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Spiking Neural Computing
in Memristive Neuromorphic Platforms

Mahyar Shahsavari, Philippe Devienne and Pierre Boulet

Abstract Neuromorphic computation using Spiking Neural Networks (SNN) is pro-1

posed as an alternative solution for future of computation to conquer the memory2

bottelneck issue in recent computer architecture. Different spike codings have been AQ13

discussed to improve data transferring and data processing in neuro-inspired compu-4

tation paradigms. Choosing the appropriate neural network topology could result in5

better performance of computation, recognition and classification. The model of the6

neuron is another important factor to design and implement SNN systems. The speed7

of simulation and implementation, ability of integration to the other elements of the8

network, and suitability for scalable networks are the factors to select a neuron model.9

The learning algorithms are significant consideration to train the neural network for10

weight modification. Improving learning in neuromorphic architecture is feasible11

by improving the quality of artificial synapse as well as learning algorithm such as12

STDP. In this chapter we proposed a new synapse box that can remember and forget.13

Furthermore, as the most frequent used unsupervised method for network training in14

SNN is STDP, we analyze and review the various methods of STDP. The sequential15

order of pre- or postsynaptic spikes occurring across a synapse in an interval of time16

leads to defining different STDP methods. Based on the importance of stability as17

well as Hebbian competition or anti-Hebbian competition the method will be used18

in weight modification. We survey the most significant projects that cause making19

neuromorphic platform. The advantages and disadvantages of each neuromorphic20

platform are introduced in this chapter.21 AQ2

1 Introduction22

The mammalian nervous system is a network of extreme complexity which is able to23

perform cognitive computation in a parallel and power-efficient manner. Understand-24

ing the principles of the brain processing for computational modeling is one of the25
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2 M. Shahsavari et al.

biggest challenges of the 21st century that led to the new branch of research e.g., neu-26

romorphic computing. Neuromorphic engineering represents one of the promising27

fields for developing new computing paradigms complementing or even replacing28

current Von Neumann architecture [1].29

The main remarkable difference between conventional Von Neumann architec-30

ture and neuromorphic systems is in their use of memory structures. The way of31

communication between memory and central processing unit (CPU) in conventional32

computing is not efficient. The memory and CPU communication suffers from what33

is called Von Neumann memory bottelneck. The CPUs access both data and pro-34

gram in memory using the same shared resources. CPUs spend most of their time35

idle because the speed of CPU is much more than memory due to the quality of36

materials applied to manufacturing the transistors in CPU and different memories.37

If we want to apply better quality of memory such as SRAM, regarding to the38

high demands of memory usages the machine would be more expensive. To improve39

the efficiency of nowadays computation platforms, the applicable solution is what40

commonly known as the cache hierarchy; in other words, a limited amount of fast41

but costly memory sit closer to the processing unit, while most of the data would42

be stored in the cheaper but larger memory as it is shown in Fig. 1a. To execute43

computational tasks, instruction codes and data stored in the memory are fetched to44

the processor, and after execution, pushed back to the memory unit, via a memory bus.45

Subsequently, it would be operating system (OS) duty to manage the data around these46

different levels of memory to optimize the system speed by consisting frequently-47

used data to the closer memory with better quality and speed rate. On the other hand,48

the multi-core platforms are commonly used in the new hardwares and the memory49

hierarchy management would be more significant and difficult too. By proposing50

computing unit next to the local memory, neuromorphic brain-inspired computing51

paradigms offer an attractive solution for implementing alternative non von Neumann52

architectures, using advanced and emerging technologies such as memristor [2].53

Neuromorphic systems are electronic implementations inspired from neural sys-54

tems that is known as neuro-inspired computation system. The idea of creating circuit55

model for a neuron system refers back at least to 1907, where a neuron is modeled by56

a resistor and a capacitor [3]. However, the first neuromorphic term was coined by57

Carver Mead [4] using Very Large Scale Integration (VLSI) technology to propose58

an implementation of neural system hardware. Mahowald and Mead implemented59

the first silicon retina model with considering of adaptivity and energy efficiency60

by simulating retina functionalities [5]. Tobi Delbruck built on the idea of adap-61

tive photoreceptor circuits developed in [6] and presented approaches for enhancing62

retinomorphic sensors consist of 128×128 pixel Dynamic Vision Sensor (DVS). DVS63

established a benchmark in neuromorphic vision domain with introducing Address64

Event Representation (AER) sensory data in which each individual pixel processed65

the normalized time derivative of the sensed light and provided an output in the form66

of spikes of the pixel addresses. In addition, vision sensory neuromorphic research,67

there are several neuromorphic studies using auditory and olfactory sensors [7–9]68

for review study in neuromorphic research using different sensory inputs, we refer69

the readers to [10].70
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Spiking Neural Computing in Memristive Neuromorphic Platforms 3

(a)

(b)

Fig. 1 Computational architecture a Von Neumman architecture, fast and costly memory are closer
to cores in multiprocessor platforms as cashes and local memory as well as inexpensive and slower
memory are in other layers close to magnetic memory to save the cost of CPU (memory hierarchy).
b Neuromorphic architecture inspired from neural networks in the biological brain, capable to
conquer Von neumann bottelneck issue, performing parallel and cognitive computing, as well as
considering that the synapses are local memories connected to each neurons as computational cores

More close to our research, in 2014 two distinguished articles were published71

that increased the scientists attentions to the general neuromorphic platforms as72

novel computing architectures. Merolla et al. [11] in an IBM research was spon-73

sored by DARPA, have demonstrated a computing hardware consist of the compact74

modular core for large-scale neuromorphic system architecture. The cores combine75

digital neurons with the large synaptic array. This general purpose neuromorphic76

processor was built using thousands of neurosynaptic cores are involved one million77

neurons and 256 million of reconfigurable synapses. The second notable work pub-78

lished in 2014 was Spiking Neural Network Architecture (SpiNNaker) project [12].79

The SpiNNaker project is a decade old, comprehensive description of the project is80

announced in [12]. SpiNNaker project aims to deliver a massively parallel million81

core architectures whose interconnections are inspired by the connectivity properties82

of the mammalian brain. The hardware platform is suitable to model the large-scale83

spiking neural networks in biological real time. Neuromorphic and neuro-inspired84

computing is now being adapted by an increasing number of academic and industrial85

different research teams. In recent few years, there have been many valuable publi-86

cations explaining the use of novel materials such as memristors are able to emulate87

some of the properties observed in biological synapses [2, 13–17].88
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4 M. Shahsavari et al.

Our work focuses on an alternative approach aimed at high performance com-89

putation to realize the compact, parallel, cognitive and energy-efficient architecture90

structure that emulate the style of computation of the biological brain, using the91

Spiking Neural Network (SNN) structure, modeling the neurons as computational92

cores next to memristive artificial synapses as local memories to skip memory delay93

bottelneck similar to what is shown in Fig. 1b. Therefore, it is necessary to define,94

analyze and verify the efficient models of network topology, neuron and synapse mod-95

els based on state-of-the-art technologies besides choosing the optimized learning96

model adapted to our platform and devices. The structure of Chapter is followed by97

reviewing SNN and more significantly the functionality of various spike information98

codings. In the same section, we discuss different neural network topologies. Fur-99

thermore in the Sect. 3, different models of neuron is presented. Synapse and learning100

are explained in the Sect. 4 which various methods of spike-timing-dependent plas-101

ticity (STDP) [18, 19] are studied comprehensively. The state-of-the-art of the most102

important neuromorphic platforms and projects in the world is presented in Sect. 5.103

Lateral inhibition and Homeostasis have been discussed at the discussion part of this104

chapter.105

2 Spiking Neural Networks106

Artificial neural networks (ANN) can generally be categorized into three generations.107

The first generation of neural network consisted of McCulloch and Pitts neurons [20]108

that the output signals are limited to discrete ‘0’ or ‘1’ binary values. Perceptrons,109

Hopfield network, Boltzmann machine and multilayer networks with threshold units110

are ANN examples that are classified in first generation. The second generation of111

neural network, by using a continuous activation function such as sigmoid, polyno-112

mial or exponential functions, the output can take analog values between ‘0’ and113

‘1’. Due to using analog output the network requires less neurons than the first gen-114

eration class. Radial Basis Function (RBF) networks and Multi-Layer Perceptrons115

(MLP) are categorized under second generation class. The third generation of neural116

network model are networks which employ spiking neurons as computational units.117

In this model, the precise firing times of neurons are used for information coding.118

Spiking neural networks belong to the third generation of neural networks.119

Indeed, artificial neural network in the first and second generation is a mathemati-120

cal model of mammalian brain though, SNN is an electronic hardware neuromorphic121

model of the biological brain. Networks composed of spiking neurons are able to122

process significant amount of data using a relatively small number of spikes [21].123

Due to the similarity between the biological neurons and spiking models functional-124

ity, SNNs provide powerful tools to emulate data processing in the brain, including125

neural information processing, plasticity and learning. Consequently, spiking net-126

works offer solutions to a broad range of specific problems in applied engineering127

image detection, event detection, classification, speech recognition and many cogni-128

tive computation domain applications.129
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Spiking Neural Computing in Memristive Neuromorphic Platforms 5

2.1 Spike Information Coding130

Spike is the language that neurons communicate to each other in SNN architectures.131

One of the key unresolved questions in neuroscience is how information processed132

in the brain. The nature of the neural code is an unresolved topic of research in133

neuroscience. However, based on what is known from biology, a number of neural134

information encoding have been proposed:135

1. Rate coding136

The rate of spikes in a time-window is counted for the information transmission.137

It is also called as frequency coding (Fig. 2a). As the intensity of a stimulus138

increases more, the firing rate of spikes increases more too. Rate encoding is139

motivated by the observation that biological neurons eager to fire more often140

for stronger stimuli. There are two types of rate coding namely spike-count rate141

and time-dependent firing rate. In spike-count rating by counting the number of142

spikes that are generated during a trial and dividing by the duration of the trial, we143

calculate the temporal average of rating. In independent firing rate, the average144

number of spikes over trial happens during a short interval between times t and t145

+ �t , divided by the duration of the interval. Brette [22] has compared these two146

approaches in rate information coding in more details.147

2. Latency coding148

In this model, information is supposed to be contained in the exact timing of a149

set of spikes relative to each other as it is shown in Fig. 2b. It is already proved150

that precisely timed patterns of spikes have been postulated to play a significant151

role in the networks of neuron in different functions [23]. Precise spike timing is152

one of the important parameters that control variety forms of synaptic plasticity.153

Latency coding by using sequences of spikes are mainly observed in feed-forward154

networks since noise and dynamics of recurrent networks can disrupt spike timing155

precision, some attempts to harvest precise spiking timing in recurrent networks156

have been done for example by exploring the idea of reservoir computation [24].157

3. Phase coding158

This model generates the times of emitted spikes based on the time point in a159

periodic signal. In this (Fig. 2c) method the spike trains can encode information160

in the phase of a pulse respecting to the background oscillations. Phase coding161

method has been used both in models and experimentally. Phase coding has been162

suggested for the hippocampus as well [25]. Spiking networks exploring the phase163

coding strategy have recently been applied in tasks as olfactory systems or robot164

navigation [26].165

4. Rank-coding (spike-order coding)166

In this method of spike coding, information is encoded by the order of spikes167

in the activity of a group of neurons as it is depicted in Fig. 2d. Rank-coding168

approach has been suggested to describe ultra-fast categorization observed in the169

visual system. This model assumes that each neuron emits only a single spike170

during a presentation of the image. This method can be implemented in a feed-171

forward network with inhibitory feedback connections. Thorpe and others [27]172
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6 M. Shahsavari et al.

developed a spiking neural model that was able to classify static images with a173

processing speed comparable to that observed in humans one.174

5. Population coding175

This coding model is a method to introduce stimuli by applying the joint activities176

of the group of neurons. In population coding, each neuron has a distribution of177

responses to the certain set of inputs, and the responses of group of neurons will be178

combined to present a value for the inputs (Fig. 2e). During the last two decades,179

the theory has focused on analyzing the methods in which different parameters180

that characterize neuronal responses to external stimuli affect the information181

content of these responses. Recent challenge in population coding is to develop a182

theory that can generate predictions for specific readout mechanisms for example183

for visual target information [28].184

6. Sparse coding185

This model of coding generally refers to a representation where a few number186

of neurons are active, with the majority of the neurons inactive or showing low187

activity see Fig. 2f. Sparse coding has been suggested as a guiding principle in188

neural representations of sensory input, specially in the visual sensory system.189

It is also discussed that sparse coding offers a useful solution to the problem190

of representing natural data because such a scheme allows the system to take191

advantage of the sparse structure of the sensory environment. It is believed that192

the natural environment is inherently sparse and codes that using this structure can193

be both metabolically efficient and useful for learning. Sparseness can be defined194

over a population of neurons at a specific point in time (population sparseness)195

or it can be measured for a single neuron over a certain time-window [29].196

2.2 Network Topology197

The interconnection structure of neurons in a network of neurons is called topology,198

architecture or graph of an artificial neural network. The manner in which the inter-199

connection is structured intimately is linked to the learning algorithms applied to200

train the neural networks. Indeed, the interconnection can be structured in numerous201

ways results in numerous possible topologies that are divided into two basic classes202

namely: Feed-Forward Neural Networks (FFNN) and Recurrent (or feedback) Neural203

Networks (RNN) depicted in Fig. 3.204

2.2.1 Feed-Forward Neural Networks (FFNN)205

The FFNN is divided into two different structure called single-layer FFNN and206

multilayer FFNN. The single-layer is structured as an input and output layer which207

is strictly a feed-forward or acyclic graph. We do not count the input layer because208

no calculation is performed in input nodes (neurons). The multilayer FFNN has one209
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Spiking Neural Computing in Memristive Neuromorphic Platforms 7

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Spike information coding strategies a Rate coding. b Latency coding. c Phase coding.
d Rank-coding (spike-order coding). e Population coding. f Sparse coding

(a) (b)

Fig. 3 Two main topologies of artificial neural network architectures a Feed-Forward Neural
Networks (FFNN), b Recurrent Neural Networks (RNN)
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8 M. Shahsavari et al.

or more hidden layers between input and output layers similar to Fig. 3a which210

has one hidden layer. By adding one or more hidden layers, the neural network211

can extract the higher-order statistics which is particularly valuable when the size212

of the input layer is large [30]. Among the known types of neural networks (NN),213

the feed-forward neural networks are the mostly used because of their simplicity,214

flexible structure, good qualities of representation, and their capability of universal215

approximation. Respecting to the way of interconnectivity of the nodes (neurons)216

there are two kinds of feed-forward architecture:217

• fully connected218

In this configuration, every node in each layer of the network is connected to219

every other node in the next layer. In fact, we can call them globally connected220

networks. The Restricted Boltzmann Machine (RBM) could be an example of fully221

connected FFNN.222

• partially connected223

In this configuration, some communication links are missing. The convolutional224

neural networks is a good example for the partially connected FFNN. Partially225

connected topologies present a suitable alternative with a reduced degree of redun-226

dancy and thus a potential for increased efficiency of neural networks.227

2.2.2 Recurrent Neural Networks (RNN)228

The RNN is distinguished from FFNN in that it has at least one feedback loop con-229

nection. Recurrent neural networks can be single-layer or multilayer as well. Unlike230

feed-forward neural networks, recurrent networks retain a state that can represent231

information from an arbitrarily long context window. Although recurrent neural net-232

works have traditionally been difficult to train, and often contain thousands of param-233

eters, recent studies in network architectures, optimization techniques, and parallel234

computation have enabled successful large-scale learning to use RNN [31]. Hopfield235

[32] network is an example of the recurrent artificial neural network that is used to236

store one or more stable vectors. The stable vectors can be considered as memories237

that the network recalls them when provided with similar vectors that operate as a238

queue to the network memory. Other example of RNN is Elman network [33] that239

refers as a simple Recurrent Network is the special case of recurrent artificial neural240

networks. This type of artificial neural network has the memory that allows it to both241

detect and generate time-varying patterns.242

2.2.3 Modern Neural Networks243

Here, we discuss recent feed-forward promising neural network which has been244

applied in different sensory computation applications.245

• Convolutional Neural Networks (CNN) Convolutional network is a multi-layer246

feed-forward network architecture in which neurons in one layer receive inputs247
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Spiking Neural Computing in Memristive Neuromorphic Platforms 9

from multiple neurons in the previous layer and produce an output which is a248

threshold or sigmoidal function of the weighted sum of its inputs. The connectiv-249

ity pattern between the nodes of one layer and the node of the subsequent layer,250

responsible for the weighted sum operation forms the convolution kernel. Each251

layer mainly has one or few number of convolution kernels that link the activity252

of a set of neurons from one layer to the target neuron of the next layer [34].253

Convolutional neural networks which have been explored intensively within the254

neuromorphic community for visual processing tasks [35]. They are normally255

implemented on CPUs and GPUs which consume a significant amount of power.256

In recent years, System-On-Chip (SOC) solutions and FPGA platforms have been257

used to implement these networks for increasing their performance while decreas-258

ing their power consumption.259

• Deep Belief Networks (DBN) Deep learning is currently an extremely active260

research area in machine learning and cognitive computing society. It has obtained261

many successes in a wide area of applications such as speech recognition, com-262

puter vision, and natural language processing. Deep Belief Networks (DBNs),263

introduced by Hinton and his colleagues as a special type of deep neural net-264

works with generative model properties [36]. This network is structured as inter-265

connected pairs of Restricted Boltzmann Machines. An adaptation of the neural266

model to allow transfer of parameters to a 784-500-500-10 layer spiking DBN was267

described in [15] with good performance on the MNIST digit database. DBN archi-268

tecture has been implemented on a Xilinx Spartan-6 LX150 FPGA [37] with very269

promising classification performance results (92%) on the same MNIST database.270

This FPGA implementation of the DBN (also called Minitaur) contains 32 parallel271

cores and 128 MB of DDR2 as main memory.272

3 Spiking Neuron Model273

The neuron is a dynamic element and processing unit that emits output pulses when-274

ever the excitation exceeds some threshold. The resulting sequence of pulses or275

“spikes” contains all the information that is transmitted from one neuron to the other276

one. In this section, we compare the biological, artificial and spiking neuron and277

furthermore, we explain various model of spiking neuron models.278

3.1 Biological, Artificial and Spiking Neuron279

A biological neuron is an electrically excitable cell that processes and transmits infor-280

mation by electrochemical signals. Chemical signaling occurs via synapses, special-281

ized connections with other cells. A typical physiological neuron can be divided into282

three anatomical and functional parts, called dendrites, soma and axon as it is shown283

in Fig. 4a. The soma is the central part of the neuron. It contains the nucleus of284
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10 M. Shahsavari et al.

(a)

(b)

Fig. 4 The structure of a neuron a Physiological neuron. b Artificial neuron model

the cell, where most protein synthesis occurs. The soma is considered as a central285

processing unit that performs an important nonlinear processing. The dendrites of286

a neuron are cellular extensions with many branches. Dendrites typically are con-287

sidered as inputs of the neuron. The axon carries nerve signals away from the soma288

and typically is considered as neuron output. Neurons have only one axon, but this289

axon may and will usually undergo extensive branching, enabling communication290

with many target cells. Another term which is necessary to know in the physiological291

neuron is action potential which is a short-lasting event in which the electrical mem-292

brane potential of a cell rapidly rises and falls. It plays a central role in cell-to-cell293

communication. Action potentials are also called “nerve impulses” or spikes, and the294

temporal sequence of them generated by a neuron is called spike train. A neuron that295

emits an action potential is said to fire.296

The artificial model of the neuron is a mathematical model of the physiological297

neuron. The basic computational element (neuron) is often called a node, unit or298

perceptron. Each input has an associated weight w, which can be modified and react299

like a biological synapse. The unit computes the f function of the weighted sum of300

its inputs xi :301
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Spiking Neural Computing in Memristive Neuromorphic Platforms 11

u j =
i∑

1

w j i xi (1)302

303

y j = f (u j + b j ) (2)304

It is obvious in Fig. 4b that x1, x2, x3, …, xi are neuron inputs, w j i is the synaptic305

weights between neuron j and neuron i , b j is bias, f is known as activation function306

or transfer function and y j is output of the neuron. Based on the model and application307

of neural networks, there are several types of activation functions such as threshold or308

step function, linear function, and Non-linear (Sigmoid) function. Here to be able to309

Understand how neural network works we explain the functionality of neuron using310

threshold function. Respecting to the input connections in Fig. 4b, we can define a311

threshold for transfer function f by defining threshold θ . Here, we choose θ = 0 in312

the way we could perform a binary classification.313

y j =
{

1 if u j ≥ 0
0 if u j < 0

(3)314

where u j is the induced local field of the neuron; which is,315

u j =
i∑

1

w j i xi + b j (4)316

Such a model of neuron is referred to McCulloch and Pitts [20].317

3.2 Spiking Neuron318

The Spiking neural model is an electrical model of physiological neuron that can be319

implemented on the circuit using traditional devices or state-of-the-art technologies320

e.g., CMOS transistors or on hardware platforms e.g., FPGAs. In Spiking model321

the neurons communicate using spikes and the input spikes make an action potential322

firing if inside a neuron reaches to the desired threshold (can be compared to threshold323

activation function in the artificial model of the neuron). Different models of the324

spiking neuron are proposed that here we study the main models.325

3.2.1 Hodgkin-Huxley Model326

The first electrical model and in other words the first spiking model of neuron is327

Hodgkin-Huxley neuron model [38] which got the Nobel Prize in Physiology or328

Medicine. Hodgkin and Huxley performed experiments on the giant axon of the squid329

and found three different types of current: sodium, potassium and leak current. It was330
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(a) (b)

Fig. 5 Electrical circuit represents Hodgkin-Haxley model of the neuron. a Details circuit model
of the neuron with sodium and potassium channels effects and leakage current. b Equivalent circuit
for more simplicity in solving equations

demonstrated that the ionic permeability of the membrane can be highly dependent331

on the membrane potential. The schematic diagram of the Hodgkin-Huxley model332

is shown in Fig. 5 where Erest is the membrane potential, C is the membrane capaci-333

tance, the leakage channel is described by an independent R and the conductance of334

this leakage is calculated gL = 1
R the conductance the other ion channels (gNa = 1

RNa
335

and gK = 1
RK

) is voltage and time dependent. The ionic current is divided into com-336

ponents carried by sodium and potassium ions. Each element of the ionic current is337

determined by a driving force which may easily be measured as an electrical potential,338

Erest as resting membrane potential, ENa and EK sodium and potassium potentials339

respectively. Current can be carried through the membrane either by charging the340

membrane capacitance or by moving ions through the resistances in parallel with the341

capacitance.342

The equivalent circuit of Hodgkin-Hulxey model is shown in the left side of Fig. 5343

that by representing the Krichhoffs law and using this circuit we can write following344

equations:345

IL(t) = VC(t)− Erest

RL
(5)346

Isyn(t) = C
dVC (t)

dt
+ VC(t)− Erest

RL
(6)347

Solving the Eq. 6 leads to an exponential answer (Eq. 7) that can model the behavior348

of membrane potential.349

VC(t) = v∞(1− exp(− t

τ
)+ Erest (7)350
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Spiking Neural Computing in Memristive Neuromorphic Platforms 13

Respecting to the synaptic current charging if there is enough input current to mem-351

brane the neuron will fire. We note that τ = RC in Eq. 7 is the time constant for352

charging and discharging the membrane.353

3.2.2 Integrate-and-Fire (I&F) Neurons354

Integrate-and-Fire (I&F) neuron model are derived from the Hodgkin-Huxley neuron355

model. There is an important type of I&F neuron model which is named Leaky-356

Integrate-and-Fire (LIF). There are other types of I&F models such as Quadratic-357

Integrate-and-Fire (QIF). The Leaky-Integrate-and-Fire (LIF) neuron model is a well-358

studied model of the neuron. There are three reasons for using LIF in our platform.359

• The fabricated model with recent CMOS technology is available [39, 40].360

• LIF works effectively in spiking and event-based networks [41].361

• LIF models are quite fast to simulate, and particularly attractive for large-scale362

network simulations [42].363

Neurons integrate the spike inputs from other neurons they are connected to. These364

input spikes change the internal potential of the neuron, it is known as neuron’s mem-365

brane potential or state variable. When this membrane potential passes a threshold366

voltage due to integrated inputs, the action potential occurs, in other words, the367

neuron fires. The model is described by the neuron membrane potential:368

τn
dv

dt
= −v(t)+ RIsyn(t) (8)369

Isyn(t) =
∑

j

gi j

∑

n

α(t − t (n)
j ) (9)370

371

where, v(t) represents the membrane potential at time t, τn = RC is the membrane372

time constant and R is the membrane resistance. Equation 8 describes a simple373

parallel resistor-capacitor (RC) circuit where the leakage term is due to the resistor374

and the integration of Isyn(t) is due to the capacitor. The total input current, Isyn(t),375

is generated by the activity of pre-synaptic neurons. In fact, each pre-synaptic spike376

generates a post-synaptic current pulse. The total input current injected to a neuron377

is the sum over all current pulses which is calculated in Eq. 9. Time t (n)
j represents378

the time of the nth spike of post-synaptic neuron j , and gi j is the conductance of379

synaptic efficacy between neuron i and neuron j . Function α(t) = qδ(t), where q380

is the injected charge to the artificial synapse and δ(t) is the Dirac pulse function. If381

Isyn(t) is big enough where action potential can pass the threshold voltage, neuron382

fires. It means there are enough input spikes in a short time window. When there is383

no or only a few spikes in a time window, the neuron is in the leaky phase and the384

state variable decreases exponentially. The duration of this time window depends on385

τn = RC . The equation is analytically solvable and thus we use the answer of Eq. 8386

in the network simulation when there is an input spike to improve the simulation387

performance. In Fig. 6, you can see the Matlab model of a single neuron. When the388
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14 M. Shahsavari et al.

Fig. 6 Simulation of a
single LIF neuron in Matlab,
the input spikes are applied
in t = [10, 30, 40, 50] ms.
Between 10 and 30 there is
more decrease than between
30 and 40

input voltage passes the threshold, the neuron fires and resets to resting state. The389

membrane potential stays for a definite period, which is called the refractory period,390

below the reset value.391

3.2.3 Izhikevich Neuron Model392

Izhikevich neuron model [43] combines the biological plausibility of Hodgkin-393

Huxley model and the computational efficiency of integrate-and-fire neurons. Using394

this model, we can simulate tens of thousands of spiking cortical neurons in real395

time. The model has two main characteristics it is computationally simple as well as396

capable of producing rich firing patterns that physiological neuron could produce.397

dV (t)

dt
= 0.04V (t)2 + 5V (t)+ 140− u(t)+ I (t) (10)398

399

du(t)

dt
= a.(b.V (t)− u(t)) (11)400

if V (t) ≥ 30 mV, then

{
V (t)← c

u(t)← u(t)+ d
(12)401

where V (t) and u(t) are variables without any dimension, and a, b, c, and d are param-402

eters without dimension. V (t) represents the membrane potential of the neuron and403

u(t) represents a membrane recovery variable, which accounts for the activation404

of K+ ionic currents and inactivation of Na+ ionic currents, and it provides neg-405

ative feedback to V (t). Synaptic currents or injected dc-currents are delivered via406

the variable I (t). The parameter a describes the time scale of the recovery variable407
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Spiking Neural Computing in Memristive Neuromorphic Platforms 15

u(t). Smaller value results in slower recovery. The parameter b presents the sensi-408

tivity of the recovery variable u(t) to the subthreshold fluctuations of the membrane409

potential V (t). Greater values couple V (t) and u(t) more strongly resulting in pos-410

sible subthreshold oscillations and low-threshold spiking dynamics. The parameter411

c represents the after-spike reset value of the membrane potential V (t) caused by412

the fast high-threshold K+ conductances. Finally, the parameter d describes after-413

spike reset of the recovery variable u(t) caused by slow high-threshold Na+ and K+414

conductance. Different firing behaviors can occur in biological spiking neurons and415

Izhikevich model can produce them is shown in Fig. 7.416

4 Synapse and Learning417

Synapse is a specialized structure with highly plastic characteristics enabling two418

neurons to exchange spike signals between themselves in other words, adjusting the419

connection strength between neurons. Thanks to the plasticity property of synapse,420

we can basically say the synapse is where the learning happens in neural network421

system. A physiological synapse connects the axon of a presynaptic neuron (the422

neuron before the synapse) to the dendrite of a postsynaptic neuron (the neuron after423

the synapse). Two behavioral types of biological synapses are defined:chemical and424

electrical.425

The chemical synapse is the primary definition of neurotransmitters between426

presynaptic and postsynaptic neurons. A neurotransmitter through a chemical synapse427

consists of three parts. The axon potential causes the presynaptic neuron to release a428

chemical substance into the synaptic cleft which is an intracellular space between the429

two neurons. The neurotransmitter then diffuses through the synaptic cleft. Moreover,430

the neurotransmitter causes a change in the voltage of the membrane of the postsynap-431

tic neuron. In biological neural system, a synapse is excitatory if the neurotransmitter432

causes an increase in the voltage of the postsynaptic neuron and inhibitory if it causes433

a reducing voltage in postsynaptic neuron. An electrical synapse consists of a group434

of gap junctions occurring close together. Gap junctions are tiny channels in the cell435

membrane that directly connect the cytoplasms of two cells [44]. The basic mecha-436

nism of synaptic transmission is well established. A presynaptic spike depolarizes the437

synaptic terminal, leading to a calcium flow through presynaptic calcium channels,438

causing vesicles of neurotransmitter to be released into the synaptic cleft. The neuro-439

transmitter binds temporarily to postsynaptic channels, opening them and allowing440

ionic current to flow across the membrane. Modeling this complete electrochemical441

behavior is rather challenging. The purpose of our study is not to model the exact442

behavior of synapse suitable for neuroscience study. The purpose of our study is443

to design a neuromorphic system appropriate for hardware implementation. There-444

fore, the behavior of synapse, neuron and model of neuron are studied to compare445

with recent techniques in addition to recent alternative technologies for hardware446

implementations.447
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16 M. Shahsavari et al.

Fig. 7 Different Known types of neurons correspond to different values of the parameters a, b, c,
and d could be reproduced by Izhikevich model From [43]
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Spiking Neural Computing in Memristive Neuromorphic Platforms 17

4.1 Synapse Model448

Emerging devices in nano-scale have demonstrated novel properties for making new449

memories and unconventional processing units. One of those is the memristor that450

was hypothetically presented by Leon Chua in 1971 [45] and after a few decades,451

HP was the first to announce the successful memristor fabrication [46]. The unique452

properties in memristor nano-devices such as, extreme scalability, flexibility because453

of analog behavior, and ability to remember the last state make the memristor a very454

promising candidate to apply it as a synapse in Spiking Neural Network (SNN) [47].455

In the recent years, there have been several research works using non-volatile456

resistive nanodevice as a synapse to build a SNN hardware [11, 47, 48]. Forgetting in457

the biological brain is an important key of adaptive computation, as without forgetting458

the biological memory soon becomes overwhelmed by the details of every piece of459

information ever experienced. Consequently, some studies have been done using460

volatile memory as a synapse in brain-like computing [49–51].461

We combine both volatile and non-volatile types of artificial synapses. It leads462

to make a synapse which can forget if the information is not important as well as463

remember if it is significant data. Due to the demonstrated potential of NOMFET464

(Nanoparticle Organic Memory Field-Effect Transistor) [49, 50] to play the role465

of a synapse, we use it as a volatile synapse in the synapse box. The non-volatile466

device could be any solid-state memristor. We have chose here the resistive memory467

presented in [52] as non-volatile memory. Resistive RAM is modeled in our previous468

work [53] and is used here as a nonvolatile memristor in the synapse box. As it is469

shown in Fig. 8b by changing the doped-undoped regions of device, the conductance470

will be changed. Bigger doped region leads to more conductivity. Therefore by471

controlling this boundary between two regions, the conductivity is controlled. The472

behavior of memristor can be modeled as follows [46]:473

v(t) = Rmi(t) (13)474

Rm = RON
w(t)

D
+ ROFF

(
1− w(t)

D

)
(14)475

476

where Rm is the variable resistance of memristor, w(t) is the width of the doped477

region, D is the overall thickness of device, RON and ROFF are device resistances478

while the active region is completely doped (w = D) and mostly undoped (w→ 0)479

respectively (Fig. 8b). To model the changing of the conductance, we use the model480

extracted from Eq. 14 and introduced in [54] by considering gmax = 1
RON

and gmin =481

1
ROFF

as the maximum and minimum device conductance respectively.482

NOMFET is designed particularly for neuro-inspired computing architectures483

[50]. NOMFET uses charge trapping/detrapping in an array of gold nanoparticles484

(NPs) with the SiO2/pentacene interface designed to mimic dynamic plasticity of a485

biological synapse as depicted in Fig. 8 [50]. The NOMFET is used as a two-terminal486

device by connecting drain (D) and gate (G) together and using this terminal as an
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18 M. Shahsavari et al.

(a)

(b)

(c)

(d)

Fig. 8 Artificial synapse: a schematic view of the NOMFET as a volatile memory, b TiO2 based
nonvolatile memory, c synapse box schematic, d equivalent circuit with simple elements

input. The source (S) is used as output of the device. Equation 15 shows the behavior487

of NOMFET as a memristor:488

ids(t) = g(qnp(t), vds(t), t)vds (15)489

where g is the conductance of the device, vds(t) is the applied voltage and qnp is490

the charges trapped in the NP. For more details of physical structure and behavior of491

NOMFET refer to [50, 51].492

Figure 8c is the synapse box schematic that we apply in our simulation platform to493

take the advantages of both nonvolatile and volatile artificial synapses. The equivalent494

circuit of transistor is depicted in Fig. 8d. Actually, weight modification follows the495

Short-term potentiation (STP) rule until reaching the Long-term pote potentiation496

(LTP) threshold in NOMFET. The modification of nonvolatile device is based on497

STDP learning. Indeed the NOMFET reacts similar to a high-pass filter (HPF). The498

stimuli spikes with low frequency are not qualified to pass in forgetting Phase. In499

LTP , stimuli spikes which have more frequency pass to interfere in learning phase500

(Fig. 6). This synapse box is an approach to improve the quality of synapse for better501

learning in SNN that have demonstrated better learning performance in SNN rather502

than nonvolatile memristive synapse [55].503
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4.2 Learning and Plasticity504

To be able to model a proper synapse to contribute in learning process in an efficient505

way in neural system, we need to analyze how learning happens in synapse. Neurons506

and synapses are the two basic computational units in the brain. The human brain507

consists of 1011 neurons and an extremely large number of synapses, 1015, which act508

as a highly complex interconnection network among the neurons.509

Subsequently, each neuron is connected to 1000–10000 synapses [56]. Neuron510

computation is performed by integrating the inputs coming from other neurons and511

producing spikes as based on variety of the connections. The synapses contribute512

to the computation by modifying their connection strength as a result of neuronal513

activity, which is known as the synaptic plasticity. This synaptic plasticity is believed514

as the basis of adaptation and learning, even in traditional neural network models515

where several synaptic weight updating rules are based on Hebb’s law [57, 58].516

4.2.1 Classes of Learning Algorithms517

The primary significance of any type of neural networks is the property of learning518

from the environment to improve the performance of neural network. There are sev-519

eral types of learning algorithms. Although interconnection configuration of neural520

network is important in learning however, learning algorithms generally differ from521

each other in the way in which they adjust synapse weights. Simon Haykin, men-522

tioned five different basic algorithms for learning in his book [30] namely memory-523

based, Hebbian, error-correction, competitive, and Boltzmann learning. Memory-524

based learning functionality is based on memorizing the training data explicitly.525

Hebbian and competitive learning are inspired by neurobiology. Error-correction is526

working using optimum filtering rule and Boltzmann learning is based on ideas bor-527

rowed from statistical mechanics. In general, learning algorithms can be divided into528

supervised or with teacher learning, semi-supervised learning, and unsupervised or529

without teacher learning algorithms.530

• Supervised algorithms531

Teacher has the knowledge of environment and this knowledge will be shared532

with the network as some examples of inputs and their corresponding outputs.533

The supervision is continued letting a modification rule adjust the synapses until534

the desired computation emerges as a consequence of the training process. Then535

the supervision process is stopped and network must have the similar outputs536

with the specific inputs while the supervision was working. Error-correction algo-537

rithms which include the back-propagation using gradient descent is an example of538

supervised algorithms, other well-known supervised algorithms are support vector539

machines (SVM) and Bayesian type of learning algorithms. In fact, we put label540

on the data in training and check those labels in testing. This type of algorithms541

are used for regression and classifications.542
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• Semi-supervised algorithms543

Semi-supervised learning falls between supervised learning and unsupervised544

learning. Labeled data are often difficult, expensive, and time consuming to obtain,545

as they require the efforts of experienced human annotators. Meanwhile unlabeled546

data may be relatively easy to collect. Semi-supervised uses large amount of unla-547

beled data, together with the labeled data, to build better classifiers. Intuitively, in548

semi-supervised learning we can consider the learning problem as an exam and549

labeled data as the few example problems that the teacher solved in the course.550

The teacher also provides a set of unsolved problems. Semi-supervised learning551

requires less human effort and gives higher accuracy, therefore it is of great interest552

both in theory and in practical application.553

• Unsupervised algorithms554

There is no teacher and environment is unknown for the network too. There is555

no labeled data output in unsupervised learning. Unsupervised learning can be556

thought of as finding patterns in the data above and beyond what is considered as557

pure unstructured noise. One very simple classic example of unsupervised learning558

is clustering. Hebbian plasticity is a form of unsupervised learning, which is useful559

for clustering input data but less appropriate when a desired outcome for the560

network is known in advance.561

4.2.2 Short-Term and Long-Term Plasticity562

Physiological synapses have an inherent dynamics, that controls how the pattern563

of amplitudes of postsynaptic responses depends on the temporal pattern of the564

incoming spike train. Indeed, each effective spike evokes a spike response in the565

postsynaptic neuron that is fewer (depression) or bigger (facilitation or potentiation)566

than the previous one. The strength of synaptic connections or weights are caused567

by memorizing events, underling the ability of the brain to memorize. In the bio-568

logical brain, short-term plasticity refers to a number of phenomena that affect the569

probability that a presynaptic action potential opens postsynaptic channels and that570

takes from milliseconds to tens of seconds. Short-term plasticity is achieved through571

the temporal enhancement of a synaptic connection, which then quickly decays to572

its initial state. Short-term plasticity depends on the sequence of presynaptic spikes573

Fig. 9.574

In local learning process, iteration of stimulation leads to a more stable change575

in the connection to achieve long-term plasticity. Long-term plasticity is sensitive576

to the presynaptic firing rate over a time scale of tens or hundreds of seconds [59].577

In general, synapses can exhibit potentiation and depression over a variety of time578

scales, and multiple components of short- or long-term plasticity. Thus, four com-579

bination are possible from short and long term plasticity: Short-term potentiation580

(STP), short-term depression (STD), Long-term potantiation (LTP) and long-term581

depression (LTD) [60].582
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Fig. 9 Implementation of
plasticity by local variables
which each spike contributes
to a trace x(t). The update of
the trace depends on the
sequence of presynaptic
spikes

4.2.3 Spike-Timing Dependent Plasticity (STDP)583

Most of the plasticity models employed in the neuroscience and neuromorphic584

approach were inspired by Hebb’s (1949) postulate that explains the way that synapse585

connection weight should be modified: When an axon of cell A is near enough to586

excite cell B or repeatedly or persistently takes part in firing it, some growth process587

or metabolic change takes place in one or both cells such that A’s efficiency, as one588

of the cells firing B, is increased.589

Local learning rules aim to deal with information encoded by precise spike timing590

in local synaptic memory. One of the most commonly studied and used rules is spike-591

timing-dependent plasticity (STDP) [18, 19] that can be considered as a spike-based592

producing of Hebbian learning. Based on the STDP modification rule, the synaptic593

changing is reinforced while both the pre- and post-synaptic neurons are active,594

nothing prevents the synapses from strengthening themselves boundlessly, which595

causes the post-synaptic activity to explode [61]. Indeed, the plasticity depends on the596

time intervals between pre- and postsynaptic spikes or in the other words, the concept597

of timing-LTP/LTD. The basic mechanisms of plasticity in STDP is derived from598

the long term potentiation (LTP) and the long term depression (LTD). Pre-synaptic599

spikes that precede post-synaptic action potentials produce long-term potentiation600

(LTP), and pre-synaptic spikes that proceed post-synaptic action potentials generate601

long-term depression (LTD).602

The basic configuration of STDP learning is depicted in Fig. 10. The rate of weight603

changing �w j i of a synapse from a presynaptic neuron j to postsynaptic neuron i604

depends on the relative timing between presynaptic spike and postsynaptic spikes.605

Let us name the presynaptic spike arrival times at synapse j by tpre
j where pre = 1,606

2, 3, … counts the presynaptic spikes. Similarly, tpost
i with post = 1, 2, 3, … labels607

the firing times of the postsynaptic neuron. The total weight change w j i induced by608

Eq. 16 is then [18]609

435574_1_En_25_Chapter � TYPESET DISK LE � CP Disp.:28/2/2019 Pages: 38 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22 M. Shahsavari et al.

Fig. 10 Basic of spike-timing-dependent plasticity. The STDP function expresses the change of
synaptic weight as a function of the relative timing of pre- and post-synaptic spikes

�w =
n∑

pre=1

m∑

post=1

W (x)(t post
i − t pre

j ) (16)610

where W(x) is called a STDP learning function. Based on Zhang et al. [62] in their611

experimental work presented W(x) as:612

W (x) =
{

A+e( −x
τ+ ) if x ≥ 0

−A−e( x
τ− ) if x < 0

(17)613

where the parameters A+ and A− depend on the current value of the synaptic weight614

wi j . The time constants τ+ and τ− are on the order of 10 ms.615
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4.2.4 Different Models for STDP Learning616

Multiple pre- or postsynaptic spikes occurring across a synapse in an interval of time,617

the plasticity modification depends on their timing in a more complex manner. For618

instance, pair-based STDP models present “pre-post-pre” and “post-pre-pos” triplets619

of spikes with the same pairwise intervals should induce the same plasticity, however620

experimental studies demonstrated that these two triplet patterns have different effects621

[63, 64].622

• Pair-based STDP623

In this model of spike counting in the STDP interpret the biological evidence in624

terms of a pair-based update rule, i.e. the modification of a synaptic weight depends625

on the temporal difference between pairs of pre- and postsynaptic spikes:626

{
Winc(x) = Finc(w).e(− |�t |

τ+ ) if �t > 0

Wdec(x) = −Fdec(w).e(− |�t |
τ− ) if �t < 0

(18)627

In Eq. 18, �t = t post
i − t pre

j is the temporal difference between the post- and the628

presynaptic spikes, and Finc(w)/Fdec(w) presents the dependence of the update629

on the current synaptic weight. A pair-based model is fully specified by defining630

the form of Finc(w)/Fdec(w) as well as determining which pairs are taken into631

account to perform a new modification. A pair-based weight modification rule can632

be implemented using two local variables: one for a low-pass filtered version of633

the presynaptic spike train and another one for the postsynaptic spike train as it634

is shown in Fig. 11. Let us suppose that each spike from presynaptic neuron j635

contributes to a trace x j (t) at the synapse weight then we can write:636

dx j (t)

dt
= − x j (t)

τpre
+

∑

tpre
j

δ(t − t pre
j ) (19)637

where t pre
j represents the history of the firing times of the presynaptic neuron. In638

particular, the variable is increased by an amount of one at the arrival time of a639

presynaptic spike and reduces exponentially with time constant τpre afterwards.640

Similarly, each spike from postsynaptic neuron i contributes to a trace xi (t):641

dxi (t)

dt
= − xi (t)

τpost
+

∑

t post
i

δ(t − t post
i ) (20)642

where t post
i presents the firing times of the postsynaptic neuron. Similar to presy-643

naptic spike, a decrease of the weight is induced proportionally to the momentary644

value of the postsynaptic trace xi (t). The steady-state average for synaptic strength645

in pair-based STDP has a stable nontrivial mean if the depression window is larger646

than the potentiation window [64]. This fixed point is unique, so the mean of the647
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Fig. 11 Pair-based STDP
using local variables. The
spikes of presynaptic neuron
j leave a trace x j (t) and the
spikes of the postsynaptic
neuron i leave a trace xi (t).
The update of the weight
W ji at the moment of a
postsynaptic spike is
proportional to the
momentary value of the trace
x j (t) (filled circles). This
gives the amount of
potentiation due to
pre-before-post pairings.
Analogously, the update of
W ji on the occurrence of a
presynaptic spike is
proportional to the
momentary value of the trace
xi (t) (unfilled circles), which
gives the amount of
depression due to
post-before-pre pairings

steady-state distribution of synaptic weights converges to this value regardless648

of its initial value. The stability of the mean is not a sufficient condition for the649

steady-state distribution of synaptic strengths to be fully stable, each synapse must650

also have a stable deviation from the mean. The connection strength of a partic-651

ular synapse can be presented as w = w + δw, where δw is the deviation of the652

synapse from the mean. If the deviation is going to grow over time, the synapses653

will drift away from the mean and the distribution will be partially stable. If the654

deviation tends to decrease, the synapses will cluster around the mean and the655

distribution will be stable.656

• The triplet model657

The standard pair-based STDP models predict that if the repetition frequency is658

increased, the strength of the depressing interaction becomes greater, leading to659

less network potentiation. The frequency-dependence of STDP experiments can660

be accounted for if one assumes that the basic building block of potentiation during661

STDP experiments is not only a pair-wise interaction but also could be a triplet662

interaction between two postsynaptic spikes and one presynaptic spike. Pfister and663

Gerstner [65] to propose the triplet model, which takes into account interactions of664

spikes beyond pre-post pairings. This model is based on sets of three spikes, one665

presynaptic and two postsynaptic. For a pre-post-pre triplet, the first presynaptic666

spike enforces extra depression on the synapse, additionally for a post-pre-post667
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triplet the first postsynaptic spike enforces extra potentiation. The triplet model668

sums the contributions of all previous pre- and postsynaptic spikes as well as all669

pre-post pairings. Pfister and Gerstner [65] also provided a version of the triplet670

model based only on nearest neighboring spikes, but the qualitative behavior of671

both all to all and nearest neighboring versions is similar.672

Similarly to pair-based rules, each spike from presynaptic neuron j contributes to673

a trace x j (t) at the synapse:674

dx j (t)

dt
= − x j (t)

τpre
+

∑

t pre
j

δ(t − t pre
j ) (21)675

where t pre
j presents the firing times of the presynaptic neuron. In contrast with676

pair-based STDP, each spike from postsynaptic neuron i contributes to a fast trace677

xi (t) and a slow trace x ′i (t) at the synapse:678

dxi (t)

dt
= − xi (t)

τ1post
+

∑

t post
i

δ(t − t post
i ) (22)679

680

dx ′i (t)
dt
= − x ′i (t)

τ2post
+

∑

t post
i

δ(t − t post
i ) (23)681

where τ1post < τ2post , how the triplet model works is depicted in Fig. 12. In this682

model, LTD is induced as in the standard STDP pair model in Eq. 18, i.e. the683

weight change is proportional to the value of the fast postsynaptic trace xi (t)684

evaluated at the arrival of a presynaptic spike. The new feature of the rule is that685

LTP is pursued by a triplet effect: the weight change is proportional to the value686

of the presynaptic trace x j (t) evaluated at the arrival time of a postsynaptic spike687

as well as to the slow postsynaptic trace x ′i (t) from previous postsynaptic spike.688

The main functional advantage of a triplet STDP rule is that it can be mapped to689

a Bienenstock-Cooper-Munro learning rule [66]. It means if we assume that the690

pre- and postsynaptic spike trains are managed by Poisson statistics, the triplet691

rule presents depression for low postsynaptic firing rates and potentiation for high692

postsynaptic firing rates.693

• Suppression model694

Plasticity experiments using triplets of spikes demonstrated different effects than695

the hippocampal results. In the synapses of the visual cortex of rats, pre-post-pre696

triplets induce potentiation while post-pre-post triplets induce depression. These697

results led Froemke et al. [67] to develop the suppression model, in which STDP is698

induced by nearest neighbor pre- and postsynaptic spikes. In this model of STDP,699

the plasticity is computed from the standard pair-based STDP curve, however the700

impact of the presynaptic spike in each pair is suppressed by previous presynaptic701

spikes and, similarly, the plasticity induced by the postsynaptic spike in each pair702

is suppressed by previous postsynaptic spikes as it is shown in Fig. 13.703
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Fig. 12 Triplet STDP model
using local variables. The
spikes of presynaptic neuron
j contribute to a trace x j (t),
the spikes of postsynaptic
neuron i contribute to a fast
trace xi (t) and a slow trace
x ′i (t). The update of the
weight W ji at the arrival of a
presynaptic spike is
proportional value of the fast
trace xi (t) (green unfilled
circles), as in the pair-based
model. The update of the
weight W ji at the arrival of a
postsynaptic spike is
proportional to the value of
the trace x j (t) (red filled
circles) and the value of the
slow trace x ′i (t) just before
the spike (green filled
circles)

The suppression is maximal after each pre- or postsynaptic spike, and it decreases704

exponentially as the interval between consecutive pre- or postsynaptic spike705

increases. In a post-pre-post sequence of spikes, the timing of the first post-pre706

pairing was the best predictor for the synaptic weight modification. Moreover, in a707

pre-post-pre sequence of spikes, the first pre-post pair induces potentiation, never-708

theless the amount of depression induced by the second post-pre pair is suppressed709

by the first presynaptic spike. In the suppression STDP model, synaptic weight710

modification is presented by711

�w = (1− e−
�tpre
τpre )(1− e

− �tpost
τpost )×

{
Ainc.e

(− �t
τinc

) if �t ≥ 0

−Adec.e
( �t

τdec
) if �t < 0

(24)712

where �tpre is the interval between the presynaptic spike in the pair and its pre-713

ceding presynaptic spike, and �tpost is the interval between the postsynaptic spike714

and its preceding spike. This model introduces a proper fit to triplet and quadru-715

plet protocols particularly in the visual cortex, and also represents a much better716

prediction for synaptic changing due to natural spike trains [67]. Nonetheless, it717

does not predict the increase of LTP with the repetition frequency.718
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Spiking Neural Computing in Memristive Neuromorphic Platforms 27

Fig. 13 The suppression STDP model. a Spike interactions in the suppression model, in which
the impact of the presynaptic spike in a pair is suppressed by a previous presynaptic spike (top),
and the impact of the postsynaptic spike is suppressed by a previous postsynaptic spike (bottom).
b Plasticity in the suppression model induced by triplets of spikes: pre-post-pre triplets induce
potentiation (top left), and post-pre-post triplets induce depression (bottom right), From [64]

• Voltage dependence model719

Experimental model of Spike-Timing Dependent Plasticity recommends that720

synaptic weight modifications are caused by the tight temporal correlations721

between pre- and post- synaptic spikes. However, other experimental protocols722

where presynaptic spikes are paired with a fixed depolarization of the postsy-723

naptic neuron (e.g. under voltage clamp) show that postsynaptic spikes are not724

necessary to induce long-term potentiation and depression of the synapse [68].725

It has been discussed whether the voltage dependence is more fundamental than726

the dependence on postsynaptic spike. In fact, voltage dependence alone can pro-727

duce a behavior similar to STDP learning, as the membrane potential reacts in a728

particular manner in the vicinity of a spike it means high shortly before a spike,729

and low shortly after. Alternatively, a dependence on the slope of the postsynaptic730

membrane potential has been shown to regenerate the properties of STDP weight731

change curve. The voltage effects caused by back-propagating spikes is implicitly732

contained in the mechanistic formulation of STDP models outlined above. In par-733

ticular, the fast postsynaptic trace xi (t) in the triplet model can be considered as734

an approximation of a backpropagating action potential. In contrast, a standalone735

STDP rule does not automatically generate a voltage dependence. Furthermore,736

synaptic effects caused by subthreshold depolarization in the absence of postsy-737

naptic firing cannot be modeled by standard STDP or triplet models.738

• The NMDAR-based model739

The NMDAR-based model was proposed for the first time in [69] and “NMDAR-740

based model”, is phenomenologically based on the kinetics of the N-Methyl-741

D-Aspartate receptoras. It is a description for the main STDP experiments and742

resemble both the triplet and suppression models and and it is sensitive to spike743
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interactions beyond pre-post pairings. The NMDAR-based model is proposed to744

have three states, rest, up and down. Every presynaptic spike moves a portion of the745

NMDARs in the rest state into the up state, and every postsynaptic spike transitions746

a portion of the rest-state into the down state.The NMDAR goes exponentially back747

to the rest state while there is no spike.748

This model introduce two second messengers called “up” and “down” messengers,749

which cause to potentiation and depression, respectively which can be in active or750

inactive states. The arrival of presynaptic spike causes to a fraction of the inactive751

down messengers a transition to the active state. Similarly, when a postsynaptic752

spike arrives in the synapse, it shifts a portion of the inactive up messengers into753

their active state. The messengers go back to their inactive states when there is no754

spike. Subsequently, when a presynaptic spike arrives, the synapse is depressed755

proportionally to the value of active down messenger, provided that this is greater756

than a threshold θdn . Similarly, each postsynaptic spike leads synapse to potentiate757

proportionally to the amount of active up messenger provided that it is greater than758

a threshold θup. Therefore, the presynaptic spike has three roles in this model: it759

transmits resting NMDARs into the up state, it activates the down messenger, and760

it induces depression. The postsynaptic spike also plays three roles: it movement761

resting NMDARs into the down state, it activates the up messenger, as well as it762

induces potentiation see Fig. 14.763

Shortly, the specific property of the NMDAR-based learning model compared to764

the pair-based model is the possibility of a stable synaptic distribution and anti-765

Hebbian competition when the maximum depression is significantly larger than766

the maximum potentiation.767

• Other methods768

In addition to the reviewed methods above, there are other types of STDP models769

for learning such as supervised [70] and reinforcement learning [71]. However,770

due to the unsupervised nature of STDP learning that is interesting for neuro-771

inspired computation, we do not focus on them in this study. Pair-based STDP772

models can be categorized into three classes: weight dependence, spike-pairing773

scheme and delay partition. Choosing each category should be made consciously774

and take into account the relevant available experimental findings. The recent775

available evidences shows that both potentiation and depression are dependent on776

the weight. Accordingly it is recommended to begin with very simplified models.777

Moreover, we know that STDP models which assume some weight dependence778

generate different behavior from the additive model. The pair-based and triplet779

models are partially stable and use Hebbian competition. The Suppression and780

NMDAR-based have more stability but they use anti-Hebbian competition. The781

main challenge in this domain is to perform analytical and simulation studies that782

are able to identify and characterize their composite effects, and investigate their783

functional consequences.784
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Spiking Neural Computing in Memristive Neuromorphic Platforms 29

Fig. 14 The NMDAR-based model. a Schematic illustration of spike interactions in the NMDAR-
based model. The presynaptic spike up-regulates f rest, activates M dn and depresses the synapse.
The postsynaptic spike down-regulates frest, activates Mup and potentiates the synapse. b The
effect is asymmetric, with pre-post-pre triplets inducing potentiation (top left) and post-pre-post
depression (bottom right), From [64]

5 Hardware Spiking Neural Network Systems785

Specific application domains such as Big Data classification, visual processing, pat-786

tern recognition and in general sensory input data, require information processing787

systems which are able to classify the data and to learn from the patterns in the data.788

Such systems should be power-efficient. Thus researchers have developed brain-789

inspired architectures such as spiking neural networks. For large scale brain-like790

computing on neuromorphic hardware, there are four approaches:791

1. Microprocessor based approaches where the system can read the codes to execute792

and model the behavior of neural systems and cognitive computation such as the793

SpiNNaker machine [12].794

2. Fully digital custom circuits where the neural system components are mod-795

eled in circuit using state-of-the-art CMOS technology e.g., IBM TrueNorth796

machine [11].797

3. Analog/digital mixed-signal systems that model the behavior of biological neural798

systems, e.g. the NeuroGrid [17] and BrainScales [72] projects.799

4. Memristor crossbar array based systems where the analog behavior of the mem-800

ristors emulate the synapses of a spiking neural network.801

In the following, we give some details about these approaches and compare their802

performance.803

SpiNNaker is a massively parallel and processor-based (ARM processor) system804

with the purpose of building large scale spiking neural networks simulations. It is805

highly scalable and capable to simulate a network from thousands to millions of806

neurons with varying degree of connectivity. It proposes to integrate 57,600 cus-807

tom VLSI chips based on the AER (Address Event Representation) communication808

protocol [73]. Each chip contains 18 fixed-point advanced RISC ARM968 process-809
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ing cores next to the custom routing infrastructure circuits which is dedicated 96810

kB of local memory besides 128 MB of shared Dynamic Random Access Memory811

(DRAM) as it is depicted in Fig. 15a. The router memory consists of a three-state812

1024× 32 bits Content Addressable Memory (CAM) and a 1024× 24 bits Random813

Access Memory (RAM). Going more to the details, each ARM core has a local 32 kB814

instruction memory and 64 kB data memory. Regarding to the architecture and design815

properties, SpiNNaker offers very fast simulation of large scale neural networks. It816

has a remarkable flexibility for arbitrary connectivity for network architecture and817

various neurons, synapses and learning algorithms. However, the system still uses818

von Neumann architecture with a large extent of memory hierarchies found in con-819

ventional computers with memory wall bottleneck issues. Although using low-power820

ARM processors dedicated to power-efficient platforms used in training and robotic821

applications with four to 48 nodes, SpiNNaker consumes a relatively small amount822

of power. However, the largest machine with the ability to simulate of one percent of823

a human brain and incorporating over a million ARM processor cores, still requires824

up to 75 kW of electrical power.825

IBM designed a scalable, flexible and non-von Neumann full custom spiking neu-826

ral network named “TrueNorth”. Although TrueNorth uses transistors as digital gates,827

they use event-driven method to communicate in fully asynchronous manner. The828

structure of TrueNorth consists of 5.4 billion transistors to build 4096 neurosynaptic829

cores. Each core includes 256 digital LIF neurons, 256× 256 binary programmable830

synapses, and asynchronous encoding/decoding and routing circuits. Each synapse831

has a binary behavior that can be individually turned on or off and can be assigned832

to model one type of inhibitory and two types of excitatory synapse with differ-833

ent weights. Neuron dynamics has a global 1 kHz clock and so is discretized into834

1 ms time steps. Regarding to the synaptic matrix, each neuron can be connected835

to one up to 256 neurons of a destination core. The routing in TrueNorth is less836

flexible than in SpiNNaker, however TrueNorth can distribute the system memory837

includes core synaptic matrix and routing table entries (Fig. 15b) The architecture838

thus supports dynamics of connectivity that includes feed-forward, recurrent, and839

lateral connections. The power consumption is 20 mW/cm2, though the traditional840

central processing unit (CPU) is 50–100 W/cm2. In this platform the synapses do not841

implement any plasticity mechanism, therefore they are not able to perform on-line842

learning.843

The BrainScales project (Brain-inspired multiscale computation in neuromorphic844

hybrid systems) is the successor of FACETS [74] project. This project proposes845

the design and implementation of a custom analog/digital mixed-signal simulation846

engine that is able to implement the differential equations with an acceptable accu-847

racy. This computational neuroscience model is provided by neuro-scientists, and848

reproduces the results obtained from numerical simulations executed on conven-849

tional computers. The Heidelberg University BrainScales project (HICANN chip)850

aims to produce a wafer-scale neural simulation platform, in which each 8 inch sil-851

icon wafer integrates 50× 106 plastic synapses and 200,000 biologically realistic852

neuron circuits (see Fig. 15c). In order to have a scalable size with maximum number853

of processors on the wafer, relatively small capacitors have been applied for model-854
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(a) (b)

(c) (d)

Fig. 15 Large scale spiking neural network systems, a Principal architectural parts of a SpiNNaker
processing node. b In TrueNorth, conceptual blueprint of an architecture like the brain, tightly
integrates memory, computation, and communication in distributed modules that operate in parallel
and communicate via an event-driven platform. c Schematic of HICANN board in BrainScales
project. d The chip comprises a 256× 256 array of neuron elements, an asynchronous digital
transmitter for sending the events generated by the neurons, a receiver block for accepting events
from other sources, a router block for communicating packets among chips, and a memory blocks
for supporting different network configurations

ing the synapses and neurons. Accordingly, using the large currents generated by the855

above-threshold circuit and the small capacitors, the BrainScales circuits are not able856

to achieve the long time-constants required for interacting with real-time environ-857

ments. However, the speed of network components operations compared to biological858

elements reactions is accelerated by a factor of 103 or 104 which can reduce the sim-859

ulation time dramatically. Furthermore, it needs large bandwidth and fast switching860

and still high-power circuit for propagating spikes across the network [1].861

NeuroGrid is another big project developed at Stanford University that emulates862

neuromorphic engineering vision, sub-threshold network components circuits and863

uses analog/digital mixed-signal to model continuous time for network elements.864

This meuromorphic platform simulates a million neurons with billions of synap-865

tic connections in real-time. Such as TrueNorth and BrainScales the architecture of866

Neurogrid is non-von Neumann. Neurogrid emulates four network elements: axon,867

dendrite, soma and synapse. Only the axon circuit is digital and the other elements are868

modeled in the analog circuits due to the better energy efficiency. NeuroGrid consists869

of 16 standard CMOS “NeuroCores” (see Fig. 15d) integrated on a board that works870

using 3 W of power energy connected in a tree network, with each NeuroCore con-871

435574_1_En_25_Chapter � TYPESET DISK LE � CP Disp.:28/2/2019 Pages: 38 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

32 M. Shahsavari et al.

sisting of a 256× 256 array of two-compartmental neurons. The synaptic circuits872

are shared among the neurons while different spikes can be assigned to the same873

synapse. The main goal of neuromorphic systems is to interact with real physical874

environments and process the natural signals with physiological time-scales, Neuro-875

grid has long time constants in the range of tens of milliseconds. Consequently, this876

long time constants limitation causes difficulty in using typical VLSI for design and877

implementation. Neurogrid and BrainScales similarly use the temporal dynamic of878

memory elements to store the state of the network. Accordingly, these two projects879

have the capability of local learning using the STDP learning rule.880

An alternative to these architectures, that has been proposed by several authors [47–881

49, 75, 76], is to use memristive devices as synapses in neuromorphic circuits. This882

has the potential to lower the energy consumption by a large proportion. It has also883

been showed that the memristors can emulate the STDP learning rule, and thus lead884

to unsupervised learning circuits. We have thus chosen to study this kind of archi-885

tecture and, in particular, to check how some parameters of the architecture or of the886

devices influence the learning capabilities of the circuit.887

6 Discussion888

Still for a network simulation and implementation of neuromorphic spiking system,889

we need more techniques such as homeostasis and lateral inhibition to support learn-890

ing process for an optimized system. Homeostasis is used in the SNN to adapt the891

threshold level of neurons to learning in SNN. Another consideration is lateral inhi-892

bition while we are using unsupervised learning methods such as STDP. Here we893

discuss Winner Take-All (WTA) method.894

6.1 Homeostasis895

Homeostasis addresses a general principle that safeguards the stability of natural andAQ3896

artificial neural systems, where stability is understood in its more classical sense of897

robustness against external perturbations. Homeostasis is a fundamental concept in898

neuropsychology, psychophysiology and neuroscience. Homeostasis will be defined899

as negative feedback control. In physiological neural systems, the synaptic input of a900

neuron is changing over time due to the external neural drive and learning results of901

synaptic plasticity. From a perspective of metabolic cost, a restricted activity range902

of a neuron is really meaningful.903

In STDP learning, the synaptic input of a neuron may strongly increase or decrease904

for a long time and as a result the neural activity will be drifting to an extremely high905

or low level. Homeostasis is a neuron property that regulates the firing threshold to906

prevent a neuron to be hyperactive [77]. The idea is to use an adaptive threshold for907

the membrane potential. If the neuron is too much active in a short time window the908
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threshold grows gradually; likewise, when a neuron is not active in a certain time909

window the threshold is reduced slightly.910

dVth

dx
= γ ( f rmean − f rtarget ) (25)911

where f rmean is the mean activity (or firing rate) of a neuron, f rtarget is the target912

activity, and γ is a multiplicative positive constant. Consequently, the activity of913

the neuron is bounded in a homeostatic range to encode the synaptic input more914

effectively to improve the STDP learning [78].915

6.2 Winner-Take-All916

In a winner-take-all (WTA) network, in output layer or partially output layers, neu-917

rons compete with each other based on their output activities, which leads to an918

adaptation only of the weights of the neuron with the highest output activity [79].919

In unsupervised learning using spike coding and plasticity learning. Without com-920

petition, all the neurons would behave alike and no specialization takes place in the921

neurons. The theoretical analysis shows that winner-take-all is a surprisingly power-922

ful computational method compared with threshold gate (McCulloch-Pitts neuron)923

and sigmoidal gate [80]. There have been many implementations of winner take all924

(WTA) computations in recurrent networks in the literature [81, 82]. Also there have925

been many analog VLSI implementations of these circuit [82, 83]. In WTA, after the926

competition, only one neuron will be the most active for some inputs and the rest of927

the neurons will eventually become inactive for those inputs. Physiologically plausi-928

ble learning methods can be mainly classified as dense, local, or sparse. Competitive929

learning such as WTA is a local learning rule as it activates only the unit that fits the930

input pattern best and suppresses the others through fixed inhibitory connections.931

The simplest competitive computational model is a hard WTA that computes a932

function fW T A:Rn → {0, 1}n whose output 〈b1, . . . , bn〉 = fW T A(x1, . . . , xn) satis-933

fies934

bi =
{

1 if xi > x j for all j 	= i
0 if xi < x j for some j 	= i

(26)935

Therefore in the case of inputs x1, . . . , xn a single output bi has values 1 that marks936

the position of the biggest input xi . Wolfgang Maass [80] introduced two types of937

WTA namely k-WTA and soft-WTA. In k-WTA, bi has value 1 if and only if xi is938

among the k largest inputs. In soft-WTA the ith output is an analog variable ri whose939

value reflects the rank of xi among the input variables. We use WTA in our research940

that will be presented in the next sections.941

435574_1_En_25_Chapter � TYPESET DISK LE � CP Disp.:28/2/2019 Pages: 38 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 M. Shahsavari et al.

7 Conclusion942

Neuromorphic computation using Spiking Neural Networks (SNN) is proposed as943

an alternative solution for future of computation to conquer the memory bottel-944

neck issue in recent computer architecture. Different spike codings have been dis-945

cussed to improve data transferring and data processing in neuro-inspired compu-946

tation paradigms. Choosing the appropriate neural network topology could result947

in better performance of computation, recognition and classification. The model of948

the neuron is another important factor to design and implement SNN systems. The949

speed of simulation and implementation, ability of integration to the other elements950

of the network, and suitability for scalable networks are the factors to select a neuron951

model. The learning algorithms are significant consideration to train the neural net-952

work for weight modification. Improving learning in neuromorphic architecture is953

feasible by improving the quality of artificial synapse as well as learning algorithm954

such as STDP. In this chapter we proposed a new synapse box that can remember955

and forget. Furthermore, as the most frequent used unsupervised method for network956

training in SNN is STDP, we analyzed and reviewed the various methods of STDP.957

The sequential order of pre- or postsynaptic spikes occurring across a synapse in an958

interval of time leads to defining different STDP methods. Based on the importance959

of stability as well as Hebbian competition or anti-Hebbian competition the method960

will be used in weight modification. We surveyed the most significant projects that961

cause making neuromorphic platform. The advantages and disadvantages of each962

neuromorphic platform have been introduced in this chapter.963
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