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Abstract Purpose Multiple myeloma (MM) is a bone

marrow cancer that accounts for 10% of all hemato-

logical malignancies. It has been reported that FDG

PET imaging provides prognostic information for both

baseline and therapeutic follow-up of MM patients us-

ing visual analysis. In this study, we aim to develop a

computer-assisted method based on PET quantitative

image features to assist diagnoses and treatment deci-

sions for MM patients.

Methods Our proposed model relies on a two-stage

method with Random Survival Forest (RFS) and Vari-

able importance (VIMP) for both feature selection and

prediction. The targeted variable for prediction is the

progression-free survival (PFS). We consider texture-

based (radiomics), conventional (e.g. SUVmax) and clin-

ical biomarkers. We evaluate PFS predictions in terms

of C-index and final prognosis separation in two risk

groups, from a database of 66 patients who were part

of the prospective multi-centric french IMAJEM study.

Results Our method (VIMP+RSF) provides better

results (1-C-index of 0.36) than conventional methods

such as Lasso-Cox and Gradient-Boosting Cox (0.48

and 0.56 respectively). We experimentally proved the

interest of using selection (0.61 for RSF without se-

lection) and showed that VIMP selection is more sta-

ble and gives better results than Minimal-depth and

Variable-Hunting (0.47 and 0.43). The approach gives
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better prognosis group separation (a p-value of 0.05

against 0.11 to 0.4 for others).

Conclusion

Our results confirm the predictive value of radiomics

for MM patients, in particular, they demonstrate that

quantitative/heterogeneity image-based features reduce

the error of the predicted progression.

To our knowledge, this is the first work using RFS

on PET images for the progression prediction of MM

patients. Moreover, we provide an analysis of the fea-

ture selection process, which points towards the identi-

fication of clinically relevant biomarkers.

Keywords Random Survival Forest · Multiple

Myeloma · Variable Selection · Radiomics · PET

imaging

1 Introduction

Multiple Myeloma (MM) is characterized by the clonal

proliferation of malignant plasma cells in the bone mar-

row (BM) and accounts for about 10-15% of hemato-

logical malignancies. 18F-FDG PET is useful for initial

staging and therapeutic monitoring in MM [13]. An ex-

ample of full-body FDG PET imaging is presented in

Fig. 1. Image interpretation relies mostly on visual anal-

ysis for detecting the lesions, as well as on the extrac-

tion of simple quantitative measurements such as the

standard uptake value of the maximum intensity voxel

within the lesion, also named SUVmax. These measure-

ments are then used together with clinical biomarkers

to provide a prognosis. Our long term aim is to develop

a computer-aided system capable of assisting physicians

in the prognosis task.

Recently, more advanced image-based measurements

have been suggested for PET image analysis, which

https://doi.org/10.1007/s11548-019-02015-y
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Fig. 1: Example of PET image of a multiple myeloma patient and processing of the radiomics features. Physicians

localise lesions and segmentation is processed before extraction of radiomics features.

quantify the intra-tumoral heterogeneity of the lesions

[22]. The consideration of such features for survival anal-

ysis is currently referred as radiomics. Their compu-

tation is largely inspired from standard image-texture

analysis tools [7]. There is today an increasing interest

in determining the value of such image-based quantita-

tive features for predicting the progression and/or the

outcome of patients.

The radiomics field is faced with several challenges.

First, there are numerous possibilities on how to com-

pute image-based features, so standardization is needed.[22]

But it is not yet clear which of these computational ap-

proaches might be the most predictive. Moreover, it is

necessary to combine image-based features with other

clinical information (age, sex, calcemia etc.). Consid-

ering multiple feature-extraction implementations and

the concatenation of image-based and clinical features

leads to high-dimensional vectors and calls for the use

of feature-selection methods or intelligent approaches

to handle them.

A second important aspect in determining the value

of radiomics for prognosis is the model used for prog-

nosis prediction.

We opt for the Random Survival Forest (RSF) method,

introduced by Ishwaran [8]. RSF is a machine learning

approach for survival analysis based on decision-tree

ensembles, which has demonstrated robustness to cen-

soring data1 and noisy variables. Moreover, RSF is suit-

able for high-dimensional and multi-modal input data

and naturally avoids overfitting.

1 Right censoring occurs when no event
(death/progression) has taken place at the end of the
evaluation period.

In this work, we propose a method to predict the

PFS (Progression Free Survival) given both clinical vari-

ables and radiomics features extracted from PET im-

ages. The framework consists of a cascade of two RSF

blocks: one for feature selection and the second for prog-

nosis prediction The contributions of our work are:

– While feature selection and predictive models are

usually considered separately, we propose here a uni-

fied model for variable selection and survival analy-

sis.

– Our experimental results show that with the pro-

posed method, it is possible to exploit radiomics

features for the estimation of the PFS, confirming

their predictive value.

– We illustrate how the RSF for feature selection finds

relevant known clinical and conventional biomarkers

and points to potentially new image-based ones.

– We are the first to investigate the use of RSF in the

context of MM and PET imaging.

Our experimental validation on a clinical prospec-

tive database, demonstrates the improvement of the

proposed method in terms of prediction error (1 - C-

index 2) on the predicted mortality (related on the PFS

in our case) when compared to the Gradient-Boosting

Cox [14] or Lasso-Cox approaches [16]. We also dis-

cuss a comparison of several RSF-based variable se-

lection methods: Variable Importance (VIMP), Mini-

mal Depth (MD) and Variable Hunting (VH). Then,

we demonstrate the interest of using a combination of

clinical features with imaging features for better pre-

diction. Finally, we highlight the possibility to select

2 The concordance index is the frequency of concordant
pairs among all pairs of subjects.
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the best features, and more precisely, the best compu-

tational approaches.

2 Related work

Classical statistical methods for survival analysis in-

clude Cox Proportional-Hazards Model [5] and Kaplan-

Meier curves [10]. These methods have the advantage

of being well understood and easy to interpret, but

have some limitations. Regarding Kaplan-Meier mod-

els, there is no possibility to evaluate the individual

survival of a single patient or to evaluate the impact

of co-variables on the survival. Moreover, Cox models

raise two problems: results can be biased when censor-

ing is linked to the variables[21], and their statistical

power is impacted by a high censoring rate. Such lim-

itations motivate the use of more complex models and

machine learning methods, such as tree ensembles.

In the past years, the use of RSF, a random forest

method adapted to survival analysis [8], has increased

to the point of becoming a new reference for survival

analysis, due to its robustness to censoring data and

noisy variables. Contrary to Cox, Survival trees are

both able to detect a shift in non-linear relations (be-

tween variables and predicted target values), but also

to detect variable interactions. Yan Zhou et al. [21]

showed that Breiman’s survival forest leads to better

predictions than Cox regression, in particular for cases

dealing simultaneously with a small sample size and a

high number of variables. These important arguments

motivate our use of RSF.

For most prior work, the input to a survival anal-

ysis method of choice has been mostly restricted to

clinical variables. However, with the increase of image-

data, radiomics features computed on CT, MRI, PET

or other image modalities have brought additional valu-

able information [6,12], which is currently being inves-

tigated for a large variety of clinical applications, e.g.

for lung [11] or head-neck cancer [17]. However, apart

from Bühnemann et al. [3] who used confocal images of

tissue microarrays, RSF and radiomics association has

not been thoroughly investigated. We explore in this

work their combination in the context of MM.

We promote here the use of multi-modal features,

i.e. clinical and image-based, at the cost of increasing

the number of variables that survival models need to

consider. Moreover, for image-based features, several

computation techniques are possible. With no manual

pre-selection of features and with the typical size of

prospective clinical databases, we are confronted with

a high-dimensional problem with more features than

patients. To tackle this issue, several classical feature

selection methods exist like partial least squares or Cox-

regression under lasso penalization [16]. More recently,

the use of the concordance index for feature selection

combined with a boosting and gradient boosting Cox

models was shown to have a good performance under a

comparative study of several machine learning and se-

lection methods for survival [18]. However, at the core

of RSF methods the randomized optimization performs

a selection of features at every node. This fact was ex-

ploited by Ishwaran et al. [9], who proposed three vari-

able selection methods: VIMP, MD, and VH. In the in-

terest of keeping the method interpretable and to retain

features that are coherent with the predictive model, we

propose a framework where both tasks, the variable se-

lection and the survival prediction model are based on

RSF.

Regarding the survival analysis of MM patients us-

ing radiomics, a preliminary study [4] showed the inter-

est of intra-tumoral heterogeneity for prognosis using

FDG-PET images at diagnosis. Other recent studies

have reported also the prognostic value of SUVmax,

total metabolic tumor volume and whole body total

glycolysis volume using PET imaging [20][23].

With respect to the use of machine learning methods

for MM survival, only a few recent studies exist, which

focus on detection and segmentation of focal lesions [19]

or the use of genic expression as features [1]. To our

knowledge, we are the first to explore radiomics for MM,

and to use RSF both as a biomarker selection and a

prognostic tool for MM prognosis prediction.

3 Method

In this work, we propose to follow a machine learning

approach to predict the PFS value for a new patient.

Towards this goal, we build a unified framework to:

– deal with the large number of clinical and image-

based features (in the order of one hundred),

– derive the most relevant features for the prediction,

– predict the progression of a patient given his/her

personal data (clinical and image-based features).

The proposed framework consists of two stages, as

illustrated in Fig. 2: i) an automatic variable selec-

tion, and ii) a survival analysis stage. Both steps rely

on Random Survival Forests [8], a modified version of

the more traditional Random Forests [2], which han-

dles right censored data and forms clusters of similar

survival curves in the leaves. In the first stage (green

block in Fig. 2), the feature selection RSF is trained on

all the provided clinical and image-based variables. A

VIMP analysis of the split functions selected during the
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randomized optimization of the RSF’s nodes is then de-

ployed to identify the most predictive features. In the

second stage (pink block in in Fig. 2), the prognosis

RSF is then trained on the features selected during the

first stage. The resultant model is then used for person-

alized “mortality” prediction during testing. Since we

are interested in PFS, the RSF mortality refers, for the

remaining of this work, to the expected total number of

a progression. Our method provides each new patient

with a survival curve, a mortality rate and a prognosis

group. Moreover, at the population level, the first stage

(predictive feature selection) serves as a good start-

ing point for the identification of potential biomarkers

(variables allowing to predict the target value).

In the following we provide the method’s details.

Section 3.1 describes the extracted features. Section 3.2

recalls concepts from survival analysis and explains the

RSF method. Section 3.3 describes the different com-

pared feature selection methods and Section 3.4 details

the prediction stage.

3.1 Feature collection and extraction

Two main types of features were extracted: clinical and

image-based, both derived from the PET exam at di-

agnosis which is our baseline. Each lesion was delin-

eated using a majority vote approach involving three

simple segmentation methods: SUV 2.5, SUVmax 40%

and K-means with 2 classes. Intra-tumoral heterogene-

ity/texture features were computed on the most intense
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Fig. 2: Proposed approach for the prognosis prediction

of multiple myeloma from clinical, conventional and

image-based features. The yellow block corresponds to

the stage 0 (optimisation), the green block to the stage

I (feature selection) and the pink block to the stage II

(prognosis prediction).

focal lesion (FL). Features extracted from PET im-

ages were further categorized into two sub-categories:

conventional (quantitative measurement performed on

PET imaging but not based on intra-tumoral hetero-

geneity) and textural features.

We follow the standard radiomics approach in order

to extract agnostic quantitative descriptors of the tex-

tural/heterogeneity information [22] of the segmented

lesions. These descriptors can be of: 1st order, describ-

ing the value distribution of individual voxels without

taking account their spatial relationships, such as the

SUVmax or MTV (metabolic total volume); or of 2nd

order, describing the texture or relationship between

voxels, and calculated from different matrices such as

the co-occurrence matrix, e.g. GLCM (Gray Level Co-

Ocurence Matrix).

A summary of all the features can be found in Table

1. In total, we have thirteen clinical, six conventional

and 110 textural features. Note that the computation

of textural features include different implementations of

the same concepts, in the aim to study if a given imple-

mentation increases the prediction value of a feature.

These implementations consider options for normaliza-

tion (absolute, relative or histogram equalization), and

voxel equalisation (equal size or not) [22]. The correla-

tion among different implementations of the same fea-

ture will be dealt with a 100 VIMP-RSF stage run.

Table 1 List of clinical and conventional features (first row)
and the textural features (second and third rows). All features
have been calculated with 6 different implementations. * :
image-based features

Conventional* Clinical features Clinical features*

FL SUVmax Age Number of FL(PET baseline)
Bone Marrow Involvement SUVmax Sex Presence of extramedullary disease
Total MTV Hemoglobin FL Deauville score
MTV FL Calcemia Bone Marrow Involvement Deauville score
Total TLG (Total lesion glycolysis) Creatinine Global Deauville score
TLG FL R-ISS Number of FL (MRI)

Treatment arm

GLCM* GLRLM* GLSZM*
(Gray Level Co-Ocurence Matrix) (Gray Level Run-Length Matrix) (Gray Level Size-Zone Matrix)

Homogeneity HGRE HGZE
(High Gray Level Run Emphasis) (High Gray Level Zone Emphasis)

Entropy LGRE ZLNU
(Low Gray Level Run Emphasis) (Size-Zone Non-Uniformity)

Energy SRE SZHGE
(Short Run Emphasis) (Small Area High Gray Level Emphasis)

Correlation LRE LZLGE
(Long Run Emphasis) (Low Gray Level Zone Emphasis)

Contrast SZE (Small Area Emphasis)
Dissimilarity ZP (Zone percentage)

RP (Run percentage)

First order*

Maximum

All features are concatenated in a feature vector x ∈
RD where D is the total number of features.

3.2 Random Forests for Survival Analysis (RSF)

A Random Forest is a collection of Ntrees decision trees

T = {f1, . . . , fNtrees} trained to predict a target value

y given an input feature vector. The target y can be a
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categorical or continuous variable. One decision tree f

consists of a series of nodes h, each characterized by a

binary split decision function φ and a threshold th. A

set of data points S reaching a node is divided in two

subsets, and points are pushed either into the left Sl
and right Sr children according to the split function φ.

Often, φ is axis-aligned, selecting one among the dif-

ferent dimensions of the feature space RD, such that,

Sl = {x ∈ S|φ(x) ≤ th} and Sr = {x ∈ S|φ(x) > th}.
Given a dataset {xi, yi}Ntrain

i=1 , randomized node opti-

mization is used during training to find the best {φ, th}
pairs for each node, according to certain criteria, e.g.

the Gini index. Nodes are grown until a termination

criteria is reached, such as the maximal depth or a mini-

mum number of data points per node. A terminal node,

called a leaf, stores the estimated target value from the

training points falling into it. During testing, a new fea-

ture vector is conducted down the nodes of each of the

trees, and assigned a target value per tree. The final

prediction results from the aggregation of the tree-wise

predictions.

66 patients 

Age  
≥ 45 

Sex 
= Male 

Homog-
eneity 
≥ 0,07 

SUVmax 
≥ 4,2 

treatment 
= B 

9 patients 
Mortality = 1.5 

12 patients 
Mortality = 2.1 

13 patients 
Mortality = 4.2 

15 patients 
Mortality = 5.6 

17 patients 
Mortality = 6.8 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

Fig. 3: Example of survival tree. Each leaf node stores i)

the mortality (a high mortality means a bad prognosis),

and ii) a survival curve (the survival probability as a

function of time).

We now recall important concepts of Survival Anal-

ysis in order to later introduce the adaption of RFs to

survival. Survival Analysis is caracterised by a dataset

{xi, θi, τi}Ntrain

i=1 ,where τi stands for the the time to the

event of interest and θi is a binary variable indicating

censorship (which is equal to 1 if an event occurred

during the study period and 0 if not). The aim of the

analysis is usually to find out variables that allow split-

ting the population into groups related to {θi, τi} that

have different mortality with events occurring at similar

times. The target value yi is the expected mortality,

which in the application of interest is related to the

PFS. The mortality M can be interpreted as the the

expected total number of deaths (here the number of

patients with a relapse or disease progression). In prac-

tice, the mortality is derived from the cumulative haz-

ard function (CHF): a function of time collecting the

time to event data τi for the individuals i in the train-

ing set. Formally, the Nelson-Aalen estimator Ĥ(t) for

the CHF is:

Ĥ(t) =
∑
τk≤t

dk
Yk
, (1)

where k is the index of the event time between 1 and the

total number of distinct event timesm, dk stands for the

number of events up to time τk and Yk is the number of

individuals at risk at time τk. Ĥ can be interpreted as

the sum of death rates at each event time. The mortality

Mi of an individual i is the sum of the CHF over each

unique time:

Mi =

m∑
k=1

Ĥ(τk|Xi). (2)

In other words, Mi measures the number of deaths ex-

pected under a null hypothesis of similar survival be-

havior.

The Random Survival Forest is an ensemble-tree

method, introduced by Ishwaran in 2008 [8] to adapt

the Random Forests to right-censored data and sur-

vival analysis. As before, tree growing is done through

randomized node optimization, generating several can-

didates for feature (axis aligned split) and threshold

{φ, th}. However,the input now includes censorship, and

instead of an information theoretic criteria, the split

function and threshold are chosen to maximize the sur-

vival difference between the individuals going to the two

daughter nodes. In particular, the criteria to evaluate

the best population split at each node is the log-rank

L, defined as:

max
φ,th

L = max
φ,th

∑m
k=1(dk,φ6th − Yk,φ6th) dkYk√∑m

k=1
Yk,φ6th
Yk

(1− Yk,φ6th
Yk

)Yk−dkYk−1 )dk

,

(3)

where τ1 < ... < τm are distinct event times reaching

node h; dk,φ6th and Yk,φ6th are respectively the number

of events and the number of individuals at risk which

have had no event before τk and fall into the left daugh-

ter node according to the threshold th over feature φ

(Analogously, dk,φ>th and Yk,φ>th for the right daugh-

ter node); and finally, Yk = Yk,φ6th + Yk,φ>th and dk
= dk,φ6th + dk,φ>th.
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A last detail of RSF is that, unlike class histogram

or regression value in RF, each leaf in RSF stores the

mortality and survival curve for the patients falling into

that leaf. An example of a survival tree is presented in

Fig. 3. In the case of RSF, the CHF is computed for

each leaf Ĥh(t) with h the leaf index, and only from

the patients falling within h.The mortality equation 2

is now the sum of the CHF in the leaf at each time

Ĥh(t). The ensemble mortality is obtained averaging

the mortalities over all the trees in the forest.

A conventional performance evaluation measurement

for survival methods is the concordance index CI. CIrefers

to the probability that, for a pair of randomly chosen

samples, the sample with the higher risk prediction does

experience an event (e.g. a progression) after one with

a lesser risk. We consider the prediction error to be

1− CI.

3.3 Feature selection (stage I)

The input to our framework is a concatenated vector of

all the clinical and image-based features. As opposed to

common practice in the MM literature where a small

number of features are studied, our objective is to au-

tomatically select the most relevant features in agree-

ment to our prediction model. Therefore, we deploy a

first RSF for feature selection using three strategies:

– The variable importance (VIMP) for one variable,

starts by finding all the nodes where the chosen vari-

able was selected as the optimal split direction and

then assigning a daughter node randomly for each

patient in the node. VIMP measures then for each

variable how much the error increases after the re-

placement [8].

– The minimal depth assesses the predictiveness of a

variable assuming variables selected close to the root

are more important [9].

– Variable-Hunting [9], was defined for ultra-high di-

mensional problems. An RSF is fit to a random sub-

set of data points, and a first group of variables

is selected using minimal depth thresholding. Ad-

ditional variables are then appended to the initial

model in increasing order of minimal depth until

the VIMP criterium stabilizes. The process is re-

peated several times, to finally retain the variables

that appear most frequently over the trials.

The VIMP and minimal depth methods were run

nrun = 100 times. The repetition is performed with

the purpose to handle the variability of the features se-

lection methods and the features were ranked according

to their sum of importance/minimal depth value over

the 100 runs, in a vector xrank ∈ RD.

3.4 Progression prediction (stage II)

In the second stage of the proposed framework, we take

as input only the ranked feature vector xrank obtained

in the first stage. A second RSF is then trained for the

PFS prediction task. The optimal number of features

Nfeat ≤ D is determined at this stage by a grid search

and final results come from the RSF trained on Nfeat

features

During testing, the 2nd RSF provides a mortality

prediction for each test subject and thus allows the com-

putation of the prediction error against the recorded

times of first progression. In addition, we further ana-

lyze the mortality rates with a long-rank test to sepa-

rate the test subjects into two groups (bad and good

prognosis) according to their predicted mortality. After

the RSF, several thresholds on the ensemble mortality

M̂i are evaluated using the log rank test of Equation 3,

where now φ is the mortality. Thus φ 6 th and φ > th

represent respectively the good prognosis group and the

bad prognosis groups.

4 Experimental validation

Our experiments were designed using the French trial

IMAJEM aimed at evaluating the potential benefit of

PET/CT in MM at diagnosis [13]. 134 patients were

included in the study but only 66 patients were eligible

for textural feature computation on the most intense

FL. As mention before, survival time of interest is the

progression-free survival (PFS). An important aspect

of this dataset is that it is based on a prospective, mul-

ticentric trial with a long-term follow-up (median: 5.3

years).

In order to demonstrate the overall performance of

the proposed framework, including both the feature se-

lection and prediction phases, we compare our results

against two common baseline algorithms, Gradient-Boosting

Cox and Lasso-Cox in section 4.2. We further analyze

in section 4.4 the contribution of the feature selection

step as well as the effect of the different types of features

in section 4.4, in particular, towards understanding the

predictive value of image-based features for MM.

4.1 Implementation details

First, a k-fold cross validation was performed to find

the combination of hyper-parameters allowing the best

average prediction error over the k-folds. This combina-

tion was then used in all the following steps to train the

forests (stages I and II). For the feature selection, the

VIMP and MD selection methods were run 100 times.
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As a result, we obtained for each method a list xrank

of features ranked according to the sum of the variable

importance or minimal depth over the 100 iterations.

The variable-hunting method was performed in paral-

lel. For the performance validation, we performed a k-

fold cross validation of the RSF prediction stage with

the best features.

The performance was reported as the PFS predic-

tion error (1 − CI), as well as the separation into two

prognosis groups with the associated p-value (calcu-

lated on the difference between the two survival curves

thanks to the log-rank test (see equation 3). In all our

experiments 10-fold cross validation was used, except

for the evaluation of the prognosis group separation

were it is a 5-fold cross validation, given the small num-

ber of samples for the curves.

In order to make the framework as automatic as

possible, we conduct a hyper-parameter grid-search op-

timization of the RSFs, prior to the training of the fea-

ture selection and prediction models RSF, over the fol-

lowing parameters and values:

– number of trees: {20,50,100,500,1000}. Retained: 50

– split mode: logrank and random logrank. Retained:

random

– minimal number of samples in node: between 5 and

12. Retained: 7

– max features parameter in each node: 50% of the

number of features, 70% of the number of features

and 100% of the number of features. Retained: 100%

4.2 Overall performance in comparison with baseline

methods

The purpose of this experiment was to evaluate the

overall performance of the proposed framework, receiv-

ing as input the table of all features and the survival

data (PFS and censorship). The results are presented

in figure 4a. and table 4c., where we also report the

performance of three other methods: the common Cox-

regression under lasso penalization [16], an RSF trained

directly on all the features, and the gradient-boosting

Cox method [15], recently reported as competitive in

[18]. All methods were run with a 10-fold cross vali-

dation repeated 10 times to observe the RSF variabil-

ity. Figure 4a. illustrates the prediction error suggest-

ing that our method performs better than Lasso and

gradient-boosting Cox. We observe in table 4c. that

the mean prediction error is very promising (0.36) and

the lowest among the compared methods. Moreover, all

methods were run with a 5-fold cross validation to com-

pare the p-value of the prognosis group separation (one

time). Table 5b. shows that only the prognosis curves

obtained with a long-rank test on the PFS values pre-

dicted by our model are statistically meaningful accord-

ing to the reported p-value (0.05).

Figure 5a. shows an example of the Kaplan-Meier

curve obtained after a separation with a log-rank test,

on predicted mortalities.

4.3 Comparison of feature selection methods

Here we evaluate the RSF-VIMP feature selection against

other methods. Results can be found in tables 4c., 5b.

and figure 4a. Methods that benefit from feature se-

lection performed better than without. Moreover, the

VIMP-RSF combination provides better results, both

in terms of prediction error and p-value of the log-rank

test over the predictions. Figure 4b. and table 4c. show

that among RFS-based feature selection methods, min-

imal depth and variable-hunting tend to have a larger

variability in terms of optimal number of features.

4.4 Experiments demonstrating the predictive value of

images

The potential predictive added-value of image-based

features was analyzed using 3 sub-databases: one with

all features, one with clinical-only features, and one

with imaging-only features. All sub-databases have the

same number of patients (66). The prediction error was

calculated to analyze the contribution of each sub-database

to prognosis prediction as presented in table 2. The vari-

ables retained in each sub-analysis were also reported.

It can be seen that when considering all the avail-

able features as input, a majority of the retained ones

are image-based (see Fig. 6). Moreover, as presented in

table 2, the use of image features provides better re-

sults than clinical features alone for all methods with

selection. In terms of error prediction, the use of both

clinical and image features (including conventional and

textural features) gives better results than using clini-

cal features alone, and slightly better results than using

image features alone. Finally, looking at the best ranked

features, we note that among all features almost all of

the thirty best (see Fig. 6) were obtained with a relative

resampling instead of absolute resampling (see section

3.1).

5 Discussion

We highlight the benefit of using image-based features

(including textural features) for progression prediction,
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a)Average prediction error (1 - C-index) for each method
over 10 folds repeated 10 times.

b) Average optimal number of features Nfeat over 10 folds
repeated 10 times.

Method Average best number of features Average prediction error

Our method (RSF+VIMP) 8.2 ± 10 0.36 ± 0.015
RSF Without selection 132 0.61 ± 0.027
RSF + Minimal depth 45 ± 33 0.47 ± 0.025

RSF + Variable-Hunting 8.7 ± 34 0.43 ± 0.016
Gradient-Boosting Cox 0.56 ± 0.011

Lasso-Cox 0.48 ± 0.042

c)Average error for the PFS prediction, and average best number of features over 10 runs according to the different compared
methods, using all features as input.

Fig. 4: Comparison of PFS prediction methods including different feature selection strategies

Table 2 Prediction error according to the type of feature
provided, and for different variable selection methods associ-
ated to the RSF.

All textural and conventional clinical
features features features

Our method 0.34 0.36 0.45
Minimal depth method 0.45 0.45 0.48

Variable-Hunting method 0.40 0.41 0.45
Without selection 0.51 0.67 0.52

while all experiments show that the best feature-sets

contain both imaging and clinical features.

The results of variable selection need to be further

studied. In particular, the exact order of the best fea-

tures is not always relevant. Indeed, when there are few

retained variables, the importance values or the mini-

mal depth values are close among features and the or-

der is not always stable over different runs. For a larger

number of retained features, the features ranked at the

top are often the same but not always in the same or-

der. The fact that the number of image-based features

is larger than the number of clinical ones may induce a

bias towards having more of the former within the top

ranked ones. It would be interesting to further study

the behavior under balancing sampling strategies [9].

6 Conclusion

In this work we presented an automatic framework for

the progression prediction in Multiple Myeloma based

on clinical and image-based features. The framework

consists of a hyper-parameters optimization step, and

a two RSF model for variable selection and prediction.

The model provides several outcomes including a pre-

diction of the mortality and a prognosis class for each

patient. A further analysis of the feature selection pro-

cess also gives hints on the most predictive features
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Method Average p-value

Our method 0.05
Gradient-Boosting Cox 0.27

Lasso-Cox 0.4
Without selection 0.40

Minimal depth 0.24
Variable-Hunting 0.11

a)An example of survival curve for the best model (Error
prediction 0.39), separated according to the log-rank rule
over the estimated mortality (p-value 0.04). (See table
4.c)

b) Average p-value over the 5-fold cross-validation (1 run)
according to the method using all features.

Patient 1 2 3 4 5 6 7 8 9

Prognosis group bad bad good bad good good good bad good
Mortality 38.906 39.165 6.489 39.165 31.448 23.185 31.034 39.623 33.499

patient 10 11 12 13 14 15 16 17
Prognosis group good good good good good good good good

Mortality 10.042 33.486 23.508 6.569 26.998 36.075 22.780 31.530

c) An example of our method’s output: each patient is assigned a prognosis group and a predicted mortality. The table
corresponds to the survival curves in figure b).

Fig. 5: Evaluation of the prognosis group separation.

that could be further studied as biomarkers. The ex-

perimental results show a promising prediction error

of 0.34 and a meaningful separation between progno-

sis classes compared to standard methods (gradient-
boosting Cox, Lasso Cox) and other feature selection

approaches (minimal depth, variable hunting). Our ex-

periments further demonstrate the interest of feature

selection and the importance of considering both clin-

ical and image-based features. To conclude, this is the

first method combining PET radiomics and RSF for

progression prediction in multiple myeloma. The pro-

posed framework may also serve for the automatic sur-

vival analysis in other clinical contexts, in particular

when large number of clinical and imaging features are

to be considered.
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