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Abstract. DJ techniques are an important part of popular music cul-
ture. However, they are also not sufficiently investigated by researchers
due to the lack of annotated datasets of DJ mixes. Thus, this paper aims
at filling this gap by introducing novel methods to automatically decon-
struct and annotate recorded mixes for which the constituent tracks are
known. A rough alignment first estimates where in the mix each track
starts, and which time-stretching factor was applied. Second, a sample-
precise alignment is applied to determine the exact offset of each track in
the mix. Third, we propose a new method to estimate the cue points and
the fade curves which operates in the time-frequency domain to increase
its robustness to interference with other tracks. The proposed methods
are finally evaluated on our new publicly available DJ-mix dataset. This
dataset contains automatically generated beat-synchronous mixes based
on freely available music tracks, and the ground truth about the place-
ment of tracks in a mix.

1 Introduction

Understanding DJ practices remains a challenging important part of popular
music culture [2, 4]. The outcomes from such an understanding are numerous
for musicological research in popular music, cultural studies on DJ practices
and reception, music technology for computer support of DJing, automation of
DJ mixing for entertainment or commercial purposes, and others. In order to
automatically annotate recorded mixes, several components are required:

Identification of the contained tracks (e.g. fingerprinting) to obtain the playlist,
Alignment to determine where in the mix each track starts and stops,
Time-scaling to determine what speed changes were applied by the DJ to

achieve beat-synchronicity,
Unmixing to estimate the cue regions where the cross-fades between tracks

happen, the curves for volume, bass and treble, and the parameters of other
effects (compression, echo, etc.),

Content and metadata analysis to derive the genre and social tags attached
to the music to inform about the choices a DJ makes when creating a mix.

? The ABC DJ project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 688122.
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Most of these components have been addressed by recent MIR research except
the alignment, time-scaling, and unmixing part for which we propose a method
based on multi-scale correlation, dynamic time warping, and time-frequency gain
curve estimation to increase its robustness to interferences with other tracks. To
come closer to actual DJ practices, we can retrieve the alignment and volume
curves from example DJ mixes, and then combine them with content and genre
information to investigate the content-dependent aspects of DJ mix methods.

As a working definition, we can roughly distinguish three levels of mixing:

Level 1, broadcast mixing, is a simple volume cross fade without paying atten-
tion to changing content (as performed by consumer audio players such as
iTunes, or in a broadcast context).

Level 2, lounge mixing, is beat-synchronous mixing with adaptation of the
speed of the tracks and possibly additional EQ fades, while playing the
tracks mostly unchanged.

Level 3, performative mixing, is using the DJ deck as a performance instrument
by creative use of effects, loops, and mashups with other tracks.

This paper addresses the level 1 and 2 cases, while level 3 can blur the
identifiability of the source tracks.

2 Related Work

There is much more existing work in the field of studio mixing where a stereo
track is produced from individual multi-track recordings and software instru-
ments by means of a mixing desk or DAW [4,15,16,18]. They produced ground
truth databases [6] and crowd-sourced knowledge generation [7] with some over-
lap with DJ mixing. However, when seeing the latter as the mixing of only two
source tracks, the studied parameters and influencing factors differ too much
from what is needed for DJ mixing. There is quite some existing work on meth-
ods to help DJs to produce mixes [1, 3, 5, 9, 12, 14, 17], but much less regarding
information retrieval from recorded mixes, with the exception of content-based
analysis of playlist choices [13], track boundaries estimation in mixes [10,20], and
the identification of the tracks within the mix by fingerprinting [24]. To this end,
Sonnleitner et. al. provide an open dataset3 of 10 dance music mixes with a total
duration of 11 hours and 23 minutes made of 118 source tracks. The included
playlists contain hand-annotated time points with relevant information for fin-
gerprinting, namely the approximate instant when the next track is present in
the mix. Unfortunately, this information is not accurate enough for estimating
the start point of the track in the mix. As a result, it cannot be used for our
aims of DJ mix analysis and let alone reverse engineering.

Barchiesi and Reiss [2] first used the term mix reverse engineering (in the
context of multi-track studio mixing) for their method to invert linear processing
(gains and delays, including short FIR filters typical for EQ) and some dynamic

3 http://www.cp.jku.at/datasets/fingerprinting
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processing parameters (compression). Ramona and Richard [19] tackle the un-
mixing problem for radio broadcast mixes, i.e. retrieving the fader positions of
the mixing desk for several known input signals (music tracks, jingles, reports),
and one unknown source (the host and guests’ microphones in the broadcast
studio). They model the fader curves as a sigmoid function and assume no
time-varying filters, and no speed change of the sources that is only correct
in the context of radio broadcast. These two latter references both assume hav-
ing sample-aligned source signals at their disposal, with no time-scaling applied,
unlike our use-case where each source track only covers part of the mix, can
appear only partially, and can be time-scaled for beat-matched mixing. There is
rare work related to analysis [8] and inversion of non-linear processing applied
to the signal such as dynamic-range compression [11] which remains challenging
and full of interest for unmixing and source separation.

Hence, this work realizes our idea first presented in [21], by applying it to
a large dataset of generated DJ mixes [22]. It already inspired work on a vari-
ant of our unmixing method based on convex optimization, and a hand-crafted
database [26].

3 DJ Mix Reverse Engineering

The input of our method is the result of the previous stage of identification and
retrieval on existing DJ mixes or specially contrived databases for the study of
DJ practices. We assume a recorded DJ mix, a playlist (the list of tracks played
in the correct order), and the audio files of the original tracks. Our method
proceeds in five steps, from a rough alignment of the concatenated tracks with
the mix by DTW (section 3.1), that is refined to close in to sample precision
(section 3.2), then verified by subtracting the track out of the mix (section 3.3),
to the estimation of gain curves (section 3.4) and cue regions (section 3.5).

3.1 Step 1: Rough Alignment

Rough alignment uses the Mel Frequency Cepstral Coefficients (MFCC) of the
mix X(k, c) (k being the mix frame index and c ∈ {1, 2, ..., 13} the Mel fre-
quency index) and the concatenated ones of the I tracks S(l, c) = (S1 . . . SI)
as input (window size 0.05 s, hop size 0.0125 s), l being the frame index of
the concatenated matrix S. The motivation is that the MFCC representation
is more robust in practice than discrete Fourier-based representation against
possible pitch changes from time-scaling of the source tracks in the DJ mix.
Since the tracks are almost unchanged in level 2 mixes, Dynamic Time Warping
(DTW) [25] can latch on to large valleys of low distance, although the fade re-
gions in the mix are dissimilar to either track, and occur separately in S(l, c). To
ease catching up with the shorter time of the mix, we provide a neighborhood
allowing the estimated alignment path to perform larger vertical and horizontal
jumps, shown in Fig. 1 (right).
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Fig. 1: Left: DTW distance matrix, alignment path (red), track boundaries (vertical
lines), found slope lines anchored on track mid-point (circles), and estimated track
start (blue marks) on an artificial DJ mix of 3 tracks from our dataset. Right: extended
DTW neighbourhood.

The DTW alignment path not only gives us the relative positioning of the
tracks in the mix, but also their possible speed change, applied by the DJ to
achieve beat-synchronous mixing, see Fig. 1 (left): First, we estimate the speed
factor, assuming that it is constant for each track, by calculating the mean slope
of the alignment path in a window of half the track length, centred around the
middle of the track. Then, the intersections of the slope lines with the track
boundaries in S(l, c) provide an estimate of the frame start of the tracks in the
mix. The start position expresses the offset of the start of the full source track
with respect to the mix, and not the point from where the track is present in
the mix. Since the source tracks are mixed with non-zero volume only between
the cue-in and cue-out regions, the track start point can be negative.

3.2 Step 2: Sample Alignment

Given the rough alignment and the speed estimation provided by DTW, we
then search for the best sample alignment of the source tracks. To this end, we
first time-scale the source track’s signal according to the estimated speed factor.
We then shift a window of the size of an MFCC frame, taken from the middle
of the time-scaled track, around its predicted rough frame position in the mix.
The best time shift is simply provided by the maximum of the cross-correlation
computed between the mix and the track. Please note that this process is not
directly applied during the step 1 due to the high computational cost. The sample
alignment considers a maximal delay equal to the size of a window and can be
computed in a reasonable time.
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3.3 Step 3: Track Removal

The success of the sample alignment can be verified by subtracting the aligned
and time-scaled track signal from the mix for which a resulting drop in the root-
mean-square (RMS) energy is expected. This method remains valid when the
ground truth is unknown or inexact. Fig. 2 illustrates the result of track removal
applied on a mix in our dataset. We can observe that the resulting instantaneous
RMS energy of the mix (computed on the size of a sliding window) shows a drop
of about 10 dB. A short increase is also observed during the fades where the
suppression gradually takes effect.
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Fig. 2: Resulting RMS energy (in dB) after the subtraction of each track (3) from a
mix including fades. Each source track signal is filled with zeros to obtain the same
duration.

3.4 Step 4: Volume Curve Estimation

We introduce a novel method based on the time-frequency representation of the
signal to estimate the volume curve applied to each track to obtain the mix.
Given the discrete-time mix signal denoted x(n) and the constituent sample-
aligned and time-scaled tracks si(n), we aim at estimating the mixing function
ai(n) as:

x(n) =

I∑
i=1

ai(n)si(n) + b(n) ,∀n ∈ Z (1)

where b(n) corresponds to an additive noise signal.

From a “correctly” aligned track si, its corresponding volume curve âi is
estimated using the following steps:

1. we compute the short-time Fourier transforms (STFT) of x and si denoted
Si(n,m) and X(n,m) (n and m being respectively the time and frequency
indices)
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2. we estimate the volume curve at each instant n by computing the median
of the mix/track ratio computed along the frequencies m′ ∈ M, where M is
the set of frequency indices where |Si(n,m

′)|2 > 0, such as:

âi(n)=

median
(

|X(n,m′)|
|Si(n,m′)|

)
∀m′∈M

if ∃m′ s. t. |Si(n,m
′)|2 > 0

0 otherwise
(2)

3. we optionally post-process âi(n) to obtain a smooth curve by removing out-
liers using a second median filter for which a kernel size equal to 20 provides
good results in practice.

The resulting volume curve can then be used to estimate the cue points
(the time instants when a fading effect begins or stops) at the next step. An
illustration of the resulting process is presented in Fig. 3.

3.5 Step 5: Cue Point Estimation

In order to estimate the DJ cue points, we apply a linear regression of âi at
the time instants located at the beginning and at the end of the resulting
volume curve (when âi(n) < Γ , Γ being a threshold defined arbitrarily as
Γ = 0.7 max(â)). Assuming that a linear fading effect was applied, the cue
points can easily be deduced from the two affine equations resulting from the
linear regression. The four estimated cue points correspond respectively to:

1. n1, the time instant when the fade-in curve is equal to 0
2. n2, the time instant when the fade-in curve is equal to max(âi)
3. n3, the time instant when the fade-out curve is equal to max(âi)
4. n4, the time instant when the fade-out curve is equal to 0.

In order to illustrate the efficiency of the entire method (steps 4 and 5), we
present in Fig. 3 the results obtained on a real-world DJ-mix extracted from our
proposed dataset.

Fig. 3: Estimated volume curve (black), linear fades (blue), ground truth fades (red)
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4 The UnmixDB Dataset

In order to evaluate the DJ mix analysis and reverse engineering methods de-
scribed above, we created a dataset containing excerpts of open licensed dance
tracks and their corresponding automatically generated mixes [22], available at
https://zenodo.org/record/1422385. We use track excerpts of c.a. 40 seconds due
to the high runtime and memory requirements, especially for the DTW that is
of quadratic memory complexity.

Each mix is based on a playlist made of 3 track excerpts such that the middle
track is embedded in a realistic context of beat-aligned linear cross fading to the
other tracks. The first track’s BPM is used as the seed tempo onto which the
other tracks are adapted.

Each playlist of 3 tracks is mixed 12 times with combinations of 4 variants
of effects and 3 variants of time scaling using the treatments of the sox open
source command-line program.The 4 effects are:

none: no effect
bass: +6 dB bass boost using a low-shelving biquad filter below 100 Hz
compressor: heavy dynamics compression (ratio of 3:1 above -60 dB, -5 dB

makeup gain)
distortion: heavy saturation with +20 dB gain

These effects were chosen to cover treatments likely to be applied to a DJ set
(EQ, compression), and also to introduce non-linear treatments (distortion) to
test the limits of re-engineering and unmixing methods.

The 3 timescale methods are:

none: no time scaling, ie. the tracks are only aligned on the first beat in the
cue region and then drift apart

resample: linked time and pitch scaling by resampling (sox speed effect)
stretch: time stretching while keeping the pitch (sox tempo effect using WSOLA)

These 3 variants allow to test simple alignment methods not taking into account
time scaling, and allow to evaluate the influence of different algorithms and
implementations of time scaling.

The UnmixDB dataset contains the complete ground truth for the source
tracks and mixes. For each mix, the start, end, and cue points of the constituent
tracks are given with their BPM and speed factors. Additionally, the song ex-
cerpts are accompanied by their cue region and tempo information.

Table 1 shows the size and basic statistics of the dataset. We also publish
the Python source code to generate the mixes, such that other researchers can
create test data from other track collections or other variants.

Our DJ mix dataset is based on the curatorial work of Sonnleitner et. al. [24],
who collected Creative-Commons licensed source tracks of 10 free dance music
mixes from the Mixotic net label. We used their collected tracks to produce our
track excerpts, but regenerated artificial mixes with perfectly accurate ground
truth.



8 Diemo Schwarz and Dominique Fourer

Number of tracks 37
Number of playlists 37
Number of tracks per playlist 3
Number of variants per playlist 12
Number of mixes 444
Average duration of tracks [s] 46
Average duration of mixes [s] 107
Total duration of tracks [min] 1016
Total duration of mixes [min] 2743
Median tempo of tracks [bpm] 128
Minimum tempo of tracks [bpm] 67
Maximum tempo of tracks [bpm] 140

Table 1: Basic statistics of the UnmixDB dataset.

5 Evaluation

We applied the DJ mix reverse engineering method on our UnmixDB collection
of mixes and compared the results to the ground truth annotations. To evaluate
the success of our method we defined the following error metrics:

frame error: absolute error in seconds between the frame start time found
by the DTW rough alignment (step 1, section 3.1) and the ground truth
(virtual) track start time relative to the mix

sample error: absolute error in seconds between the track start time found by
the sample alignment (step 2, section 3.2) and the ground truth track start
time relative to the mix

speed ratio: ratio between the speed estimated by DTW alignment (step 1,
section 3.1) and the ground truth speed factor (ideal value is 1)

suppression ratio: ratio of time where more than 15 dB of signal energy could
be removed by subtracting the aligned track from the mix, relative to the
time where the track is fully present in the mix, i.e. between fade-in end and
fade-out start (step 3, section 3.3, bigger is better)

fade error: the total difference between the estimated fade curves (steps 4 and
5, sections 3.4 and 3.5) and the ground truth fades. This can be seen as the
surface between the 2 linear curves over their maximum time extent. The
value has been expressed in dB s, i.e. for one second of maximal difference
(one curve full on, the other curve silent), the difference would be 96 dB.

Figures 4–10 show the quartile statistics of these metrics, broken down by the 12
mix variants (all combinations of the 3 time-scaling methods and 4 mix effects).
The sample alignment results given in Fig. 6 and Table 2 show that the ground
truth labels can be retrieved with high accuracy: the median error is 25 millisec-
onds, except for the mixes with distortion applied, where it is around 100 ms.
These errors can already be traced back to the rough alignment (section 3.1):
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Fig. 4 shows that it is not robust to heavy non-linear distortion, presumably be-
cause the spectral shape changes too much to be matchable via MFCC distances.
This error percolates to the speed estimation (Fig. 5), and sample alignment.

The track removal time results in Fig. 8 show sensitivity to the bass and
distortion effect (because both of these introduce a strong additional signal com-
ponent in the mix that is left as a residual when subtracting a track), and also
perform less well for time-scaled mixes.

The fade curve volume error in Fig. 10 shows a median of around 5 dB s,
which corresponds to a very good average dB distance of 0.3 dB, considering
that the fades typically last for 16 seconds.
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Fig. 4: Box plot of absolute error in track
start time found by DTW per variant.
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Fig. 6: Box plot of absolute error in track
start time found by sample alignment per
variant.
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Fig. 7: Box plot of absolute error in track
start time found by sample alignment
when re-injecting ground truth speed.

While developing our method, we noticed the high sensitivity of the sample
alignment and subsequent track removal (steps 2 and 3, sections 3.2 and 3.3) on
the accuracy of the speed estimation. This is due to the resampling of the source
track to match the track in the mix prior to track removal. Even an estimation
error of a tenth of a percent results in desynchronisation after some time.
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To judge the influence of this accuracy, we produced a second set of the
sample error and suppression ratio metrics based on a run of steps 2 and 3 with
the ground truth speed re-injected into the processing. The rationale is that
the speed estimation method could be improved in future work, if the resulting
reductions of error metrics are worthwhile. Also note that the tempo estimation is
inherently inaccurate due to it being based on DTW’s discretization into MFCC

mean std min median max
none none 0.0604 0.2469 0.0010 0.0251 2.1876
none bass 0.1431 0.7929 0.0005 0.0254 7.7191
none compressor 0.0806 0.4424 0.0010 0.0251 4.4995
none distortion 1.3376 3.3627 0.0011 0.1042 23.7610
resample none 1.1671 7.0025 0.0002 0.0270 71.0080
resample bass 1.3337 7.2079 0.0005 0.0277 73.1192
resample compressor 6.8024 17.0154 0.0010 0.0372 134.2811
resample distortion 1.8371 3.8551 0.0013 0.1483 23.8355
stretch none 0.2502 1.1926 0.0002 0.0251 10.0048
stretch bass 0.3300 1.4249 0.0005 0.0264 9.6626
stretch compressor 0.1520 1.0025 0.0008 0.0251 10.1076
stretch distortion 1.0629 2.2129 0.0014 0.0911 10.3353
all 1.2131 6.2028 0.0002 0.0282 134.2811

Table 2: Statistics of absolute error in track start time found by sample alignment.



Methods and Datasets for DJ-Mix Reverse Engineering 11

frames. In mixes with full tracks, the slope can be estimated more accurately
than with our track excerpts simply because more frames are available.

Figures 7 and 9 show the quartile statistics of the sample error and suppres-
sion ratio with re-injected ground truth speed. We can see how most variants
are improved in error spread for the former, and 4 variants are greatly improved
for the latter, confirming the sensitivity of the track removal step 3 on the speed
estimation.

6 Conclusions and Future Work

The presented work is a first step towards providing the missing link in a chain
of methods that allow the retrieval of rich data from existing DJ mixes and
their source tracks. An important result is the validation using track removal in
section 3.3 to compute a new metric for the accuracy of sample alignment. This
metric can also be computed even without ground truth. A massive amount of
training data extracted from the vast number of collections of existing mixes
could thus be made amenable to research in DJ practices, cultural studies, and
automatic mixing methods. With some refinements, our method could become
robust and precise enough to allow the inversion of fading, EQ and other pro-
cessing [2, 19]. First, the obtained tempo slope could be refined by searching
for sample alignment at several points in one source track. This would also ex-
tend the applicability of our method to mixes with non-constant tempo curves.
Second, a sub-sample search for the best alignment should achieve the neutrali-
sation of phase shifts incurred in the mix production chain. We could also check
whether a DTW with relaxed endpoint condition [23] for the beginning and end
of a mix could be advantageous. Furthermore, the close link between alignment,
time-scaling, and unmixing hints at the possibility of a joint and possibly it-
erative estimation algorithm, maximising the match in the three search spaces
simultaneously.
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