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Interaction Prediction Problems in Link Streams

Thibaud Arnoux, Lionel Tabourier and Matthieu Latapy

1 Introduction

Analyzing interactions over time plays a key role in many contexts: recommender
systems (who buys which product and when), contacts between individuals (mes-
sage exchanges, physical proximity or phone calls, for instance), and transaction
analysis (like money or data transfers) are typical examples. As a consequence,
much effort is devoted to the analysis of such data with approaches like temporal
networks, time-varying graphs or link streams [4, 2, 6].

Predicting future interactions is a crucial question in all these contexts, but the
problem is traditionally addressed by merging interactions into a graph or series of
graphs, called snapshots [7, 9, 12]. This has the key advantage of building a bridge
with the powerful formalism and tools of graph theory, but at the cost of important
information losses. More importantly, we argue that this approach misses interesting
variants of the problem itself.

The goal of this chapter is to deepen our understanding of these interaction pre-
diction problems. To do so, we formalize them within the link stream framework,
which makes it possible to fully capture both the temporal and structural nature of
data. This leads to several meaningful problem definitions, that raise quite different
challenges, as well as relations between them and classical approaches.

We focus here on problem definitions and comparisons; resolving some of them
has already received attention [5, 3, 1] but unifying them into the same framework
leads to a better understanding of the whole and the identification of new variants of
interest. We also show that this helps to identify general approaches to tackle them.

Throughout this chapter, we assume a standard approach for solving prediction
problems. First, one designs a model in order to make a prediction based on the fun-
damental assumption that future behaviors can be predicted from past observations.
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Then, parameters of the model are learned from past data, using an optimization
process which aims at maximizing the prediction quality. Therefore, each prediction
problem demands several ingredients, among which a quality estimator, features to
describe past data and a model to combine these features.

We first introduce the data modeling with link streams,which is the framework
that we choose to address the interaction prediction problems. Afterward we present
the prediction problems themselves, classified with respect to their ambition in the
prediction task and we also discuss the subtle question of prediction evaluation.
Finally, we propose a general direction for solving these problems using what we
call pairwise likeliness functions.

2 Link stream modeling of interactions

We use here the instantaneous link stream formalism presented in [6], which is a
special case of stream graphs where nodes are always present and links have no
duration. Such a link stream L is defined as a triplet (T,V,E) where T = [α,ω]⊆R
is a time interval, V is the set of nodes under concern and E ⊆ T ×V ⊗V is a set of
links: (t,uv) ∈ E means that u et v interacted at time t. We consider here undirected
interactions between pairs of distinct nodes u and v, which we denote by uv∈V⊗V .
We assume that E is finite: it contains a finite number of interactions, each occurring
between two distinct nodes at a specific time instant. We illustrate this modeling in
Figure 1. Extending our work to more general cases is left for future work.
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Fig. 1 An example of undirected instantaneous link stream like the ones con-
sidered in this chapter: L = (T,V,E) with T = [0,8], V = {a,b,c,d} and E =
{(0,ab),(1,bd),(2,ac),(3,bc),(5,ac),(5,cd),(7,bd),(8,ab)}.

Such a link stream L = (T,V,E) naturally induces a graph G = (V,E ′) defined
by E ′ = {uv : ∃t,(t,uv) ∈ E}: it is the graph in which two nodes of V are linked
together if they interacted at some time in T . Dually, the link stream induces a time
series (`t)t∈T defined by `t = |{uv : (t,uv) ∈ E}|: `t is the number of interactions
occurring at time t.
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In this context, the classical link prediction problem in graphs consists in pre-
dicting from G the links that will appear in the future, and the classical time series
prediction problem consists in predicting from (`t)t∈T the number of interactions
that will appear in the future. Our aim here is to draw benefit from L to predict
richer information on future interactions. Depending on the targeted information,
this leads to several, quite different problems, that we detail in the next section.

3 Prediction problems and evaluation

Throughout the rest of this chapter, we assume that the set of nodes V remains
unchanged, in other words nodes do not appear nor disappear. All the prediction
problems that we consider start with an input stream Li = (Ti,V,Ei) with Ti = [αi,ωi]
and Ei ⊆ Ti×V ⊗V . A prediction is related to an output stream Lo = (To,V,Eo)
with To = [αo,ωo] and Eo ⊆ To×V ⊗V . The time interval To is called the prediction
period. Interactions actually occur during this period; we model them as the actual
stream La = (Ta,V,Ea) with Ta = To and Ea ⊆ Ta×V ⊗V . In addition, we always
assume here that ωi ≤ αo; in other words we focus on predicting future interactions.
Within this framework, the prediction is considered as good if the properties of Lo
are similar to those of La.

3.1 Predicting all interactions

3.1.1 Description

Predicting all interactions of all pairs in the actual stream may be the most ambitious
formulation of the problem. It means that we aim at predicting each appearing link,
i.e. predicting the stream La. We represent in Figure 2 the situation corresponding
to a given prediction.

3.1.2 Quality evaluation

To evaluate the quality of such a prediction, a measurement of the distance between
La and Lo is necessary. For a given pair of nodes, the series of actual or predicted
interactions between them comes down to a set of points in Ta = To. Consequently,
one may use a distance between two sets of points to evaluate the distance between
the streams, and thus the prediction quality.

Among possible choices, let us mention the nearest point distance: the distance
from a point x∈ X to the set Y is the distance from x to the closest point in Y , and the
distance from X to Y is the sum of the distances of each x ∈ X to Y . Though simple,
this measurement is not formally a distance as it is not symmetric. Therefore, we
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Fig. 2 Top: schematic representation of the input stream Li and the corresponding actual stream
La. Bottom: schematic representation of the input stream Li and the corresponding output stream
Lo. The problem of predicting each interaction leads to comparing La to Lo.

may use instead the spike train distance proposed by Victor and Purpura [14], which
was originally designed to evaluate how different two neuronal impulse trains are.
We suggest to define the distance between link streams as

D(Lo,La) = ∑
uv∈V⊗V

Duv(Lo,La)

where Duv(Lo,La) is the spike train distance between the points representing the in-
teractions between u and v in Lo and La. Duv(Lo,La) is defined as the minimal cost
to transform one set of points into the other with elementary steps: either deleting,
adding points or moving points along the time axis. Finally, D(Lo,La) can be un-
derstood as the minimal cost to transform Lo into La with these elementary steps.
When attributing a fixed cost to the addition and deletion steps, it is a metric distance
(see [14] for more details). To give the reader a more precise idea of the meaning of
this distance without diving in too much technical details, we represent in Figure 3
an example of minimal cost transformation of a set of time points into another.
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Fig. 3 Minimal cost transformation of a set of time points X into another Y : the first step is
deleting a point from X (cost = fixed penalty), the other steps consist in translating points along the
time axis (cost = translation time distance).

3.2 Predicting the next interaction for each pair of nodes

3.2.1 Description

A less constrained version of the former prediction task consists in predicting only
the next interaction for each pair of nodes (if it exists). Indeed, in many contexts an
experimenter is mostly interested in the moment when the next interaction occurs,
as represented in Figure 4. For example, when predicting interactions in order to
spread an information through a network, the experimenter is interested in knowing
when the next interaction happens to spread the message as soon as possible. This
task has the advantage to circumvent the difficult prediction of the number of links
per pair of nodes.

In this case, the output of the prediction is not a stream, but the next occurrence
time for each pair uv ∈ V ⊗V . In order to include the case where there is no in-
teraction between u and v during the time interval of prediction To, a legitimate
definition for the object predicted is the set {tuv

o }uv∈V⊗V , with tuv
o ∈ [αo,ωo]∪{∞},

with tuv
o = ∞ meaning that we predict no interaction for uv.

3.2.2 Quality evaluation

In terms of quality evaluation, we should quantify the difference between the sets
To = {tuv

o }uv∈V⊗V predicted and Ta = {tuv
a }uv∈V⊗V actually occurring. Point set

distances such as the ones proposed in the previous task can be used here too, and
they are simpler with this prediction task, considering the fact that we take into
account at most one interaction for each stream.

We denote d a distance function between two points in time. Then a possible
distance which can be seen as an equivalent of the spike train distance in this simpler
case is

D(Ta,To) = ∑
uv∈V⊗V

d(tuv
a , tuv

o ) = ∑
uv∈V⊗V

min(|tuv
a − tuv

o |, p)
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Fig. 4 Top: schematic representation of the input stream Li and the corresponding actual set of
next occurrence times {tuv

a }uv. Bottom: schematic representation of the input stream Li and the
corresponding output set of next occurrence times {tuv

o }uv. The problem of predicting the next
interaction for each pair of nodes leads to comparing {tuv

a }uv to {tuv
o }uv.

Using d(tuv
a , tuv

o ) = min(|tuv
a − tuv

o |, p) means that the distance between tuv
a and tuv

o is
either the delay between these interaction times, or a predefined penalty p if there
is no interaction between u and v in La and we predicted one in Lo (and vice versa).
Thus it is similar to the addition/deletion cost of the spike train distance mentioned
in Sec. 3.1. Here again, this quality evaluation is a simple and natural choice from
our point of view, but other choices are available.

With this evaluation, the distance depends linearly on the time gap between a
predicted link and a link observed in the actual stream. However, a user might con-
sider that a linear dependence is not appropriate to describe the problem accurately
and that other functions might be more relevant. In Figure 5, we represent the case
of a sigmoid-like distance function of the time gap. This distance function is com-
plementary to a similarity function s(x,y) such that d(x,y) = 1− s(x,y) with y < x,
which is represented on the figure.

According to the evaluation method described above, we interpret the quality
of the prediction using a notion of temporal distance between two events. Another
possible interpretation of this evaluation method consists in using the vocabulary of
classification tasks, as what is done in the case of link prediction problems. Indeed,
if a link uv is observed in the actual stream at instant tuv

a while it is not predicted yet,
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Fig. 5 Representation of the level of similarity between a predicted and an actual link, and its inter-
pretation in terms of true and false positive prediction. In the situation represented, the interaction
is predicted at instant to, which occurs before the actual interaction at ta, the prediction is thus both
a true positive and a false positive to a certain extent. This extent is computed by a sigmoid-like
similarity function.

it can be interpreted as an equivalent of a false negative. Conversely, a link which is
predicted while it is not observed yet is a false positive.

Of course, a link almost never occurs at the exact time when it has been predicted.
Consequently, it is desirable not to use a 0/1 notion of false positive or false negative,
but rather a score in the interval [0,1] which accounts for how close or how far we
are from an exact prediction. That is what the similarity function s defined above
does. To describe in more details the parallel between the classification-based to the
distance-based interpretations, s(tuv

a , tuv
o ) with tuv

a > tuv
o quantifies the similarity, i.e.

the degree of correctness of the prediction, while 1−s(tuv
a , tuv

o ) represents the degree
of error as a false positive FP does. If tuv

o > tuv
a , 1− s(tuv

o , tuv
a ) rather represents the

degree of error as a false negative FN prediction does. The degree of correctness can
be mapped to the notion of true positive TP, which is consistent with the fact that
s(tuv

a , tuv
o ) = 1 when the link has been predicted exactly at the right time. Using this

framework of interpretation, an unpredicted link is equivalent to a link predicted
at tuv

o = ∞, and similarly a non-occurring link is equivalent to a link occurring at
tuv
a = ∞.

It should be noted that TP, FP, FN are usually boolean values which are defined
unambiguously, while here the result depends on the choice of the distance function
d. Besides that, true negative (TN) predictions do not have any obvious equivalent
using temporal distances. However, it is enlightening to interpret the prediction with
both the vocabulary of classification and temporal distances.
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3.3 Predicting the number of interactions for each pair of nodes

3.3.1 Description

Rather than predicting if and when each pair interacts, another relevant task consists
in predicting how many times each pair interacts in a given period. It is less ambi-
tious than the previous tasks, in the sense that we do not request to predict the exact
time of links occurrence. In this case, the temporal precision of the prediction only
depends on the duration of the output stream, and as it can be adjusted in the predic-
tion protocol, we can tune how precise the prediction is in regards to the temporal
dimension.

To formalize more precisely the prediction task, we define the notion of activity
of a pair of nodes uv in the stream L = (T,V,E) as A uv = |{(t,uv) ∈ E}|. In this
context, our goal is that for any uv∈V ⊗V , A uv

o =A uv
a . Note that the activity quan-

tifies the multiplicity of interactions between two nodes, so it is often represented
by the weight of a link in the graph formalism.

3.3.2 Quality evaluation and relation to the link prediction problem

In this case, distance measures such as the train spike distance cannot be used di-
rectly, as we do not predict interaction times. This task is actually closer to a more
usual link prediction task on a graph snapshot, where the snapshot length corre-
sponds to the duration of the actual stream, and we can draw advantage from that.
We design quality estimators in the same spirit as what has been done in Sec. 3.2.2,
by defining equivalents to TP, FN or FP predictions.

As FP correspond to events that do not happen but are predicted, it is legitimate
to translate this idea as the difference between the number of predicted links and
the number of actual links if the former is larger than the later. Similarly, FN cor-
respond to events which occur but are not predicted, so it translates to the opposite
difference if there are more actual links than there are predicted links. TP are the
events which occur and are predicted so it is equivalent to the minimum between
these two activities. Formally: |T Puv|= min(A uv

a ,A uv
o )

|FPuv|= max(A uv
o −A uv

a ,0)
|FNuv|= max(A uv

a −A uv
o ,0)

These definitions are illustrated in Figure 6.
The definitions of true positive, false positive and false negative proposed here

satisfy usual relationships concerning these indicators: |T Puv|+ |FPuv| is the num-
ber of predicted interactions, |T Puv|+ |FNuv| is the number of interactions between
u and v in the actual stream.

Then, we denote |T P|, (resp. |FN|, |FP|) the total number of true positive (resp.
false negative, false positive) in the stream:
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Fig. 6 Illustrations of the three possible cases (A uv
a > A uv

o , A uv
a = A uv

o and A uv
a < A uv

o ) of the
interpretations of TP, FN or FP in the context of the prediction of the number of interactions for
each pair of nodes.

 |T P|= ∑uv∈V⊗V |T Puv|
|FN|= ∑uv∈V⊗V |FNuv|
|FP|= ∑uv∈V⊗V |FPuv|

We can thus define accordingly useful quantities to evaluate the quality of a pre-
diction:

- precision: |T P|
|T P|+|FP| , which represents the fraction of good predictions among the

total number of predictions,
- recall: |T P|

|T P|+|FN| , which represents the fraction of events detected among the total
number of events which can be detected,

- F1-score, which is the harmonic mean of the precision and recall, that is to say
F1 = 2 · precision·recall

precision+recall .

Using this interpretation, a good prediction can be considered for example as a pre-
diction that maximizes the F1-score, as it reflects a compromise between precision
and recall. Nevertheless, we do not define any equivalent to a true negative predic-
tion and to the total number of negative predictions in general. It makes us unable to
define equivalents of other classification estimators (fall-out, specificity, ROC curve,
etc.).

As stated previously, this problem relates to the weighted link prediction prob-
lem: given a weighted graph representing the number of interactions between each
pair of nodes, predict the future weight. Related problems exist in the link predic-
tion literature. For instance, some authors have proposed to divide links into two
families: new links and recurring links, and then make two separate predictions for
each family [13]. Besides that, our task can also be related to the matrix completion
problem, which is usually considered with boolean adjacency matrices in the con-
text of link prediction (see for example [10]) but can be generalized to matrices with
positive values. Powerful as they may be, these approaches leave in the shadow the
fundamentally temporal nature of the data, which our formulation of the problem
tries to grasp.
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3.4 Predicting the existence of interaction(s) for each pair of nodes

Finally, a natural problem is predicting if a pair interacts at least once in the ac-
tual stream. Another way of formulating this task using the activity defined in Sec-
tion 3.3, could be to predict for all pairs of nodes if they reach an activity of 1 during
the prediction period. An interesting point concerning this prediction task is that it is
actually similar to the classical link prediction problem: the prediction task comes to
predicting the structure of the actual graph Ga = (V,E ′a) aggregated from La, where
uv is in E ′a if there is at least one (t,uv) in La. The main difference is that the link
stream formalism stresses the fact that both structural and temporal information can
be used as features to improve the prediction quality. Such information has already
been used in the literature in order to achieve link prediction tasks, but in a more
classical framework (see e.g., [8, 9]).

In terms of evaluation, link prediction tasks have been widely studied as binary
classification tasks, and thus one makes use of the evaluators usually employed for
such issues (precision, recall, F-scores, ROC curve, etc.).

4 Pairwise likeliness functions for prediction tasks

From now on, we suppose that the prediction problem and its evaluation method
are set, and we focus on the prediction model. We present in this section a possi-
ble way to address these prediction problems taking into account the fact that the
data contains structural and temporal information. Consequently, the features of the
stream that we use for prediction should be described in a way that can reflect both
structural and temporal properties.

The overall approach is the following. First, we compute pairwise likeliness func-
tions using properties of the input stream Li. Pairwise likeliness functions are de-
signed to reflect when we expect a pair of nodes to interact during the period To.
The prediction model relies on these pairwise likeliness functions: one would train
the parameters of the model by maximizing the quality of the prediction on a learn-
ing stream, La using the vocabulary defined in Section 3. After this learning phase,
the model can be used for prediction.

4.1 Pairwise likeliness functions

In order to represent a feature of the input stream on which the prediction is based,
we use a function f uv(t) which represents the likeliness for a link uv to occur at time
t. An interesting aspect of this approach is that it gathers in a same formalism both
temporal and structural (and potentially hybrid) features. We call such functions
pairwise likeliness functions.
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4.1.1 Illustration

To set the reader’s mind, we illustrate this notion using three examples. Let us con-
sider the following features:

1) a structural feature often used in link prediction problems: the number of common
neighbors shared by two nodes,

2) a temporal feature based on the assumption that there is some regularity in the
temporal patterns of interaction between two nodes, that we call regularity,

3) another temporal feature which is used to reflect the fact that there are episodes
of bursty activity of interactions, the burstiness.

For these examples, we suggest possible definitions of the corresponding pair-
wise likeliness functions. These definitions are based on common sense, but other
possibilities would make sense. Our goal here is to show that this formalism is ver-
satile.

1) Concerning the number of common neighbors, the pairwise likeliness function
is a constant (independent from time), which is simply the number of common
neighbors itself

f uv
CN(t) = |{w : ∃ (t1,uw),(t2,wv) ∈ Ei}|

2) Regularity is defined using the interaction times between u and v during the input
stream. Supposing that the links are approximately regularly spaced, a consistent
shape for the likeliness function could be a sinusoidal function, as sketched in
Figure 7. The corresponding definition is

f uv
reg(t) =

1
2
+

1
2

cos
(

2π(t− t`)
〈τ〉

)
where t` denotes the last interaction time of uv in Li and 〈τ〉 the average interac-
tion time during Ti.

u

v

uv
f

reg

Fig. 7 Representation of a sinusoidal regularity-based likeliness function. Bottom: input stream.
Top: corresponding regularity-based likeliness function computed from the input.

3) Finally concerning burstiness, we consider that if a train of interactions (that is
to say more than two interactions) has begun less than a time δ ago, then there is
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an increased probability of interaction during the next δ duration, as represented
in Figure 8. The corresponding definition is

f uv
burst(t) =

{
1 if t ∈ [0;δ ] and | {(t,uv) ∈ Ei with t ∈ [−δ ;0]} |> 2
0 else.

u

v

uv
f
burst

δ

Fig. 8 Representation of a rectangular burstiness-based likeliness function. Bottom: input stream.
Top: corresponding burstiness-based likeliness function computed from the input.

4.1.2 Combining pairwise likeliness functions

In order to achieve the prediction itself, we now define a prediction model based
on pairwise likeliness functions. We combine these functions into F uv(t), the com-
bined pairwise likeliness function. Again, there are many possible ways to achieve
this combination, we propose to use a linear combination as an illustration of the
approach:

F uv(t) = aCN · f uv
CN(t)+areg · f uv

reg(t)+aburst · f uv
burst(t)

In this framework, the coefficients represent the weight given to the different fea-
tures in the combination. On the examples of the three pairwise functions previously
defined, the combination for one pair uv is represented graphically in Figure 9.

4.2 Combined pairwise likeliness functions for prediction tasks

Now that, for each pair of nodes, we have a function representing the likeliness of an
interaction during the prediction period, we discuss how this function can be used
to achieve the prediction tasks formerly presented.

We have seen in Section 3 that there are two different kinds of tasks: On the
one hand, predicting the appearance of one or several links, that is to say predicting
precisely the triplets (t,uv) (tasks 1 and 2); on the other hand, predicting the number
of links which occur during a given period of time (tasks 3 and 4). We discuss these
two families of prediction tasks separately.
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Fig. 9 Illustration of a combined pairwise likeliness function for a pair of nodes uv, based on the
linear combination of fCN , freg and fburst .

4.2.1 Predicting one or several link occurrences

Given a pair of nodes, the goal is to predict what are the occurrence times – if any –
of interactions between these nodes. A natural way could be to detect the local max-
imum of the combined likeliness function. In this case, the problem seems to map
to detecting peaks in a function equivalent to a time-series. A given point of a time
series is said to be a peak if the associated value is larger than a specified threshold.
Peak detection is an active area of research, and techniques could be derived from
this field (see for example [11]). A problem is that such methods aim at identifying
points which stand out from their neighbors in the times series, while here a user
would rather consider that a long plateau should correspond to the existence of one
or even several interactions. In other words, the problem is not exactly equivalent to
the intuition of a peak detection method. It may be closer to the burst detection prob-
lem (e.g, [15]): one looks for a time-window during which the aggregated signal is
larger than a user-specified threshold. However, burst detection usually focuses on
locating a period of high activity, rather than a precise point in time. Both tasks are
thus not identical in that case too.

In any case, there should be additional criteria to consider if a peak is significant
enough to justify the prediction of an interaction. One way of doing so is to define
an area under the curve around the peak, and the peak is considered significant
if this area is larger than a threshold, as schematically represented on Figure 10.
Formally, if a peak has been detected at time τ , the criterion of significance would
be
∫

τ+δ

τ−δ
F uv(t)dt ≥Θ , where Θ is the significance threshold of the area around the

peak, and δ characterizes the width defining the area under the curve around the
peak. The choices of δ and Θ are obviously critical for the prediction task, as it will
largely influence the number of links in the predicted stream. The parameters of any
method should thus be carefully chosen based on the input stream.

Note that predicting only the next interaction does not alleviate the problem of
peak significance mentioned above and also calls for non-trivial choices to decide if
a peak is significant enough to justify the existence of an interaction.
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Fig. 10 Illustration of a criterion to select significant peaks: the areas colored are the area under
F uv centered on a local maximum and of width 2δ . Areas in blue are larger than a threshold Θ ,
while areas in brown are smaller than Θ .

Another issue should be mentioned when several link occurrences are predicted.
Interactions are not independent from each other, meaning that if an interaction is
predicted at time t, it should affect the probability for an interaction to occur at any
time t ′ > t. This issue is simply ignored when the problem is managed as a peak de-
tection problem, which is another limitation to this technique. To address the issue,
it is possible to predict interactions sequentially, first considering the next occur-
rence, then assuming it does happen in order to predict the next one, etc. However,
other difficulties appear when tackling the problem along these lines, one of which
being the accumulation of prediction errors throughout the process.

4.2.2 Predicting the number of interactions over a given period

When considering the prediction of a number of links during a given period, one
would certainly use the likeliness functions differently. As we no longer predict the
interaction occurrence times, it is not necessary to detect the peaks of the likeliness
function.

The area under the likeliness function curve represents the likeliness for a link to
appear over the whole prediction period. Therefore, one could consider that this area
should be related to the number of interactions actually occurring during that period.
So, supposing that we are able to predict efficiently the total number of interactions
in the prediction stream, it is possible to predict the number of links for any pair uv
by allocating links to pairs of nodes proportionally to the area under the likeliness
function curve. In short, a relevant relation for predicting the activity of a pair uv
over the prediction period To = Ta = [αo,ωo] is to consider that

A uv
o =C ·

∫
ωo

αo

F uv(t)dt

where C is a constant fixed by the total number of interactions in the output stream.
As predicting this number is a classical time-series prediction task, we have in our
hands the tools to achieve the prediction of the number of links for any pair of nodes
in the stream during a given period.
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5 Conclusion

In this chapter, we have formulated the problem of predicting interactions in a link
stream, which can be seen as a generalization of the link prediction problem in a
network when the temporal dimension of the data is taken into account, or dually, as
the generalization of a time series prediction, when there is a network-like structure
supporting the various time-series.

We have seen that the most general problems, predicting exactly the moments
when two nodes in the stream will interact with each other, is certainly a difficult
task to achieve – as could be expected. But we have also proposed different, more
humble tasks, which seem simpler to address as they are closer to more classical
prediction problems, namely the link prediction task in a graph. Precisely, the task
of predicting the number of links which appear during a given period of time seems
promising. Indeed, it allows to use evaluation metrics which can be interpreted to
a certain extent using the vocabulary of classification tasks, and we presented a
possible way to tackle this prediction using features of the input stream that would
account for its structural and temporal characteristics.

We do not develop in this chapter the details of the technical implementation of
this method. However, an interested reader can go to [1] for a more comprehensive
view of an implementation on contact networks, which suggests that there are indeed
good prospects (and still a lot to do) on these prediction tasks.
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