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Abstract: Mammalian protein N-glycosylation requires the transfer of an oligosaccharide containing 2
residues of N-acetylglucosamine, 9 residues of mannose and 3 residues of glucose (Glc3Man9 GlcNAc2)
from Glc3Man9GlcNAc2-diphospho (PP)-dolichol (DLO) onto proteins in the endoplasmic reticulum
(ER). Under some pathophysiological conditions, DLO biosynthesis is perturbed, and truncated DLO is
hydrolyzed to yield oligosaccharyl phosphates (OSP) via unidentified mechanisms. DLO diphosphatase
activity (DLODP) was described in vitro, but its characterization is hampered by a lack of convenient
non-radioactive substrates. Our objective was to develop a fluorescence-based assay for DLO
hydrolysis. Using a vancomycin-based solid-phase extraction procedure coupled with thin layer
chromatography (TLC) and mass spectrometry, we demonstrate that mouse liver membrane extracts
hydrolyze fluorescent bacterial lipid II (LII: GlcNAc-MurNAc(dansyl-pentapeptide)-PP-undecaprenol)
to yield GlcNAc-MurNAc(dansyl-pentapeptide)-P (GM5P). GM5P production by solubilized liver
microsomal proteins shows similar biochemical characteristics to those reported for human
hepatocellular carcinoma HepG2 cell DLODP activity. To conclude, we show, for the first time,
hydrolysis of lipid II by a eukaryotic enzyme. As LII and DLO are hydrolyzed by the same,
or closely related, enzymes, fluorescent lipid II analogs are convenient non-radioactive substrates for
investigating DLODP and DLODP-like activities.

Keywords: protein N-glycosylation; lipid-linked oligosaccharide; congenital disorders of
glycosylation; endoplasmic reticulum; peptidoglycan biosynthesis
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1. Introduction

In mammals, protein N-glycosylation is essential for life [1,2], and, in the human population,
mutations in genes required for this process underlie a group of rare inherited metabolic diseases called
congenital disorders of glycosylation (CDG) [3,4]. As shown in Figure 1, N-glycosylation is initiated in
the endoplasmic reticulum (ER) by the sequential addition of monosaccharides to dolichyl-phosphate
(DP) to yield mature Glc3Man9GlcNAc2-PP-dolichol (DLO) [5,6].
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Figure 1. The dolichol cycle, N-glycan biosynthesis, and the production of oligosaccharylphosphates
in congenital disorders of glycosylation. Dolichyl phosphate (left) is glycosylated on the cytoplasmic
face of the ER to yield Man5GlcNAc2-PP-dolichol which is flipped into the ER and further elongated
to yield mature Glc3Man9GlcNAc2-PP-dolichol (DLO; blue arrows). Gene names of the proteins
required for some of the major steps are indicated next to the blue arrows. Oligosaccharyltransferase
(OST) transfers the oligosaccharide of mature DLO onto nascent polypeptides (N-X-S/T). In some
congenital disorders of glycosylation where genes of the dolichol cycle are mutated, increased amounts
of cytoplasmic oligosaccharyl phosphates (OSP), indicated by red arrows, are detected. By way of
example, in ALG12-CDG [7] the Alg12p mannosyltransferase that adds the eighth mannose residue
to the growing DLO is defective, and both a truncated DLO and an OSP containing seven residues
of mannose accumulate [8]. Furthermore, and not shown here, in both PMM2-CDG, in which
phosphomannomutase encoded by the PMM2 gene is deficient, and glucose starvation, nucleotide
sugars required by glycosyltransferases of the dolichol cycle are limiting, and truncated DLO and the
corresponding OSP are observed [8–10].

The oligosaccharide moiety is transferred from the lipid carrier onto protein in the lumen of the ER
by oligosaccharyltransferase (OST). In certain types of CDG, mutations in the genes required for DLO
biosynthesis and transfer of the oligosaccharide onto proteins lead to insufficient DLO production and
glycoprotein hypoglycosylation [11]. The mechanisms that regulate DLO biosynthesis in either normal
cells or cells from these CDG patients are poorly understood, but DLO hydrolysis, yielding either
dolichyl-diphosphate (DPP) or DP, and either free oligosaccharides (fOS) or oligosaccharyl phosphates
(OSP), respectively, could potentially play a role in the control of DLO quality and/or quantity.
Mature DLO is hydrolyzed by OST to give rise to fOS in the lumen of the ER, whereas truncated DLO
intermediates (Man7-0GlcNAc2-PP-dolichol), which are seen in cells from patients with certain subtypes
of CDG [8,9], and during glucose starvation of normal cells [10], are hydrolyzed to yield cytoplasmic
OSP (Figure 1). The molecular machineries involved in OSP generation are yet to be identified at the
molecular level. Membranes prepared from Saccharomyces cerevisiae possess a Ca2+/Mn2+-activated OSP
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generating activity [12], whereas a Co2+-activated oligosaccharyl diphosphodolichol diphosphatase
(EC 3.6.1.44, DLO diphosphatase (DLODP)) was found in mammalian tissues and cells [13]. The mouse
liver DLODP involves microsomal activity that, after centrifugation in density gradients, distributes
similarly to an enzyme of the Golgi apparatus (GA) and differently to key, ER-situated enzymes involved
in DLO biosynthesis [13]. Whether or not this activity is responsible for OSP generation seen in cells from
CDG patients remains to be determined. Definitive identification of the physiological role of this activity
is hampered because tools to study OSP generation both in vivo and in vitro do not exist. At present,
the only assays for DLODP activities rely on radioactive DLO substrates [12,13] or HPLC/fluorimetry
of dephosphorylated OSP after pre-column derivatization [10]. Due to environmental, expense, and
time issues, these assays are not appropriate for high-throughput applications such as setting up
genetic screens or monitoring column effluent. Our recent data demonstrate that lipid II, the precursor
required for bacterial peptidoglycan biosynthesis [14], inhibits the Co2+-dependent generation of
[3H]OSP from [3H]DLO [15] by human hepatocellular carcinoma HepG2 cell extracts. These data
suggested that bacterial lipid II might be a potential in vitro substrate for DLODP and that dansylated
lipid II analogs have the potential to be used as fluorescent substrates for the assay of mammalian and
yeast DLODP activities.

In the present study, a simple procedure for measuring the cleavage of fluorescent bacterial lipid II
is described, and hydrolysis of GlcNAcβ1,4MurNAc (dansyl pentapeptide)-PP-undecaprenol, to yield
GlcNAcβ1,4MurNAc(dansyl pentapeptide)-P, by mammalian microsomal proteins, is demonstrated.
The biochemical characteristics of these reactions are similar to those displayed by the reactions
required for [3H]OSP generation from [3H]DLO.

2. Results

2.1. Generation of Vancomycin Affinity Beads for Solid-Phase Extraction of d-Ala–d-Ala-
Containing Compounds

Our previous results demonstrated that bacterial lipid II inhibits the cleavage of [3H]DLO by
microsomal DLODP [15], suggesting that bacterial lipids and their analogs may themselves be DLODP
substrates. In order to examine the potential cleavage of bacterial lipid II by DLODP, we used fluorescent
dansylated bacterial lipid II analogs (see Section 4). Direct analysis of reaction mixtures by thin-layer
chromatography (TLC) for potential DLODP reaction products was difficult due to interference by
buffer components. Therefore, we chose to isolate substrates and potential products from components
of the incubation mixtures using vancomycin affinity beads as a solid-phase extraction (SPE) matrix
(Figure 2).
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Figure 2. DLO diphosphatase (DLODP) assay strategy involving capture of lipid II and its potential
hydrolysis products on vancomycin–Sepharose affinity beads. It is hypothesized that the previously
described Co2+-dependent DLODP activity can hydrolyze dansylated bacterial lipid II to yield
undecaprenyl phosphate and GlcNAcβ1,4MurNAc(dansylpentapeptide)-P (GM5P). Both lipid II and
the expected hydrolysis product contain a d-Ala–d-Ala motif that binds to vancomycin and could
potentially be purified from reaction mixtures using solid-phase extraction with vancomycin covalently
linked to Sepharose beads (Vm-Seph).
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Vancomycin is a glycopeptide antibiotic with high affinity for the d-Ala–d-Ala motif of
peptidoglycan, peptidoglycan fragments, and bacterial lipids I and II [16–18]. Vancomycin, immobilized
on 5-Carboxypentyl-Sepharose 4B N-hydroxysuccinimide ester (CH-Sepharose), was used to purify
water-soluble peptidoglycan fragments [19], but there are no reports of the use of this technique to
extract bacterial LI or LII. CH-Sepharose is no longer commercially available; thus, vancomycin was
immobilized using N-hydroxysuccinimide (NHS)-Sepharose as described in Section 4. Next, lipid II
was taken up in different concentrations of detergent and incubated with Sepharose-linked vancomycin
(Vm-beads) for 1 h at room temperature. The Vm-beads were then washed with the solutions shown
in the upper panel of Figure 3A.
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Figure 3. (A) Solid-phase extraction of lipid II and uridinyl diphospho (UDP)-MurNAc pentapeptide
(UDPM5) from detergent-containing mixtures. (B) 500 pmol LII(Lys)55 (upper panel) or UDPM5
(lower panel) was incubated with Vm-beads in Vm wash buffer containing the indicated amounts
of nonyl phenoxypolyethoxylethanol (NP-40). The beads were then washed with the indicated
solutions and fractions were collected into 96-well plates and monitored for fluorescence. (B, upper
panel) 500 pmol LII(Lys)55 was incubated with Vm-beads in the presence of 1.5 µmol (3000-fold
excess over lipid II and ~50-fold excess over vancomycin attached to beads) acetyl-Lys-D-Ala-D-Ala
(Ac-KDADA). (B, lower panel) 500 pmol LII(Lys)55 was incubated in either the absence or presence of
colicin M as described in Section 4. The reaction mixtures were subjected to solid-phase extraction as
described above.

When the binding and buffer wash steps were carried out in either 0.2% or 0.02% nonyl
phenoxypolyethoxylethanol (NP-40), a fluorescent compound was eluted from the beads with
MeOH containing 15 mM NH4OH, which, after TLC (not shown), was shown to correspond to
lipid II. When 2.0% NP-40 was used during the binding and buffer wash steps, a reduced recovery
of lipid II in the MeOH/NH4OH eluate, concomitant with higher fluorescence associated with the
column run-through fractions, was observed. The binding of water-soluble uridinyl diphospho
(UDP)-MurNAc pentapeptide (UDPM5; see Section 4, Table 1) to Vm-beads was much less sensitive
to detergent, and this water-soluble compound was eluted using 15 mM NH4OH (Figure 3A, lower
panel). Lipid II does not bind to Tris-blocked NHS-Sepharose beads (S.M. and L.J., unpublished
observations). Data shown in the upper panel of Figure 3B demonstrate that binding of lipid II
to Vm-beads is blocked by acetyl-Lys–d-Ala–d-Ala, confirming that the lipid binds to Vm-beads
via its d-Ala–d-Ala moiety. Therefore, in the presence of 0.02% NP-40, both UDPM5 and lipid II
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bind to Vm-beads and, subsequent to washing the beads with H2O, the water-soluble and lipophilic
compounds can be recovered in the 15 mM NH4OH and 15 mM NH4OH/MeOH eluates, respectively.
Finally, colicin M, which cleaves bacterial lipids I and II to yield undecaprenol and the water-soluble
fragments MurNAc(pentapeptide)-PP (M5PP) and GlcNAcβ1,4MurNAc(pentapeptide)-PP (GM5PP),
respectively [20], was used to test the utility of the SPE procedure. As expected, incubation of lipid II
(Figure 3B, lower panel) with colicin M promoted a reduction of fluorescence associated with the 15 mM
NH4OH/MeOH eluate and an increase in fluorescence associated with the 15 mM NH4OH eluate.

2.2. Bacterial Lipid II is Hydrolyzed by Mouse Liver Microsomal Proteins to Yield
GlcNAcβ1,4MurNAc(pentapeptide)-P

Next, lipid II was incubated with solubilized mouse liver microsomal proteins, in either the
absence or presence of ethylenediaminetetraacetic acid (EDTA), for 0, 2, and 16 h at 37 ◦C. After SPE,
fluorescence associated with the 15 mM NH4OH and 15 mM NH4OH/MeOH eluates was measured,
as shown in Figure 4A.
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incubated with detergent-solubilized rat liver microsomal proteins, as described in Section 4, for the
indicated times in either the absence or presence of 10 mM ethylenediaminetetraacetic acid (EDTA).
After solid-phase extraction (SPE) using Vm-beads as described for Figure 1, the fluorescence values
associated with the fractions eluted with 15 mM NH4OH in methanol (left panel) and 15 mM NH4OH
in H2O (right panel) were summed. (B) LII(DAP)55 (500 pmol) was incubated as described above for
the indicated times in the absence of EDTA. After SPE using Vm-beads, the 15 mM NH4OH/methanol
and 15 mM NH4OH/H2O eluates were dried down and analyzed by thin-layer chromatography (TLC)
as described in Section 4. The migration positions of LII(DAP)55 (LII) and uridine diphospho MurNAc
pentapetide (UDPM5) are shown. The components a and b are discussed in the text.

A time-dependent, EDTA-sensitive decrease in fluorescence associated with 15 mM
NH4OH/MeOH eluate was accompanied by a time-dependent, EDTA-sensitive increase in fluorescence
associated with the 15 mM NH4OH eluate. TLC analysis of the fluorescent compounds recovered after
SPE of similar incubations, in which LII(DAP)55 was incubated in the absence of EDTA, is shown in
Figure 4B. A decrease in LII in the 15 mM NH4OH/MeOH eluates was accompanied by an increase in
the compound, a, recovered in the 15 mM NH4OH/H2O eluates. A compound with the same mobility
as a was also detected when LII(Lys)55 was used as substrate (S.M. and L.J., unpublished observations).
Whatever the substrate used, small amounts of a slower migrating compound, b, were observed.
This compound, which was detected maximally in the zero time points, appeared to be quite stable
during prolonged incubations (Figure 4B). Next, in order to identify a, material recovered in the 15 mM
NH4OH/H2O eluate from an SPE-extracted 16-h incubation of LII with rat liver microsomal protein
was analyzed by mass spectrometry in negative ion mode as shown in Figure 5.
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Figure 5. Characterization of Lipid II digestion products by mass spectrometry. Five reaction mixtures,
each containing 500 pmol LII(DAP)35 and 27.2 µg rat liver microsomal protein, were incubated for 16 h
as described in Section 4. After SPE with Vm-beads, the 15 mM NH4OH/H2O eluates were dried under
vacuum and taken up in 25 µL of H2O. This material was directly infused, via a nano-electrospray ion
source, into an Orbitrap Fusion mass spectrometer. The spectrum obtained in negative ion mode and
the expected digestion product (GM5P) are represented.

The major signal (z = 1, 1322.4431) is compatible (mass error: 2.90 ppm) with the presence of
GlcNAcβ1,4MurNAc(pentapeptide)-P (GM5P, Figure 5 inset). The observed isotopolog distribution
of this component (upper panel of Figure S1, Supplementary Materials) is similar to the theoretical
isotopolog distribution (lower panel of Figure S1, Supplementary Materials) that was calculated for
GM5P [21]. Signals compatible with the presence of either GlcNAcβ1,4MurNAc(pentapeptide)-PP or
GlcNAcβ1,4MurNAc-pentapeptide were not detected (Figure 5). In addition, signals corresponding
to compounds missing the residue of N-acetylglucosamine (M5PP, M5P, and M5) were not detected
(Figure 5). Finally, in order to obtain more structural information about the compound that gave rise to
the major signal in Figure 4, MS/MS was performed as shown in Figure 6.Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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Figure 6. Characterization of Lipid II digestion products by mass spectrometry. The MS/MS spectrum
acquired in negative mode and in an ion trap was generated as described in Section 4. Signals compatible
with fragments generated from GM5P are indicated. Losses (m/z = −18) or adducts (m/z = +18) of H2O
molecules are indicated in the spectrum. The symbols used are defined in Figure 2.
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The detection of masses corresponding to losses of phosphate, HexNAc, alanine, and glutamic
acid moieties is consistent with the parent compound being GM5P (Figure 5). To conclude, the major
product recovered from incubations of LII with rat liver microsomal protein was GM5P.

2.3. Bacterial Lipid I and Short-Chain Lipid II Analogs Are Also Hydrolyzed by Liver Microsomal Proteins

Bacterial lipid I (LI) is the biosynthetic precursor of LII and does not possess the terminal
non-reducing N-acetylglucosamine (GlcNAc) residue of the latter compound. In order to determine
whether or not this residue is required for LII hydrolysis by solubilized rat liver microsomal protein,
LI digestion products were analyzed by TLC. As shown in Figure 7A (left fluorogram), the migration
positions of MurNAc(pentapeptide)-PP (M5PP) and MurNAc pentapeptide (M5) were established
after digestion of LI with colicin M and hydrolysis of standard M5P with 20 mM HCl, respectively.
The fluorogram on the right of Figure 7A shows that the major compound recovered from the 15 mM
NH4OH eluate, after SPE of an incubation of LI with liver microsomal protein, co-migrates with
standard M5P. These data demonstrate that solubilized rat liver microsomal protein cleaves bacterial
LI to produce M5P, and that the presence of the terminal non-reducing GlcNAc residue is not essential
for LII hydrolysis by solubilized rat liver microsomal protein. Next, the capacity of the microsomal
preparation to hydrolyze a lipid II analog with a short polyprenol chain, LII(DAP)35 (see Table 1), was
tested. The fluorograms shown in Figure 7B show that the short-chain lipid II analog is cleaved to yield
GM5P, and that the rate of cleavage is similar to that noted for the longer chain, C55 analog, shown in
Figure 3B.Molecules 2019, 24, x FOR PEER REVIEW 8 of 14 
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Figure 7. Lipid I and a short-chain LII analog are also hydrolyzed by rat liver microsomal protein. (A) LI
(500 pmol) was digested with colicin M as described in Section 4, and 100 pmol MurNAc(pentapeptide)-P
was treated (M5P/HCl), or not (M5P), with 20 mM HCl for 45 min at 100 ◦C. After SPE extraction, the
15 mM NH4OH eluates were dried and analyzed by TLC (left fluorogram). LI (500 pmol) was digested
with detergent-solubilized rat liver microsomal proteins (27.2 µg), as described in Section 4, for 16 h.
After SPE, the 15 mM NH4OH eluates were dried under vacuum and analyzed by TLC (DLODP, right
fluorogram). The migration positions of lipid I, MurNAc pentapeptide (M5), MurNAc(pentapeptide)-P
(M5P), and MurNAc(pentapeptide)-PP (M5PP) are indicated to the left of the fluorograms. (B) The
hydrolysis of LII(DAP)35 (500 pmol) was examined as described for LII(DAP)55 in the legend to
Figure 4.

2.4. The Biochemical Characteristics of GM5P Generation by Liver Microsomal Protein Extracts Are Similar to
Those of the Mammalian DLODP Activity

The EDTA sensitivity of the lipid II cleavage reaction (Figure 4) and the fact that the reaction
products of both LI and LII cleavage contain a single phosphate residue are consistent with the
hypothesis that these structures are hydrolyzed by the previously characterized liver DLODP. In order
to further substantiate this hypothesis, the biochemical characteristics of LII hydrolysis were studied
in more detail. To do this, LII(DAP)35 was used as a substrate and, as shown in Figure 8A, when
incubated for 4 h, GM5P production was linear over the range of protein quantities tested. When



Molecules 2019, 24, 2135 8 of 14

varying quantities of the substrate were incubated with 27.2µg of protein for 4 h, it was found that GM5P
production was saturable, and was ~75% maximal when 500 pmol LII were used (Figure 8B). Finally,
when 500 pmol LII was incubated with 27.2 µg of protein, GM5P production was reasonably linear up
until 4 h of incubation (Figure 8C). These reaction conditions were used to further characterize the
characteristics of the GM5P-generating reaction. The detection of mammalian DLODP activity using a
crude membrane preparation from HepG2 cells requires the presence of Co2+ [13]. While optimizing the
detergent, salt, and Co2+ concentrations required to solubilize the rat liver microsomal DLODP activity,
it was found that DLODP activity recovery was poor unless Co2+ was added to the solubilization buffer.
Accordingly, microsomal proteins were solubilized in the presence of either Co2+, Mn2+, Ca2+, or
Mg2+ before assaying the lipid II hydrolyzing activities in the corresponding cation-containing buffers.
Data shown in Figure 9A demonstrate that GM5P production from LII(DAP)35 is strikingly increased
when Co2+ is present in the solubilization and assay buffers. DLODP activity is blocked by solanesyl
(Sol)-based compounds with the following order of efficacy: Sol-PP-GlcNAc2 > Sol-PP-GlcNAc >

Sol-PP > Sol-P > solanesol [13]. As demonstrated by the data shown in Figure 9B, these compounds
inhibit GM5P production from LII(DAP)35 with the same order of potency. Finally, DLODP activity
is inhibited by sodium orthovanadate and Hg2+, but not by sodium fluoride [13], and, as shown in
Figure 9C, GM5P production from LII(DAP)35 shows the same sensitivity to these reagents. Taken
together, these data indicate that the same activities, or activities with closely related biochemical
characteristics, generate GM5P from LII(DAP)35 and [3H]OSP from [3H]DLO.Molecules 2019, 24, x FOR PEER REVIEW 9 of 14 
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Figure 8. Biochemical characteristics of rat liver lipid II hydrolyzing activity. (A) LII(DAP)35 (500 pmol)
was incubated with different quantities of detergent-solubilized rat liver microsomal proteins for
4 h. After SPE, the 15 mM NH4OH/H2O eluates were dried under vacuum and analyzed by TLC.
The resulting fluorograms were scanned and GM5P was quantitated as described in Section 4. The means
and SDs of duplicate incubations were generated using Prism software. One of the fluorograms is
shown. (B) 27.2 µg of detergent-solubilized rat liver microsomal proteins was incubated for 4 h
with increasing quantities of LII(DAP)35, (LII nmol), and GM5P was quantitated as described above.
A single experiment was performed. (C) LII(DAP)35 (500 pmol) was incubated with 27.2 µg of
detergent-solubilized rat liver microsomal proteins for the indicated times. GM5P was quantitated as
described above.
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Figure 9. Biochemical profile of LII hydrolyzing activity. (A) Rat liver microsomes were solubilized in
buffers containing 1 mM CoCl2 (Co2+), MnCl2 (Mn2+), MgCl2 (Mg2+), or CaCl2 (Ca2+). The extracts
(20 µg) were incubated with 500 pmol LII(DAP)35 for the indicated times, and, after SPE, the
15 mM NH4OH eluates were dried down and analyzed by TLC. The migration position of GM5P
is indicated to the left of the fluorograms. (B) LII(DAP)35 (500 pmol) was incubated with 27.2 µg
of detergent-solubilized rat liver microsomal proteins in the presence of 2.5 nmol solanesol (Sol),
solanesyl-P (Sol-P), solanesyl-PP (Sol-PP), solanesyl-PP-GlcNAc (Sol-PP-GN), or solanesyl-PP-GlcNAc2

(Sol-PP-GN2) for 4 h as described in Section 4. GM5P was quantitated as detailed above, and is
expressed as a percentage of the quantity of GM5P generated in the absence of the solanesyl compounds
(None). (C) Incubations were conducted exactly as described for (B) in the absence of additions (None)
or presence of either 50 mM sodium fluoride (NaF), 5 mM sodium orthovanadate (VO4−), or 1 mM
mercury chloride (Hg2+). GM5P was quantitated and expressed as for (B).

3. Discussion

The SPE extraction of reaction mixtures using Vm-beads facilitated the rapid analysis of lipid II
and its hydrolysis products in reaction mixtures containing liver microsomal proteins. Although this
procedure was successful under the conditions employed here, its use in a routine assay requires caution
because it relies on binding of the d-Ala–d-Ala motif to vancomycin. Even under our experimental
conditions that include a protease inhibitor cocktail, it is possible that this motif can be destroyed,
and that some substrate and product are, therefore, not able to be extracted by the Vm-beads. In fact,
especially with longer incubation periods, significant increases in fluorescence were detected in the
SPE flow-through fractions; however, the emission excitation spectra of this material were different to
those expected of dansylated compounds. In addition, incubations were conducted in the presence
of fragments of the bacterial lipid pentapeptide moiety, which might be expected to compete for
peptidases and protect lipid II substrates and/or products from degradation. Although the acetylated
tripeptide Ac-Lys–d-Ala–d-Ala binds efficiently to vancomycin, the dipeptide d-Ala–d-Ala (see Table 1)
does not, and inclusion of the latter compound, at a concentration of 2 mM (200-fold above the
amount of lipid II), in incubation mixtures did not increase the recovery of GM5P after 4-h incubations
with the liver microsomal extracts (S.M., unpublished observations). Similarly, under the same
experimental conditions, muramyl dipeptide (MDP, see Table 1), comprising the bacterial lipid I and II
sugar/pentapeptide link region, had no effect on GM5P recovery (S.M., unpublished observations).

After SPE using VM-beads, the hydrolysis of lipid II was followed by quantitating the fluorescent
hydrolysis products after TLC. Other readouts for lipid II hydrolysis that do not require the TLC step
are possible. Firstly, as shown in Figure 4A, either the decrease in fluorescence associated with the
15 mM NH4OH/MeOH eluates, or the increase in fluorescence associated with the 15 mM NH4OH
eluates could be used as a measure of lipid II cleavage.

SPE extraction of enzyme incubation mixtures using Vm-beads permitted direct characterization
of lipid II hydrolysis products by TLC and allowed us to demonstrate that a preparation of solubilized
mouse liver microsomal protein promotes the generation of monophosphoryl compounds from LI
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and LII. We did not determine whether any of the bacterial lipid analogs are better substrates than
others. This type of kinetic study will have to await a pure enzyme preparation. Again, although it was
shown that GM5P production from LII was protein- and time-dependent, as well as being saturable
with respect to substrate, the kinetics of the reaction were not examined in more detail because of the
crude nature of the enzyme preparation. Importantly, using solubilized liver microsomal proteins,
we were able to show a close correlation between the biochemical characteristics of GM5P production
and those previously reported for DLODP-mediated [3H]OSP generation from [3H]DLO using human
hepatocellular carcinoma HepG2 cell membranes. Coupled with previously obtained data showing
that bacterial lipid II inhibits [3H]OSP generation from [3H]DLO, our new data demonstrate that
[3H]OSP and GM5P are generated, respectively, from [3H]DLO and LII by the same or a closely related
liver microsomal activity.

To conclude, we report a simple SPE procedure that allows direct quantitation and characterization
of the LII hydrolysis products that are generated by mammalian liver protein extracts, by either TLC or
mass spectrometry. We demonstrate, for the first time, the hydrolysis of LII and LI to yield, respectively,
GM5P and M5P by mammalian microsomal proteins. As the biochemical characteristics of this reaction
are similar to those displayed by the reaction required for [3H]OSP generation from [3H]DLO, dansyl
bacterial lipid I and II analogs are useful reagents with which to investigate mammalian and yeast
DLODP and DLODP-like enzymes. This simple non-radioactive assay should allow biomedical
workers to look for changes in DLODP-like activities in cells from patients with suspected glycosylation
diseases. Defective DLODP activities may underlie as yet unrecognized disorders or modify disease
severity in CDGs where truncated DLO are seen.

4. Materials and Methods

4.1. Reagents

d-Ala–d-Ala, Ac-Lys–d-Ala–d-Ala, sodium orthovanadate, vancomycin, HCl, NHS-Sepharose,
and mammalian and yeast protease inhibitor cocktails were purchased from Sigma–Aldrich SARL
(St Quentin Fallavier, France). Muramyl dipeptide (MDP, see Table 1) was from InvivoGen (Toulouse,
France). Nonidet P-40 (NP-40) was obtained from Thermo-Scientific (Villebon-sur-Yvette, FR). Ultima
Gold was from PerkinElmer Life Sciences (Zaventem, Belgium). TLC plates were from MERCK
(Darmstadt, Germany).

Table 1. Bacterial lipid I and II analogs and fragments used in this study.

Abbreviation Compound Abbreviation Compound

LII(Lys)55
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Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

LII(DAP)55
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

M5P
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

LII(DAP)35
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

GM5P
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

Ac-KdAdA
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 

MDP

Molecules 2019, 24, x FOR PEER REVIEW 11 of 14 

4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs 

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-
enzymatic preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to 
undecaprenyl phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to 
form lipid II. Lipid II was subsequently purified as previously described [23]. Uridinyl diphospho 
dansyl(DAP)pentapeptide (UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and 
dansyl(DAP)35 lipid II (see Table 1; LII(DAP)35) were produced by enzymatic synthesis as described 
previously [20,24,25]. Dansyl phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by 
treatment of dansyl UDPM5 with nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs 
were synthesized as previously reported [15]. 

4.3. Liver Microsomes and Protein Solubilization 

Microsomes, prepared from rat liver as previously described [13] and stored at −150 °C, were 
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl. 
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 °C, the 
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at 
a concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, 
and 50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 °C, the membranes 
were centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting 
supernatant and pellet revealed that 80–90% of the activity was solubilized under these conditions. 
The supernatants were stored at −150 °C. 

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2 

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm 
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 °C for 20 min. Reactions 
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns 
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the 
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns 
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in 
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant. 
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4.2. Synthesis of Bacterial Lipids and Their Precursors and Dolichol-Linked Oligosaccharide Analogs

Fluorescently labeled dansyl(Lys)lipid II (Table 1; LII(Lys)55) was synthesized by chemi-enzymatic
preparation of dansylated UDP-MurNAc pentapeptide [22], followed by its linkage to undecaprenyl
phosphate and UDP-GlcNAc by membrane-bound MraY and MurG, respectively, to form lipid II. Lipid II
was subsequently purified as previously described [23]. Uridinyl diphospho dansyl(DAP)pentapeptide
(UDPM5, see Table 1), dansyl(DAP)lipid II (LII(DAP)55, see Table 1), and dansyl(DAP)35 lipid II (see
Table 1; LII(DAP)35) were produced by enzymatic synthesis as described previously [20,24,25]. Dansyl
phospho-MurNAc-pentapeptide (M5P, see Table 1) was prepared by treatment of dansyl UDPM5 with
nucleotide pyrophosphatase [26,27]. Solanesyl-based DLO analogs were synthesized as previously
reported [15].

4.3. Liver Microsomes and Protein Solubilization

Microsomes, prepared from rat liver as previously described [13] and stored at −150 ◦C, were
resuspended at a concentration of 2 mg protein/mL in buffer containing 1 mM CoCl2, 500 mM NaCl.
and 50 mM 2-(N-Morpholino)ethanesulfonic acid (MES), pH 6.0. After incubating for 1 h at 4 ◦C, the
membranes were centrifuged at 100,000 gAv for 30 min. The resulting pellet was then suspended at a
concentration of 1–2 mg protein/mL in buffer containing 0.25% NP-40, 1 mM CoCl2, 200 mM NaCl, and
50 mM MES, pH 6.0 (solubilization buffer, SB). After incubating for 1 h at 4 ◦C, the membranes were
centrifuged at 100,000 gAv for 30 min. Determination of DLODP activity in the resulting supernatant
and pellet revealed that 80–90% of the activity was solubilized under these conditions. The supernatants
were stored at −150 ◦C.

4.4. DLODP Assay Using [3H]Man5GlcNAc2-PP-dolichol-2

Firstly, 30 µg of solubilized rat liver microsomal proteins was incubated with 15.0 × 103 cpm
[3H]Man5GlcNAc2-PP-dolichol [13] in SB in a total volume of 50 µL at 37 ◦C for 20 min. Reactions
were stopped by the addition of 450 µL of ice-cold H2O and then loaded onto coupled 0.5-mL columns
of Dowex 50-X2 (H+ form) and Dowex 1-X2 (acetate form). Subsequent to extensive washing of the
two columns with H2O, [3H]oligosaccharyl phosphates were eluted from the Dowex 1-X2 columns
with 5 mL of 3 M formic acid. After drying under vacuum, the radioactive material was taken up in
200 µL of H2O and quantitated by scintillation counting after mixing with 3 mL of scintillant.

4.5. Preparation of Vancomycin Beads

Vancomycin was covalently linked to NHS-Sepharose using the coupling protocol supplied with
the NHS-Sepharose beads. Vancomycin HCl was dissolved (12.5 mg/mL) in 0.5 M NaHCO3 (pH 8.0)
and one volume equivalent of this solution was added to two volume equivalents of beads and
incubated with constant mixing for 3 h at room temperature. The beads were washed, alternately,
with low- and high-pH buffers as described in the manufacturer’s protocol, and then stored as a 1:1
suspension in 50 mM Tris/HCl, pH 7.4, containing 0.05% sodium azide. To determine the coupling
efficiency, unreacted vancomycin was separated from N-hydrosuccinimide (NHS), which is liberated
during the coupling reaction, using C18 Sep Pak cartridges, and assayed spectrophotometrically
(280 nm). Using this procedure, it was determined that 0.7 µmol vancomycin was coupled per mL of
settled beads (Vm-beads).

4.6. Assay of Bacterial Lipid II Hydrolysis

Dansylated bacterial lipid II analogs were aliquoted into 1.5-mL reaction tubes and, after removal
of organic solvents under vacuum, were suspended in 5 µL of SB. After addition of protein solubilized
in SB, and other additions described in the figure legends, the mixtures were incubated at 37 ◦C for
0–16 h. Reactions were stopped by diluting 10-fold in 50 mM Tris/HCl, pH 7.4, containing 200 mM
NaCl. After adding 80 µL of the 1:1 suspension of Vm-beads, the mixtures were incubated with
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constant rotation for 1 h at 4 ◦C. The contents of the reaction tubes were then transferred to 0.8 × 4-cm
polypropylene columns (Poly-Prep Chromatography Columns, BIO-RAD) and the Vm-beads were
washed sequentially with 6 × 200 µL of Vm-bead wash buffer (50 mM Tris/HCl, pH 7.4, 200 mM NaCl,
0.02% NP-40), 6 × 200 µL of H2O, 6 × 200 µL of 15 mM NH4OH, and finally 6 × 200 µL of 15 mM
NH4OH in MeOH. Fractions were collected into 96-well flat black plates (Costar) and fluorescence
(excitation 350 nm, emission 530 nm) was measured using an Infinite M200 microplate reader (Tecan).
Where indicated, the 15 mM NH4OH and 15 mM NH4OH/MeOH eluates were dried under vacuum
and analyzed by thin-layer chromatography using silica-coated HPTLC plates (Merck) developed in
n-propanol/ammonia/water (6:3:1) [20]. After drying the plates, fluorescent compounds were detected
using a Quantum Gel Imager (Vilber-Lourmat), and quantitated by densitometric scanning using the
Bio 1D software. Where indicated, the amount of product generated was estimated by calibrating
the TLC system with 0–200 pmol standard UDPM5 (Table 1). This compound was also used in order
to calculate the recovery of water-soluble d-Ala–d-Ala-containing compounds after SPE of standard
incubation mixtures.

4.7. Digestion of Bacterial Lipids with Colicin M

Lipids I or II (500 pmol) were incubated with 3 µg of recombinant colicin M [20] in 50 µL of a
buffer containing 50 mM TrisHCl pH 7.4, 150 mM NaCl, 20 mM MgCl2, and 0.12% NP-40 for 16 h at
37 ◦C [20]. The reaction mixtures then underwent SPE using Vm-beads as described above.

4.8. Mass Spectrometry

Samples were infused in an Orbitrap Fusion Tribrid (Thermo Scientific) coupled to a TriVersa
NanoMate nano-electrospray ion source (Advion). Compounds were analyzed in the Orbitrap cell,
in negative ion mode, at 1.4 kV, in full ion scan mode, at a resolution of 30,000 (at m/z 200), with a mass
range of m/z 500–1500, an automatic gain control target of 2 × 105, and a maximum ion accumulation
time of 100 ms. MS/MS data were acquired in the ion trap and obtained by high collision-induced
dissociation (HCD) activation with a collisional energy of 30%, and a quadrupole isolation window
of 1.6 Da. The maximum ion accumulation times were set to 100 ms for MS acquisition and MS/MS
acquisitions. The isotopolog cluster of the GM5P compound obtained in MS was compared with
the theoretical cluster that was obtained using the Metabolite Identification via Database Searching
algorithm [21].

Supplementary Materials: The following are available online: Figure S1: Observed and theoretical isotopolog
clusters for GM5P.
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