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ABSTRACT 

In the present study, a numerical method based on a metaheuristic parametric algorithm has been developed to identify the 

constitutive parameters of hyperelastic models, by using FE simulations and full kinematic field measurements. The full 

kinematic field is measured at the surface of a cruciform specimen submitted to equibiaxial tension. The sample is reconstructed 

by FE to obtain the numerical kinematic field to be compared with the experimental one. The constitutive parameters used in 

the numerical model are then modified through the optimization process, for the numerical kinematic field to fit with the 

experimental one. The cost function is then formulated as the minimization of the difference between these two kinematic 

fields. The optimization algorithm is an adaptation of the Particle Swarm Optimization algorithm, based on the PageRank 

algorithm used by the famous search engine Google. 
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INTRODUCTION 

The constitutive parameters of hyperelastic models are generally identified from three homogeneous tests, basically the uniaxial 

tension, the pure shear and the equibiaxial tension. From about 10 years, an alternative methodology has been developed [1, 2, 

3, 4], and consists in performing only one heterogeneous test as long as the field is sufficiently heterogeneous. This is tipically 

the case when a multiaxial loading is applied to a 3 branch or a 4-branch cruciform specimen, which induces a large number 

of mechanical states at the specimen surface. The induced heterogeneity is generally analysed through the distribution of the 

biaxiality ratio and the maximal eigen value of the strain. The Digital Image Correlation (DIC) technique is generally used to 

retrieve the different mechanical states induces, and provides the full kinematic field at the specimen surface, i.e. a large number 

of experimental data to be analysed to identify the constitutive parameters of the behaviour model considered. 

Several methods have been recently developed to identify parameters from experimental field measurements, typically the 

finite elemnt updating method (FEMU), the constitutive equation gap (CEGM), the virtual fields method (VFM), the 

equilibrium gap method (EGM) and the reciprocity gap method (RGM). These method are fully reviewed in [5] and have been 

shown to be adequate for problems with moderate numbers of unknown constitutive parameters. 

In the present study, a metaheuristic parametric algorithm is proposed to identify the constitutive parameters of a behaviour 

model that actually minimize the cost function in the FEMU approach. The optimization algorithm used in both based on the 

Particle Swarm Optimization (PSO) algorithm and the artificial smart PageRank algorithm used by the famous search engine 

Google. This algorithm allows the minimization of the full kinematic field differences by modifying the constitutive parameters, 

while minimizing the CPU calculation time. Even though the final objective is the identification of complex constitutive 

models, the Mooney’s model [6] is presented in this paper.  



EXPERIMENTAL SETUP 

The material use dis a carbon black filled natural rubber. The specimen 

geometry is shown in Figure 1. It is a 105mm long and 2 mm thick 

cruciform specimen. Figure 2 presents an overview of the experimental 

setup composed of a home-made biaxial testing machine and an optical 

camera. The machine is composed of four independant RCP4-RA6C-I-56P-

4-300-P3-M (IAI) electrical actuators. They were driven by a PCON-CA-

56P-I-PLP-2-0 controller and four PCON-CA (IAI) position controllers. 

The actuators were controlled by an in-house LabVIEW program. Two cell 

loads, whose capacity is equal to 1094 N, store the force variation in the 

two perpendicular directions. In the present study, one equibiaxial loading 

was carried out in a way that the specimen’s centre was motionless for the 

displacement measurement to be easier. The displacement and loading rate 

were set at 70 mm and 150 mm/min respectively for the four independent 

actuators.  

 

Images of the specimen surface at increasing stretches were stored at a 

frequency equal to 5hz with a IDS camera equipped with a 55 mm 

telecentric objective. The charge-coupled device (CCD) of the camera has 

1920 × 1200 joined pixels. The Digital Image Correlation (DIC) technique 

is used to determine the displacement field at the sample surface. It consists 

in correlating the grey levels – a white paint is sprayed on the sample to 

improve the image contrast - between two different images of a given zone, 

each image corresponding to different strain levels. The software used for 

the correlation process was SeptD [7], and a uniform cold lightning was 

ensured by a home-made LED lamp. The spatial resolution, defined as the 

smallest distance between two independent point was equal to 4 pixels 

corresponding to 0.34268 mm. The ZOI used to make the digital correlation 

of the displacement field is represented in Figure 3.  

NUMERICAL MODEL 

A finite element calculation is performed by assuming plane stress state and 

material incompressibility. The four-node PLANE182 ANSYS element is 

used. The mesh is made of 9600 nodes, and 9353 elements. A biaxial 

traction load is obtained by prescribing the same displacement of 70mm on 

the four branched of the sample. The two-parameters hyperelastic Mooney 

model is used for the calculation. The values of the constitutive parameters 

C01 and C10 are changing at each iteration of the optimization process, as 

described in the next section. The value of the incompressibility parameter 

has been set to 1E-5 Mpa-1 for all the calculations proceeded.  

As the FE discretization of the numerical model and the used camera 

precision are not the same, it could be tricky to compare the two kinematic 

fields. To overcome that problem, the experimental kinematic field is fitted 

by a polynome-based function. In this way, the numerical kinematic field will be compared, for each node, with the 

experimental field in the exact same position of the sample. As it can be tricky to fit an experimental field by a polynome-based 

function, it has been decided to fit the experimental field by as many functions as the FE model contains nodes. The used 

function is given as a 5 order polynome in the X and Y directions, so 21 nodes and their respective cooerdinates and field 

values are needed to te able to retrieve the polynome’s coefficients. So, for every node in the FE model, the 21 closest nodes 

are used to retrieve the corresponding kinematic polynome. By using this method, the difference between the experimental 

field and the polynome-based function is less than 0.2 mm for every point. 

 

Figure 2: Home-made biaxial testing machine 

Figure 1: Specimen geometry (dimensions in mm). 

Figure 3: Zone Of Interest for the DIC technique 



METAHEURISTIC OPTIMIZATION STRATEGY 

The aim of the optimization process is here to find the constitutive parameters for the numerical kinematic field to fit the 

experimental one. Because of the linear relation between C01 and C10, the displacement can be the same for two different pairs 

of constitutive parameters. The force has then to be fitted too. The cost function is then defined as the squared difference 

between the experimental and the numerical fields, considering the force too, as follows: 

min∑
1

𝑁
(
𝑈𝑥,𝑒𝑥𝑝 − 𝑈𝑥,𝑛𝑢𝑚

𝑈𝑥,𝑒𝑥𝑝
)2 +

𝐹𝑒𝑥𝑝 − 𝐹𝑛𝑢𝑚

𝐹𝑒𝑥𝑝

𝑁

𝑖=1
 

Where N is the number of nodes in the numerical Zone of Interest, Ux,exp is the polynome-based experimental displacement, 

Ux,num is the numerical horizontal displacement, Fexp is the experimental horizontal force, and Fnum the numerical horizontal 

force. 

The optimization algorithm used is an adaptation of the classical Particle Swarm Optimization algorithm. In this version, all 

the particles are influenced by all the others, by considering this influence to be adapted as a function of the respective 

performance of the particles. The population of PSO particles is then considered as a Markov chain, in which the particles are 

the nodes, and the transition probabilities between them are the links between them. For each particle, the PageRank value – 

that is the steady state of the considered Makov chain – is given by the following equation (2). In this way, the PageRank value 

of each particle is deduced from its performance compared to the best one.  

𝜋𝑡𝑎𝑟𝑔𝑒𝑡
𝑇 = |

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑏𝑒𝑠𝑡) × 100

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑏𝑒𝑠𝑡) − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃) + 𝜀
| 

It it then possible to deduce the transition connectivity matrix C giving the influence of all the particles on all the others by 

using a pseudo-random process. The classical equations of PSO are then modified, weighing the influence of all the particles 

by using the components of C, as follow: 

𝑽𝑖
𝑡+1 = 𝜔 × 𝑽𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑷𝑖,𝑏𝑒𝑠𝑡
𝑡+1 − 𝑿𝑖

𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑2 ×∑ 𝑪𝑖𝑗 × (𝑷𝑗,𝑏𝑒𝑠𝑡
𝑡+1 − 𝑿𝑖

𝑡)
𝑛

𝑗=1
 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 

Where 𝑽𝑖
𝑡+1 is the speed of the ith 

particle at iteration t+1, c1 and c2 

are confident parameters, ω is the 

inertia weight, 𝑿𝑖
𝑡+1is the position 

of particle i at iteration t+1, rand1 

and rand2 are random numbers in 

[0,1], 𝑷𝑗,𝑏𝑒𝑠𝑡
𝑡+1 is the personal best 

position of particle i at iteration 

t+1, and C is the transition 

connectivity matrix of the 

considered Markov chain. This 

Inverse-PageRank-PSO algorithm 

is fully described in [8]. 

RESULTS AND DISCUSSION 

As the particles are initially 

randomly def ined, the optimization 

has been launched 10 times, to 

compare the obtained solutions, and be sure that the global minimum of the cost function has been reached. The convergence 
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Figure 4: Convergence curves on the 10 optimization calculation launched 



curves of the 10 launched optimization calculation are represent in in Figure 4. The obtained values of the cost function and 

design variables are given in Table 1.  

The validation of the optimized results is checked by comparing the experimental displacements and efforts in the sample with 

the numerical optimized one. In the final numerical model, the values of C01 and C10 have been set to the mean of the obtained 

optimized values found in the 10 different calculations launched. Figure 5 shows the difference between the experimental 

polynome-based kinematic field, and the optimized numerical one, for every point in the ZOI. 

 

Figure 5: Comparison between the kinematic fields after the optimization process 

Obtained results 

Optimization number Cost function C01 C10 

1 8.05E-3 0.5159 0.01792 

2 8.13E-3 0.5116 0.022541 

3 7.98E-3 0.5188 0.020369 

4 7.98E-3 0.5197 0.018879 

5 7.98E-3 0.5176 0.019914 

6 7.99E-3 0.5175 0.020986 

7 8.01E-3 0.5153 0.02008 

8 8.03E-3 0.5146 0.022146 

9 8.15E-3 0.5109 0.021573 

10 7.98E-3 0.5202 0.019215 

Mean 8.03E-3 5.16E-1 2.03E-2 

Std 6.475E-5 3.19E-3 1.15E-4 
 

Table 1: Obtained results 
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This difference is presented in a 

quantitative way in Figure 6 

showing the difference between the 

two fields for every point of the 

Zone of Interest. One can note that 

the difference is always less than 

6.5% of the experimental kinematic 

field. Considering the force, the 

experimental value was 176.02N, 

while the numerical value obtained 

with the optimized values of C01 

and C10 is 176.37N, which leads to 

a difference up to 0.4%. 

CONCLUSIONS 

This work is proposing a new 

inverse identification method based 

on the coupling of experimental 

kinematic fields retrieved by DIC, 

and the using of a PSO-based 

parametric optimization algorithm. Experimental and numerical kinematic fields are compared to finally be fitted through the 

optimization process, while the constitutive parameters and smartly modified. Applied on a Mooney model, this process is able 

to find the constitutive parameters reproducing the mechanical response of the sample, while minimizing the number of 

optimization iterations. The constitutive parameters found by the optimization process are actually giving a numerical model 

that retrieves precisely the entire kinematic experimental field. 
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Figure 6: Difference between the kinematic fields for every point of the ZOI 
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