. e. non-context nodes.

4.3. Hierarchy edition: split and merge operations

Relying on a predefined or precomputed hierarchy to ex-

plore the data presets how items are grouped together at a cer-

tain level of detail. To address this limitation, editing tool can

be provided to the user The split and merge operations aim at

modifying the current partition of the tuples. They provide the

user with a manner of correcting the flaws of the automatically

computed hierarchical structure, propose a structure that better

reflect the similarities of the values, and more generally, per-

sisting any desired change in the hierarchy. Similarly to drill-

down and roll-up, the immediate change on the view is a coars-

ening or refinement of the meta-nodes on an axis (and conse-
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quently meta-edges). However, while drill-down and roll-up are

merely navigation operations, split and merge are also editing

operations which adds another computing step to the operation.

Additionally to the computation of the incremental change in

meta-nodes and meta-edges needed to update the view, the hi-

erarchy has to be edited to persist the change on the server-side.

Changes in the hierarchy may affect large subtrees which can

be computationally expensive. In practice, the cost of editing

the hierarchy on the back-end is implementation-dependent. In

many cases, it is possible to compute the changes necessary to

update the view first, and delay the computation of structural

changes in the hierarchy such that the interaction delay only

reflect the cost of the former computing step.

Split refers to the substitution of a node of the hierarchy

with several new others. In general, substituting a node in the

hierarchy induces changes in the structure of the subtree it is the

root of. Merge refers to the substitution of two or more nodes

with a single one. In general, merge is less expensive than split

since the incremental changes may be computed directly over

the current aggregates rather than the whole data, if the aggre-

gate functions are associative. For both cases, the size of the in-

cremental changes necessary to update the view depends on the

number of newly introduced nodes and the current number of

meta-nodes on the neighboring axes. For r the number of sub-

stitute nodes (r = 1 with merge) and k the maximum number of

meta-nodes on the neighboring axes, the number of meta-edges

to transfer is O(r · k). We present several designs for the split

and merge operations and describe their cost regarding hierar-

chy edition and more precisely tree edge edits. In our model, hi-

erarchy leaves correspond to nodes in the clique-graph and thus

are weighted by a value. In each dimension hierarchy, the order

of these values induces an order of the leaves and a level-order

on each node of the hierarchy, i. e. nodes of the same depth are

ordered. Figure 10 and Figure 11 illustrate each version of the

presented operations. Trees are drawn with all leaves aligned to

emphasize this order. We first describe three strategies for the

split operation, from the most expressive to the least.

Recluster into r. The most general manner of splitting a node is

to divide it into a chosen number r of nodes. In the general case,

the whole subtree of the split node has to be replaced to split the

node into r nodes while preserving the rest of the hierarchy tree

structure (see Figure 10a). This can be done for instance by

running a hierarchical algorithm on the set of the leaves cov-

ered by the split node. The drawback of this approach is that

obtaining a meaningful hierarchical clustering most likely has

a high computational cost for large subtrees, not manageable

during interactions. At least, the operation costs a traversal of

the r subtrees obtained.

Cut at value x. A second manner to split a meta-node is to re-

place it by two nodes which subtrees respectively cover values

higher and lower than a certain value x that belong to the inter-

val covered by the split meta-node. We say a node of the tree

covers an interval [a, b] when a and b are the extrema of the val-

ues for the leaves it covers. Leaves cover degenerate intervals,

i. e. consisting of a single value. To cut a meta-node m at x, we

(a) Split into r nodes.

(b) Split at value.

(c) Split into children.

Figure 10: Example of the three split strategies applied on one node of the

hierarchy. On the left, denotes the split node and on the right it denotes its

substitutes. In blue: tree nodes and edges that were modified by the split. In

gray: an example of maximal antichain under which the split can be applied.

start by splitting m into two nodes m− and m+ and proceed to

recursively split each of its descendants that covers an interval

including x. The process starts with the children of m. Children

of m that covers values higher (resp. lower) than x are assigned

to m+ (resp. m−). In the worst case (and considering that all

leaves of the same value have the same parent), there is only

one child of m that covers an interval including x. In that case,

that node has to be split as was m and the same process is ap-

plied to its children. Supposing the traversed tree is k-ary with

depth h. At most, h nodes are split, which amounts to O(kh)
edge edits, one for each child of a split node.

Replace by children partition. A third manner to split a meta-

node is to replace it by a partition of its children. Conceptually,

this corresponds to at most adding the same number of children

the split node has. For a k-ary tree, it amounts to editing the

O(k) edges to connect the new nodes to their parents and O(k)
edges to reassign the original children to the nodes replacing the

split node. This strategy is the least expensive of the three. In

its effect, this operation is closely related to the drill-down op-

eration, without the reduction of context. Figure 10c illustrates

the case when a node is replaced by its children. Depending

on how the tree is stored, this may imply passing over as many

tuples as the split node covers.

We then detail strategies for the merge operation. Two nodes

can be merged only if they cover two consecutive sets of leaves,

i. e. if no leaf is positioned between the two sets. If we merge

two of these nodes, non-siblings, into a single one without fur-

ther changes to the structure of the tree, we end up with the

resulting node having two parents. We first describe the sim-

ple operation of merging siblings and then present two more

general strategies.
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(a) Merge siblings.

(b) Merge into.

(c) Merge ancestors.

Figure 11: Examples of the two merge strategies applied on pairs of node of a

dimension hierarchy. On the left, denotes the merged nodes and on the right

it denotes their substitute. In blue: tree nodes and edges that were modified by

the merge. In gray: an example of maximal antichain under which the merge

can be applied.

Merge siblings. Merging two siblings is straightforward: it con-

sists in merging the two nodes and reassigning the children of

the two merged nodes to the resulting node (see Figure 11a).

This amount to O(k) edge edits for a k-ary tree.

Merge into another. A first solution for merging non-siblings

nodes is to merge one node into the other. It amounts to re-

assigning the children of the node merged into the other, thus

O(k) for a k-ary tree. If the two nodes have not the same depth,

then the resulting tree may be deeper or flatter than the orig-

inal one. This strategy has the advantage of introducing lim-

ited changes in the structure, however it is not commutative

(see Figure 11b) and it may not be straightforward to choose

in which way to apply it when only presented with the current

tree cut. Put it another way, choosing the way in which to apply

the merge is a matter of choosing which of the two chains of

ancestors the user which to keep for the children of the merged

nodes. This decision is not straightforward when the structure

of these ancestors are not displayed. Note that merging siblings

can be seen as a particular case of this operation.

Merge ancestors. A second solution for merging non-siblings

nodes is to merge their ancestors i. e. the chain of nodes from

their parent to the tree root. In practice, the two nodes may

share some ancestors, therefore, ancestors are only merged from

their parent to their deepest common ancestor. Contrary to the

previous strategy, this operation is commutative. In the partic-

ular case where the two nodes to merge have the same depth,

the number of pairs of ancestors to merge is the same (see top

example of Figure 11c). In the general case, the deepest of the

two nodes to merge contributes new levels of ancestors to the

children of the other. This results in the tree being deepen (see

bottom example of Figure 11c). This operation is the opposite

of the cut-at-value operation: the cost of merging ancestry de-

pends on the depth of the tree. For a k-ary tree of depth h,

at most h pairs of ancestors are merged. This corresponds to

O(kh) edge edits, one for each child of a merged node. Note

that merging siblings can be seen as a particular case of this

operation as well.

4.4. Tuple selection

In general, selection consists in highlighting a part of the tu-

ples across the whole plot as illustrated on Figure 1e. On an ab-

stract representation, since all tuples do not necessarily map to a

single visual element, a selection of tuples may be represented

by gauges on visual aggregates (meta-nodes and meta-edges)

that map to the percentage of selected tuples among their cov-

ered tuples. With hierarchical navigation, a dimension could

represent nodes from different levels of the hierarchy, includ-

ing tuple-level nodes, i. e. leaves, that represent a single item or

items sharing the same values for that dimension.

A selection of m tuples corresponds to computing the quo-

tient graph of the subgraph induced by the nodes of these tu-

ples’ cliques. In practice it requires going through m tuples per

subplot to compute their contribution to the current meta-edge

and meta-node weights (step 3 on Figure 8). The size of the

transferred data, the result, is at most of the same order as the

whole abstraction, i. e. O(sk2) meta-edges for s the number of

different subplots and k the maximum number of meta-nodes

per axis.

5. Scalable System with Focus+Context Representation

Our goal is to enable hierarchical exploration in abstract

parallel coordinates while complying with the following scal-

ing properties. On the representation-side, exploration should

be possible down to the item level, in a top-down manner, while

the number of visual items on display should be limited for

any size of input data. On the processing-side, network trans-

fer latency between the displaying unit and the computing unit

should be controlled throughout interactions. In this section, we

present a prototype client/server system through three aspects:

(1) the conceptual choices that address perceptual scalability

and bounded data transfer, (2) the corresponding focus+context

representation, and (3) server-side implementation details. In
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the proposed system, the client is the visualization endpoint and

the server is an interface to an on-demand computing and pre-

processing back-end. The interactions supported by this proto-

type are axis reordering, aggregate selection, node drill-down

and roll-up.

5.1. Conceptual choices and bounds

Conceptual choices arise from requirements of the visual

representation and from the network transfer bottleneck. First,

the targeted visual representation expects meta-nodes of each

axis to represent non-overlapping interval of values. Secondly,

bounding visual items is essential for perceptual scalability but

also ensures that data transfer between our rendering client and

back-end unit remains bounded in size thus predictable in time.

To this end, we introduce three constraints (C1, C2 and C3) on

the hierarchy structure and the drill-down operation.

Hierarchy constraints. We use a user-defined k value that acts

as a resolution parameter, bounding the number of visual items

per displayed axis. This parameter is enforced as the maximal

arity of dimension hierarchies, meaning that internal nodes of

dimension hierarchies should have between 2 and k children

(C1). A k-ary tree can theoretically have its depth in O(n) (de-

generate tree), however, we expect the hierarchy to be more

compact with h ≪ n, where h is the depth of the tree (C2).

Additionally, the order of leaves of each dimension hierarchy

should follow the order of their value such that every defined

node partition is also an interval partition for each dimension

(C3). This property ensures that visual node are drawn without

overlap. Binning (equal range partitioning) and adaptive bin-

ning (equal size partitioning) are examples of partitioning al-

gorithms that can be applied in a bottom-up fashion to produce

hierarchies complying with these requirements. To bound the

number of nodes of each quotient graph, we adopt the dynamic

context aggregation strategy (cf section 4.2) for drill-down.

Drill-down operation. We define as focus nodes, the nodes

that have the maximal depth in the current antichain. The rest

of the antichain nodes from one dimension are aggregated into

the minimal number of context nodes such that their order is

preserved (see Figure 9c). In the proposed implementation,

the top-level nodes are initially presented as focus nodes and

each drill-down triggers a dynamic aggregation of other nodes.

Without consideration for split and merge operations, it means

that all focus nodes are necessarily siblings. Consequently,

there is no more than k focus nodes and two context nodes at

once per axis. Thus, the number of nodes on display is bounded

by k+2 per axis and the number of edges by (k+2)2 per sub-

plot. Since focus nodes are necessary siblings, the number of

focus states of a hierarchy is its number of internal (i. e. non-

leaf) nodes.

5.2. Focus+Context representation and interaction

We propose a focus+context view extending the represen-

tation presented by Sansen et al. [11]. This representation in-

cluded two visual encodings: one oriented towards the distri-

bution of tuples, the other towards the distribution of values

(a) Initial view. The seven nodes from the framed axis are in focus.

(b) View after drill-down on 1 . The framed axis has five focus nodes and two context

nodes, each with one level block.

(c) View after drill-down on 2 . The framed axis has six focus nodes and two context

nodes. The upper context node has two level blocks and the bottom one has one level

block.

Figure 12: Focus+context representation. Example of successive drill-down

operation on the same axis. Clicking on 1 in state A leads to state B. Clicking

on 2 on state B leads to state C. The tree on the right illustrates part of the

dimension hierarchy of the framed axis with the current antichain in gray. It is

represented here for explanation purpose but is not part of the visualization.

themselves. Basically, the first encoding linearly maps aggre-

gate height to their cardinality, while the second maps it to their

covered interval size (distance between extrema). In both en-

codings, we use width to mark a visual node as context or focus:

context nodes are displayed with slightly lower width to empha-

size focus nodes and mimic a fisheye effect (see Figure 12b). As

regions of interest are refined by successive drill-down, focus

nodes tend to cover increasingly small interval and increasingly

fewer tuples. To ensure focus nodes remain visible throughout

drill-down despite their covered region being smaller relative to

the whole, node height is rendered with a different scaling fac-

tors for context and focus nodes. This produce a distortion in

the way node height is mapped and makes the design scalable.

Figure 12 presents an example of two consecutive drill-down on

the same axis of a representation where node height relates to

cardinality. Notice on Figure 12b that the focus nodes approx-

imately occupies 80% of the vertical space while their parent

node, annotated 1 , occupies roughly 25% of the vertical space

on Figure 12a, the parent state.

Context nodes are augmented by a stack of level blocks

that summarizes the number of drill-down operations (see Fig-

ure 12). The wider these blocks are, the lower in the hierarchy

are the nodes they represent. Notice on Figure 12c, the differ-

ence in width of the level blocks on the upper context node: the
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inner block is wider since it corresponds to nodes closer to the

focus nodes in the hierarchy. The height and vertical order of

level blocks follow the same encoding as those of focus nodes.

Level blocks are computed on the client side and thus not trans-

ferred nor counted in the visual item budget.

In drilling mode, focus nodes and level blocks are clickable.

Clicking on a focus node triggers its animated expansion which

split it into its children and merges its siblings into level blocks.

Level blocks represent an aggregation of nodes previously in

focus, thus they enable going back to this precise previous state.

For instance, on Figure 12 clicking on the purple bottom level

block in state C or B takes the user to state A.

5.3. Implementation details

The implemented system supports moving axes, selecting

nodes and edges, drilling-down by selecting a focus node and

rolling-up by clicking on a context part. The back-end was

implemented both in a distributed environment for a Hadoop

cluster and as a multi-threaded application for single machines

(desktop computer or dedicated server). It runs on-the-fly com-

putation. Past a certain number of input records (for a given

number of dimensions and resolution parameter), a distributed

platform should be more efficient while facilitating load expan-

sion (see subsection 6.2).

The client is a WebGL application that displays the repre-

sentation, computes level blocks and context aggregation on

drill-down, and queries the supporting back-end for other in-

teractions. The back-end server is a long-lived Spark [36] ap-

plication which runs distributed job on demand while keeping

prepared data in memory. It computes dimension hierarchies in

an initialization step and stores the resulting node weights (ex-

trema and cardinality) in a HBase distributed database. The

hierarchies result from a hierarchical clustering computed in

a bottom-up manner using an adaptation of Canopy cluster-

ing [37] on each column of the input data. The memberships

of each input data value are stored in a hierarchy matrix of the

same size as the input data, where each value holds the list of

computed ancestors for the matching input data value. This ma-

trix is kept in memory and split among computing units which

will pass over their slice of the data to filter and aggregate re-

sults on demand. Upon user interaction and if necessary, the

client requests the server which in turn runs a distributed opera-

tion and merges the partial results returned by computing units.

All server responses correspond to an abstraction or parts of an

abstraction. As such, they amount to a bounded number of float

values. Finally, the client receives the incremental changes in

plain text and updates the view consequently.

6. Use Case & Performance Evaluation

To validate the proposed implementations, we first present

a use case showing the application of the focus+context rep-

resentation and hierarchical navigation to a real-world dataset.

Secondly, we present a performance evaluation of the server-

side component using synthetic data.

6.1. Use Case

The 1990 US Census dataset from the UCI Machine Learn-

ing Repository [38] is a 1%-sample of the Public Use Micro-

data Samples person records drawn from the full 1990 census.

The whole dataset has 125 attributes and about 2.5 millions

records corresponding to individuals from the sample. Individ-

uals have various attributes: most are binary flags (e. g. Worked

in 1989, Language Other Than English), others are categorical

(e. g. Place of Birth), ordinal (e. g. Ability to Speak English) or

numerical (e. g. Age). An appendix gives hierarchies for sev-

eral categorical attributes. To be able to exemplify the hierar-

chical interaction and focus+context representation, we mainly

focused on numerical attributes and categorical attributes have

hierarchies provided. We looked at the entire set of individu-

als and selected the 8 following individual attributes: country

of birth (POB), work environment/field (INDUSTRY), job title

(OCCUPY), AGE, SEX, number of children (FERTIL), and the

poverty level (POVERTY).

In this study, we looked into the relationship between dif-

ferent job titles and environment (based on the OCCUPY and

INDUSTRY attributes) and other individual characteristics fol-

lowing the analysis previously carried out by Vosough et al. [16]

on the same dataset. Figure 13 presents the initial view: the

POB, INDUSTRY, and OCCUPY attributes are clustered follow-

ing the provided hierarchies. SEX and FERTIL are flat cate-

gorical attributes with FERTIL having 14 values ordered from

bottom to top. The AGE and POVERTY are numerical attributes,

hierarchically clustered so that each hierarchy node has 15 chil-

dren. The initial view presents an overview of the distribution

of dimension values and the the relationship between dimen-

sions, with the height of nodes and thickness of edges convey-

ing the number of covered individuals. It immediately shows

that most individuals were born in the United States and that

the sample seems to have about the same number of individu-

als in each sex and age category. It also directly shows that the

FERTIL attribute only has values for female individuals since

no link connect the male node to FERTIL node other than the

one labeled n/a.

On Figure 14, we drilled-down on the three first axes to fo-

cus on individuals born in the United States, and holding man-

agerial and professional specialty occupations in manufactur-

ing. The categories just under the focused nodes in the hierar-

chies are depicted vertically enlarged compared to the rest of

the nodes that are consequently shrunk on the sides in addition

to being merged together. This distortion renders the links be-

tween nodes of these axes discernible, although they correspond

to only a small number of individuals of the whole dataset. In

particular, it allows to select the link corresponding to individ-

uals having professional specialty occupations in manufactur-

ing of durable goods which corresponds to 11215 individuals

(0.46%). From a certain level of detail, selected groups of in-

dividuals may be too small compared to other levels of detail

for the portion of covered individuals to be readable and com-

parable. In that case, hovering over nodes and edges allows

to access the numerical information. Here, the resulting view

shows that the selected individuals are 16 years old and older,
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Figure 13: Initial view of the 1990 US census data for 2.5 millions individuals.

Figure 14: View following 3 drill-down operations on: the ”United States” (POB), ”Manufacturing” (Industry) and ”Managerial and professional specialty

occupations” (OCCUPY).

Figure 15: Selection of the individuals having professional specialty positions in manufacturing of durable goods. Hovering over the female node indicates that

about 16% of these individuals are female.

Figure 16: Selection of the individuals being engineers positions in manufacturing of durable goods. Hovering over the female node indicates that about 8% of these

individuals are female.
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Figure 17: Selection of women working as engineers in durable good manufacturing.

which is expected for any selection of work position, and are

primarily male since only 16% are female (see Figure 15).

After further drilling-down in the OCCUPY hierarchy, we

selected the individuals working as engineers in manufactur-

ing of durable goods which corresponds to 7255 individuals

(0.30%), 7.64% of which are female. From the selection, we

see that these individuals generally do not have many children

(see Figure 16). By comparing Figure 15 and Figure 16, we

also see that while some women had over 6 children among in-

dividuals working in the more general category of professional

specialty occupations, in the engineer category, no woman has

more than 6 children.

To refine the previous observations, we queried the inter-

section of the previously selected link (durable goods manufac-

turing and engineers) with the female node of the SEX axis.

On the resulting view, presented on Figure 17, it appeared that

most women working as engineers in durable good manufac-

turing have between 21 and 34 years old, and half of them do

not have children. The small portion of women in this line of

work is also apparent from the thickness of the shading of the

edge for manufacturing durable goods and engineers. By com-

paring this view with the previous one, we can also see that, this

work categories includes male individuals older than all female

individuals.

The advantage of pushing context aside instead of filtering

it is show on Figure 15), where the navigation depth is repre-

sented on the three first axes by their one-level context nodes.

Context node and out-coming edges also provide information,

although in reduced form, during selection. For instance, on

Figure 16 and still on Figure 17, we see that the sample hold

individuals – women – working as engineer on manufacturing

of durable goods who were born outside the United State.

6.2. Performance evaluation

Since we are interested in supporting ”n ≫ d” datasets, we

measure the execution times of the implemented operations for

varying number of tuples n. The primary goal is to confirm that

we observe a linear increase in computation time as the work-

load increases. To demonstrate the scalability of the distributed

implementation, we also evaluate performance relative to the

resources allocated for computation.

We performed tests for two different implementations: a

multi-threaded single-computer implementation and a distributed

implementation. The distributed implementation has the form

of a long-lived Spark application running on a cluster of 15

computers. The parallel implementation is a C++/OpenMP ap-

plication running on a high-end laptop computer. Each node

of the distributed platform has 64GB RAM and 2x6 hyper-

threaded cores at 2.10GHz each, connected via a 1Gbit/s net-

work. The single computer used for running the multi-threaded

implementation has 4 hyper-threaded cores at 2.7GHz and 32GB

RAM. Test datasets are generated for varying n (from 104 to

109), with d = 15 and k = 32. Test datasets are generated such

that pairs of dimensions present a close to null correlation fac-

tor [39] which tends to create close to the maximum number

of edges between dimensions. Dimension hierarchies are gen-

erated using Canopy clustering [37] applied in a bottom-up

manner. For all experiments, time measurements for execution

are averaged over 1000 runs. For each type of operation, the

most expensive operation is timed, i. e. the one that aggregates

the largest number of tuples.

Execution time for two implementations

We first compare the execution time between the two im-

plementations (distributed and parallel) for the four types of

operations (selection of edge, of node, drill-down and roll-up)

for varying size n of the generated dataset. Figure 18 shows

the mean execution time and standard deviation for these ex-

periments. Overall, for the four experiments, for n less than ap-

proximately 106, the distributed implementation underperforms

the parallel implementation despite having more resources. We

also note that, up until n = 108 the four operations run under 1s

for the distributed implementation with the 15 executors used in

these experiments. We remark that under n = 2·108 (about 108

aggregated tuples), the performances of the distributed imple-

mentation are stable despite the increasing workload. Up until

this limit, they also display very high variation, especially for

the two selection operations. Along the two curves for execu-

tion, we plotted the number of aggregated tuples for each opera-

tion (with its values on the right axis). The curve for the number

of aggregated tuples has a distinctive stairs shape which brings

out the fact that the parallel implementation seems to scale lin-

early with respect to the number of aggregated tuples. We find

the same trend for the distributed implementation past n = 108.

Due to the hierarchy constraints and the bottom-up approach

for clustering, the number of nodes on the top-level varies and

the cardinality of the largest nodes does not increase linearly

with n. This can explain the stairs-shaped curve for the num-
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(a) Meta-node selection.
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(b) Meta-edge selection.
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(c) Drill-down.
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(d) Roll-up.

Figure 18: Execution times of different operations relative to the size of the

dataset in number of tuples (n). Experimental results are averaged over 1000
runs on two implementations: distributed and parallel. The distributed version

uses 15 executors. Errors bars are not symmetrical due to the log-log scale.

ber of aggregated tuples relative to n. The stability of the dis-

tributed implementation performances for the smallest datasets

is not surprising and suggests that execution time for these datasets

is dominated by costs related to network and disk I/O, or by

merging all executor results by the driver unit. Indeed, the

cost of merging results remains approximately the same as it

is a function of the output size and the number of tasks running

in parallel. Therefore, unless other assets are considered, it is

preferable to use a classical implementation for datasets smaller

than about 106 tuples since there is no efficiency gain in using

the distributed infrastructure. An asset of the distributed infras-

tructure that may be considered is resilience. The high vari-

ation observed in the distributed execution time for the small

datasets compared to larger ones may be explained by garbage

collection: when the allocated memory is oversized, garbage

collection incurs a substantial delay when triggered. Another

explanation is that these variations are due to variations in net-

work and disk I/O since computation time is dominated by their

costs at these scales. The output of selection operations is larger

than those of drill-down/roll-up operation, and consequently,

the data transferred between the executors and the driver dur-

ing the reduction step is also larger. This would explain why

selection computations present more variation than the others.

Scalability of the distributed implementation
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(c) Drill-down.
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(d) Roll-up.

Figure 19: Scalability test for the distributed implementation with n = 2 · 108

and the number of executors varying from 2 to 14. Executors each have 12

cores and 31GB memory.

We then investigate the scalability of the distributed system

using a dataset larger of n = 2 · 108, that is a size for which

execution time is not dominated by a fixed cost. One goal of

our system is to limit interactive operations to linear complexity
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Figure 20: Comparison of the mean execution time between operations relative

to the number of aggregated tuples for the distributed implementation.

such that we fully benefit from the scalability of the distributed

infrastructure. Therefore, we expect experimental results to be

close to linear speedup (ideal). The speedup of execution is

said linear when the execution time is halved when the number

of executors is doubled. Figure 19 presents the mean execution

time and standard deviation for the distributed implementation

of four operations on a 2 · 108-tuple dataset with varying num-

bers of executors. The plotted ideal execution time corresponds

to a linear speedup derived from the execution time using two

executors. Overall, the results show that the system performs

close to the ideal. Selection operations perform slightly worst,

probably because their output is larger in size which implies

more network transfer between executors and a more expensive

merge between executor results.

Comparison between operations

Finally, we look at the execution time for the four opera-

tions with respect to the number of aggregated tuples. Figure 20

show the curves for the four operations for the distributed im-

plementation. Above 107 aggregates tuples, the measures split

into two groups: selection operations on one side and drill-

down/roll-up on the other side. Although they follow the same

trend, selection operations are more expensive by a significant

factor. This relates to the fact that drill-down and roll-up cor-

respond to changes on one dimension and therefore affect one

or two subplots. Selections operations, however, affect all sub-

plots at once and thus are more computationally expensive by

a constant factor related to the number of axes on display. In

our experiments, the representation displayed 15 different axes

which correspond to 14 different subplots. If we were to imple-

ment edit operations, we expect the performances of the compu-

tation of incremental changes for merge and split to be similar

to those of drill-down and roll-up for the same reason.

6.3. Predefined hierarchies and resolution parameter k

In this work, we aimed to design a system such that a strict

upper bound on the number of visual items was guaranteed

throughout interactions. This upper bound depends on a param-

eter k, that is chosen before exploration and used to initialize

the precomputed hierarchy such that it is a k-ary tree. Precom-

puting a hierarchy has the advantages of providing a structure

over which the user can navigate from the start; however, it is

also limiting. By introducing hierarchical edition interactions

to remedy this limit, we essentially allow the user to modify

the arity of the hierarchy and therefore the upper bound on the

number of visual items and therefore transferred data over the

network upon interaction. At a certain point in exploration, this

limit still exists but depends on the arity k′ of the edited hierar-

chy. We can assume that, through interactions, the user changes

the arity without necessarily changing its order of magnitude.

In fact, even at the initialization, the effective arity of the hier-

archy may be lower than k, depending on the used clustering

algorithm, the approach (bottom-up or top-down) and the data.

What is the most important, is not to guarantee a sharp bound

on the number of visual items but rather to ensure that the arity

of the hierarchy remains much less than n by several orders of

magnitude.

7. Conclusion

We have presented a graph-based formalism for hierarchical

aggregation on multidimensional data for parallel-coordinate

representations. This conceptual model formalizes hierarchical

aggregation over multidimensional data at the value level. This

approach treats all dimensions equivalently which matches the

way dimensions are handled in parallel coordinates. Moreover,

we have shown that two types of aggregation used in previous

work can be expressed with this model (tuple aggregation and

1D aggregation). The model closely corresponds to the repre-

sentation and is useful for devising other abstractions and envi-

sioning their interactions. In particular, we used the model to

evaluate the number of visual elements transiting between the

computing and rendering components of the system through in-

teractions. We also presented several design possibilities for

hierarchy navigation and edition.

The second contribution is a scalable system for visually

exploring multidimensional data with a interactive multiscale

parallel coordinates. The system uses a focus+context repre-

sentation that allows displaying arbitrary detailed focus regions

on each axis while maintaining a bounded number of visual

items on display. The strength of this approach is that it sup-

ports exploration down to the item-level while ensuring percep-

tual scalability which also addresses the limiting lack of nav-

igation of the previous system by Sansen et al. [11]. On the

client-side, we proposed to use a focus+context view relying

on distortion to ensure perceptual scalability. Focus nodes are

expanded from the hierarchies and context regions are summa-

rized and presented with simple navigation cues. One focus of

the design is the bounded data transfer between the comput-

ing back-end and the visualization client. This bound relies on

(1) a resolution parameter k, of small orders of magnitude, that

bounds the hierarchy’s arity and (2) a focus+context approach.

A second focus of the design is that all operations have a lin-

ear computing complexity relative to the number of tuples to

process. Experimental results demonstrate the scalability of the

system relative to the size of the input data and to the resources

allocated for computation. The results suggest that the proposed

system can support increasingly large datasets by expanding its
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network of computing units. To a certain extent, adding com-

puting resources can also reduce interaction latencies.

A first direction of future work would be the evaluation of

hierarchical parallel coordinates and its drill-down interaction

from a user performance point of view. To do so, it would

be necessary to measure user performance with different res-

olution parameters. Indeed, theoretically, the higher k is, the

more information is displayed on the screen at the same time

which should improve user performance. At the same time, we

can also expect more latencies for higher k which could lead to

worse user performance. With smaller k, interactions should be

faster but it requires more user input to access an information,

e. g. more drill-down to reach a certain level, and there would

be less information on screen in general.

Secondly, methods for latency reduction other than horizon-

tal scaling could be developed. A first possibility is using space

as a trade-off for computation time as it was used by Sansen et

al. [11]. The number of possible meta-edges makes their to-

tal precomputation unfeasible and less relevant if the hierarchy

can be interactively edited. However, partial precomputation

could be investigated: either beforehand or as a background

process targeting meta-edges that are the most likely to be re-

quested given the current state. The resulting precomputation

would most likely need to be updated after hierarchy edition

interactions. A second possibility is to consider switching the

computation model to a progressive model following the type

of system proposed by Moritz et al. [40].

Regarding the graph-based formalism, the model could be

further generalized to incorporate other aggregations: 2D-subspace

aggregation like presented by Novotný and Hauser [9] or di-

mension aggregation like presented by Andrews et al. [25] and

Lex et al. [26]. Another direction would be to leverage exist-

ing work on graph mining for envisioning new interactions, for

instance a selection interaction based on motif detection. Re-

garding the prototype system, we could implement the differ-

ent strategies for split and merge and evaluate their usability in

a user study.
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