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Abstract (198 words) 27 

 28 

Purpose of the review 29 

Rare patients naturally control HIV replication without antiretroviral therapy. Understanding 30 

the mechanisms implicated in natural HIV control will inform the development of 31 

immunotherapies against HIV. Elite controllers (EC) are known for developing efficient 32 

antiviral T cell responses, but recent findings suggest that antibody (Ab) responses also play a 33 

significant role in HIV control. We review the key studies that uncovered a potent memory B 34 

cell response and highly functional anti-HIV Ab in EC, and explore the mechanisms that may 35 

account for the distinct properties of their humoral response. 36 

 37 

Recent findings 38 

EC maintain a large HIV-specific memory B cell pool that is sustained by efficient Tfh 39 

function. Neutralizing Ab rarely show high titers in controllers, but seem capable, at least in 40 

certain cases, of neutralizing contemporaneous viral strains. In addition, EC display a unique 41 

HIV-specific Ab profile in terms of isotype, antigen specificity, and glycosylation pattern, 42 

resulting in polyfunctional Ab effector functions that may promote infected cell lysis and 43 

prime effectors of the antiviral immune response.  44 

 45 

Summary 46 

Lessons from EC studies argue for the importance of integrating the many parameters 47 

defining a polyfunctional Ab response when evaluating candidate vaccines and 48 

immunotherapeutic approaches directed at HIV. 49 

 50 

Key words: HIV control, memory B cells, neutralizing antibodies, ADCC, CD4+ T cell help. 51 
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INTRODUCTION 58 

 59 

Different groups of HIV-infected individuals naturally control HIV-1 (HIV) replication in the 60 

absence of combined antiretroviral therapy (cART): elite controllers (EC), who represent 61 

fewer than 1% of HIV-infected individuals and maintain very low to undetectable viremia 62 

(generally <50 copies HIV RNA/mL); viremic controllers (VC), who show partial viral 63 

control; and post-treatment controllers, who received cART but did not resume viral 64 

replication after treatment interruption [1,2]. Importantly, these groups of patients show a 65 

very low risk of progression to AIDS and usually maintain high CD4+ T cell counts [3]. In 66 

particular, EC show the strongest protection from disease and provide a unique opportunity to 67 

study immune responses involved in natural viral suppression [4].  68 

 69 

It was long thought that cytotoxic CD8+ T cells (CTL) were the unique players involved in 70 

natural HIV control. Indeed, a fraction of EC exhibit potent CTL responses against HIV-71 

infected cells, often associated with the expression of protective HLA alleles such as HLA-72 

B*57 and B*27 [2]. However, a growing body of evidence suggests that the humoral 73 

response, sustained by efficient CD4+ T cell help, is also a key player in HIV control. In this 74 

review, we highlight the recent works that uncovered a potent memory B cell response in EC, 75 

and that demonstrated the capacity of EC's sera to perform multiple effector functions 76 

possibly involved in HIV control. We also examine the mechanisms that could underlie the 77 

development and persistence of HIV-specific memory B cells in EC, including the 78 

preservation of CD4+ T follicular helper (Tfh) cell functions and the possibility of more 79 

efficient antigen presentation. 80 

 81 

Low Neutralizing antibody titers in EC 82 

The role of the humoral response was initially neglected in the HIV control research field, as 83 

several studies had shown that EC had low HIV neutralizing antibody (NAb) titers as 84 

compared to viremic individuals [5-9]. In addition, EC with the lowest levels of HIV 85 

replication, who remained undetectable even in high-sensitivity viral loads assays (≤1 copy 86 

HIV RNA/mL), showed signs of low-intensity antibody responses, with fewer viral protein 87 

bands on HIV western blots, lower NAb titers, and lower cross-neutralization breadth [10]. 88 

Conversely, in viremic patients, the breadth of neutralization has been associated with higher 89 

viral loads [8,9,11-15], longer duration of viral exposure, and higher viral diversity [16]. In 90 
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other words, in EC as in viremic patients, the availability of viral antigens seems to determine 91 

the magnitude of the antibody response, as well as its cross-neutralization capacity. 92 

 93 

It should be noted, however, that EC show a marked heterogeneity, with some presenting 94 

broad cross-neutralization capacity while others show minimal or no neutralization [5-8,17]. 95 

A flurry of broadly neutralizing antibodies (bNAbs) capable of neutralizing diverse HIV 96 

strains were identified during the past decade. Of note, some of the original bNAbs were 97 

cloned from HIV-specific memory B cells isolated from EC, indicating that these rare patients 98 

have the capacity to produce potent anti-HIV antibodies [17,18].  99 

 100 

Preserved memory B cell differentiation in EC 101 

Memory B cells, which are essential to sustain humoral immunity in the long-term, can be 102 

divided in 4 subpopulations: activated memory (AM), resting memory (RM), intermediate 103 

memory (IM) and tissue-like memory (TLM) B cells [19]. AM and TLM B cells, with the 104 

latter showing signs of anergy, are associated with higher levels of viremia [20,21]. In 105 

contrast, RM cells, which contribute to the long-term persistence of humoral responses, are 106 

decreased in progressor patients [19,22]. The picture that emerges is that of an abnormal 107 

immune activation that drives memory B cell exhaustion. cART decreases TLM and AM B 108 

cell proportions to near-normal levels in HIV-infected patients, but only restores the RM 109 

compartment in a subset of patients [20,23,24]. In EC, the proportions of the four memory B 110 

cell subsets are generally comparable to those observed in HIV-negative individuals [20,25]. 111 

However, the proportions of TLM B cells remain slightly elevated in EC, suggesting a degree 112 

of ongoing immune activation even in well-controlled HIV infection [20,25]. 113 

 114 

Potent HIV-specific memory B cell responses in EC 115 

A key difference between EC and treated patients is that EC maintain a high frequency of 116 

HIV-specific memory B cells despite their low viral loads. These findings were obtained by 117 

measuring the frequency of circulating memory B cells capable of binding gp140 fluorescent 118 

probes [26] and by performing B cell ELISPOT assays [25]. Viremic patients who initiate 119 

cART show a marked decrease in the frequency of HIV-specific antibody-secreting cells 120 

(ASC), and patients treated in the long-term show low or undetectable HIV-specific ASC, 121 

consistent with the notion that viral replication is needed to constantly drive plasmablast 122 

differentiation in these patients [26-29]. In contrast, EC maintain a sizable memory B cell 123 

compartment despite limited antigenemia, suggesting that HIV-specific memory B cells are 124 
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either longer lived in these rare patients or still generated or renewed due to antigen/Tfh 125 

access in lymphoid structures even with very low blood antigenemia. 126 

 127 

This is not to say that EC are free of HIV replication. EC are more and more often treated 128 

with cART, which decreases immune activation, slightly increases CD4+ T cell counts, 129 

decreases ASC frequency, and further decreases the viral load in these already well-controlled 130 

patients [26,30,31]. Simian models suggest that limited viral replication persists in the 131 

germinal centers (GC) of lymphoid organs in untreated controller monkeys [32]. It is thus 132 

conceivable that the persistence of HIV-specific memory B cells in EC depends on residual 133 

viral replication in GC, at the very site of antibody response maturation. Interestingly, 134 

residual HIV replication appears to drive a persisting low-grade inflammation in some EC and 135 

to influence B cell fates. A specific inflammation profile, characterized by increased levels of 136 

CXCL13, sCD40L, IP10, RANTES, and TNFα in plasma, has been associated with the 137 

capacity to develop cross-neutralizing antibody responses in EC [33]. Further studies 138 

confirmed the association between CXCL13 levels and the breadth of the neutralizing Ab 139 

response in EC, emphasizing the role of this chemokine in Ab maturation [34]. 140 

 141 

Association between memory B cells responses and HIV neutralization capacity 142 

Several studies analyzed whether the persistence of HIV-specific ASC, which include 143 

plasmablasts and memory B cells, might correlate with the titers of HIV-specific Ab and/or 144 

the breadth of neutralization. Most studies carried out on heterogeneous cohorts of EC failed 145 

to observe a correlation between cellular B cell responses and the magnitude or neutralization 146 

capacity of the Ab response [13,28,35]. Interestingly, by dividing EC into two subgroups 147 

expressing or not the protective HLA-B*57 allele, we observed among HLA-B*57+ EC that 148 

the frequency of HIV-specific ASC correlated positively with the capacity to neutralize 149 

various HIV strains, including Transmitter/Founder viruses [25]. As EC show an early 150 

spontaneous control of HIV replication [36], which is probably mediated by CTL antiviral 151 

effect in HLA-B*57+ EC [37], we propose that these CTL responses might favor the 152 

establishment of efficient memory B cell responses with cross-neutralization capacity, 153 

through the rapid control of the viral load, which could in turn avoid B cell exhaustion and 154 

preserve Tfh function. 155 

 156 

 157 

 158 
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A role for autologous virus neutralization in HIV control? 159 

HIV constantly evades the selective pressure imposed by NAbs through mutational escape, so 160 

that at a given time the patient serum can neutralize previous but not contemporaneous viral 161 

strains isolated from the same patient [38]. Intriguingly, significant levels of autologous NAbs 162 

(that is, capable of neutralizing the contemporaneous viral strains) were detected in viremic 163 

controllers [39]. Recently, an in-depth longitudinal characterization of the humoral response 164 

in a HLA-B*57+ viremic controller revealed that this patient harbored autologous NAbs 165 

capable of neutralizing 88.5% of its circulating viral clones, suggesting that these NAbs 166 

contributed to HIV control [40]. Interestingly, NAbs in this patient could also cross-neutralize 167 

diverse heterologous HIV strains, suggesting that in some cases viral diversification can be 168 

efficiently matched by a diversification of the NAb response. 169 

 170 

Preserved Tfh function may underlie the persistence of potent memory B cell responses 171 

in HIV controllers 172 

Tfh cells, which reside within GC, provide help to B cells in the form of costimulatory signals 173 

and secretion of cytokines. Chronic HIV infection perturbs Tfh function, but paradoxically 174 

leads to an increase in Tfh numbers, which contributes to GC hyperplasia and 175 

lymphadenopathy [41]. Circulating Tfh (cTfh), defined as blood CXCR5+ CD4+ T cells, are 176 

thought to represent a form of memory Tfh, that can reacquire B cell helper functions upon 177 

antigenic stimulation [42,43]. Interestingly, an increased proportion of cTfh subsets that 178 

express PD-1 [44] or PD-1 in the absence of CXCR3 [45,46] was associated with the 179 

development of a broad HIV-neutralizing antibody response, in adults and children. This 180 

suggests that Tfh that experience ongoing antigenic stimulation, as measured by PD-1 181 

expression, are needed to sustain continued antibody maturation in the context of chronic HIV 182 

infection. 183 

 184 

HIV control is associated with the persistence of highly functional CD4 effectors endowed 185 

with polyfunctional cytokine secretion and cytotoxic capacities [47,48]. The expression of 186 

HIV-specific T cell receptors of particularly high affinity accounts for the persistence of CD4 187 

effector responses in EC [49,50]. Recent studies indicate that Tfh function is also highly 188 

efficient in EC. The frequency of HIV-specific cTfh, as measured by MHC-II tetramer 189 

labeling, remains higher in EC than in treated patients, and correlates with a higher production 190 

of HIV-specific antibodies in memory B cells/cTfh cocultures [51]. In addition, HIV-specific 191 

Tfh defined functionally as CXCR5+ CD4+ T cells with IL-21 secretion capacity are also 192 
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preserved in EC, and show an association with the frequency of Env-specific memory B cells 193 

[52]. Thus, key Tfh/B cell interactions are preserved in controlled HIV infection, which 194 

enables continued antibody affinity maturation (see Graff-Dubois et al. in this issue). These 195 

findings emphasize the need to induce robust Tfh function in vaccination and immune 196 

restauration strategies targeting HIV. 197 

 198 

A bias in Ab isotype and specificity in EC 199 

In addition to pathogen neutralization, Abs accomplish a variety of effector functions, with Fc 200 

receptors (FcR) binding leading to cytokine secretion, antibody-dependent cellular 201 

phagocytosis (ADCP), antibody-dependent cell-mediated cytotoxicity (ADCC), and 202 

activation of the complement cascade. These different functions are strongly influenced by 203 

the immunoglobulin (Ig) isotype and the glycosylation status of the Ig Fc regions [53].  204 

 205 

Although the IgG1 subclass dominates HIV-specific responses, the proportion of IgG isotypes 206 

varies depending on HLA type and clinical parameters [54-57]. A sequential study of Env-207 

specific antibodies in controller and progressor patients showed that isotype profiles evolved 208 

over time, with a more prevalent Env-specific IgG2 response in controllers at early time 209 

points, while the IgG2 response developed more slowly in progressors [58]. In contrast, Env-210 

specific IgG3 were present in both groups at early time points, but were progressively lost in 211 

progressors [58]. Isotype variations likely impact Fc-dependent functions, as for instance 212 

IgG1 and IgG3 generally bind FcγRs with higher affinity than IgG2 and IgG4, with IgG3 213 

being particularly efficient at mediating HIV internalization [59]. It is relevant that the loss of 214 

HIV-specific IgG3 occurs in synchrony with the loss of Fc-mediated functions that have been 215 

associated with viral control (see below) [60]. Accordingly, the sera from EC exhibiting 216 

strong polyfunctional antiviral activities are enriched in Abs of IgG1 and IgG3 subclasses 217 

[56]. Taken together, these studies suggest that the persistence of Env-specific IgG able to 218 

bind FcγRs with high affinities could play a role in viral control. 219 

 220 

Interestingly, HIV-specific IgA Abs were also detected at higher frequency in the sera of EC 221 

than in those of treated and viremic patients [61]. IgA responses in EC displayed broader 222 

antigen specificities and a particularly high avidity to the gp41 antigen [61]. Although serum 223 

IgA can clearly induce FcR-mediated phagocytosis of HIV [62], their phagocytic capacity 224 

appears reduced as compared to IgG1 and IgG3 [59]. However, IgA can engage FcαRI to 225 
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trigger ADCC by monocytes and neutrophils, and IgG1 and IgA may actually cooperate 226 

rather than compete in the induction of FcR-mediated effector functions [63]. 227 

 228 

A role of Gag-specific antibodies in viral control has also been proposed. It is interesting that 229 

Gag-specific IgG2 [64,65] and IgG1 [66,67] have been associated with long-term 230 

nonprogression. Gag-specific IgG2 Abs seem particularly abundant in HLA-B*57-negative 231 

EC, and may reflect a role for the humoral response in viral control when the CD8 response is 232 

not dominant [57,68]. However, the significance of anti-Gag responses in HIV infection 233 

remains unclear, as Gag proteins are not expressed at the cell or virion surface, and should 234 

thus not be accessible to Abs. Gag-specific Abs may still be able to capture secreted Gag, 235 

broken virions, or infected cell fragments, which may in turn facilitate the uptake and 236 

presentation of Gag antigens to Gag-specific CD4+ and CD8+ T cells, which are 237 

immunodominant in EC and thought to play a key role in suppressing HIV replication [2,69]. 238 

 239 

A more potent ADCC function in EC? 240 

HIV-specific ADCC, primarily mediated by NK cells, develops rapidly in the course of HIV 241 

infection and exerts an immune selective pressure on the virus, suggesting that it contributes 242 

to decrease the pool of infected cells during the early stages of infection [70-72]. Whether 243 

ADCC participates in viral control in EC during the chronic stage of infection remains 244 

debated [73]. Several studies did not detect an improved capacity of EC sera to mediate 245 

ADCC [56,74,75]. In contrast, Abs mediating ADCC were found to be increased in other EC 246 

cohorts [5,76], with one study reporting a predominant ADCC response in HLA-B*57-247 

negative EC, as compared to HLA-B*57-positive EC [77]. 248 

 249 

These contrasting findings reflect the heterogeneity of ADCC responses in EC, but also the 250 

variable definitions of controller status in the different EC cohorts. The choice of the control 251 

group may also influence study outcome, as for instance viremic patients at an advanced stage 252 

of infection tend to show lower HIV-specific Ab levels in the circulation. There is clear 253 

evidence that the level of Env-specific Ab binding at the surface of infected cells is a correlate 254 

of ADCC activity [75]. Indeed, NAbs with an intrinsically higher capacity to bind the surface 255 

of infected CD4+ T cells show more efficient ADCC activity against these cells [78]. 256 

Competition between different types of antibodies may also influence ADCC function [79]. 257 

IgG3 are likely important in NK-mediated ADCC, as they have a particularly high affinity for 258 

FcγRIIIA, which is the only FcR expressed at the surface of NK cells in 80% of humans [80].  259 
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 260 

ADCC activity also depends on the strength of NK cell activation. Specific associations 261 

between certain NK cell receptors allotypes and their MHC-I molecule ligands, such as 262 

KIR3DL1 and HLA-B*57, influence disease progression and are associated with lower 263 

viremia [81]. Nonetheless, NK cells from EC and progressors have so far shown similar 264 

capacities to perform ADCC [56,74,82]. Therefore, the involvement of NK receptor allotypes 265 

in viral control may rely on the direct recognition of infected cells by NK cells, through NK 266 

receptor engagement rather than ADCC. 267 

 268 

Polyfunctional Ab-effector functions in EC 269 

Given the diversity of Ab effector functions, it seems unlikely that a single attribute of the Ab 270 

response may account for the unique capacity of EC to control HIV infection. To tackle this 271 

issue, Ackerman and Alter developed a systematic approach to study in a single sample an 272 

array of functions, including ADCC, NK activation, complement deposition (ADCD), ADCP, 273 

and Ab attributes, such as glycosylation status and FcR binding capacity [56,66]. This 274 

"systems serology" approach did not show a superior capacity of EC's sera to perform any of 275 

the above-mentioned functions. Rather, it revealed that the different Ab functions, except for 276 

ADCP, strongly correlated with one another in EC. In particular, ADCD correlated with all 277 

other functions, suggesting that EC developed a more coordinated Ab response than other 278 

patient groups [56]. EC exhibiting these polyfunctional antiviral activities had sera enriched 279 

in IgG1 and IgG3 HIV-specific Abs, pointing out to the importance of isotype subclasses in 280 

determining the overall quality of the antibody response [56].  281 

 282 

Ab effector functions depend on binding to FcRs and to initiators of the complement cascade, 283 

with these steps being tightly regulated by the glycolysation of the Ig Fc region [83,84]. In 284 

humans, the IgG Fc-domain harbors a single glycosylation site that can accommodate up to 285 

30 documented different glycan structures. In EC, a shift of the glycosylation profile toward 286 

agalactosylated glycoforms was observed in the total Ab pool [85]. In particular, HIV-specific 287 

Abs exhibited a high frequency of agalactosylated, afucosylated, and asialylated glycans [85]. 288 

These particular Ab glycoforms have been associated with enhanced FcR-mediated antiviral 289 

functions, and may thus account for the quality of Ab effector functions in EC. Interestingly, 290 

in EC, the presence of the particular glycoform G1S1F was strongly associated with 291 

emergence of HIV-specific IgG3, suggesting that coordinated changes underlie the 292 

development of polyfunctional Ab responses [66]. Overall, systems serology studies are 293 
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starting to shed light on the many interdependent parameters involved in defining the quality 294 

of antiviral Ab responses. 295 

 296 

In addition to mediating direct antiviral activities, FcR-dependent Ab functions such as ADCP 297 

and complement deposition also enhance innate and adaptive immunity, by inducing cytokine 298 

secretion and promoting viral antigen presentation. For instance, injection of bNAbs in SHIV 299 

infected macaques and HIV-infected patients was shown to enhance T cell immunity and 300 

increase the neutralization breadth of endogenous Abs [86,87]. CD8+ T cell responses in 301 

particular were shown to contribute to durable viral control in bNAb-treated animals [88]. The 302 

underlying mechanisms are not elucidated yet, but may depend on increased formation of 303 

immune complexes and/or complement opsonisation (see Naranjo-Gomez & Pelegrin in this 304 

issue). Viral immune complexes were shown to promote antigen capture and dendritic cell 305 

(DC) maturation [89,90]. HIV immune complexes could also induce an antiviral state by 306 

triggering the production of type I interferon by plasmacytoid DC [91]. The enhancing effect 307 

of NAbs on adaptive antiviral immunity has yet to be fully investigated in EC, but it is 308 

interesting to note that DC from EC are more efficient at capturing HIV particles [92]. 309 

 310 

CONCLUSION 311 

Increasing evidence suggest that humoral responses play an important role in natural HIV 312 

control. EC maintain a large HIV-specific memory B cell pool that is sustained by efficient 313 

Tfh function. NAb rarely show high titers in controllers, but seem capable, at least in certain 314 

cases, of neutralizing contemporaneous viral strains, and thus of directly contributing to viral 315 

control. In addition, EC display a unique HIV-specific Ab profile in terms of isotype and 316 

glycosylation pattern, resulting in polyfunctional Ab effector functions that may promote 317 

infected cell lysis and prime multiple effectors of the antiviral immune response. Lessons 318 

from EC studies argue for the importance of integrating the many parameters defining a 319 

polyfunctional Ab response when evaluating candidate vaccines and immunotherapeutic 320 

approaches directed at HIV. 321 

 322 

KEY POINTS 323 

- Persistence of a large HIV-specific memory B cell pool in EC 324 

- Efficient Tfh help sustains memory B cells in EC 325 

- Efficient neutralization of contemporaneous autologous viral strains in some EC and VC 326 

- Increased frequency of Gag-specific antibodies in EC 327 
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- Persistence of Env-specific IgG3, which mediate NK-dependent ADCC in EC 328 

- Shift of the HIV-specific IgG glycosylation profile in EC 329 

- Polyfunctional Ab effector responses in EC 330 

- Converging evidence that the humoral response plays a key role in natural HIV control  331 

 332 
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