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Abstract

Control-affine output systems generically present observability singularities, i.e. inputs
that make the system unobservable. This proves to be a difficulty in the context of output
feedback stabilization, where this issue is usually discarded by uniform observability as-
sumptions for state feedback stabilizable systems. Focusing on state feedback stabilizable
bilinear control systems with linear output, we use a transversality approach to provide
perturbations of the stabilizing state feedback law, in order to make our system observable
in any time even in the presence of singular inputs.
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1 Introduction

Stabilizing the state of a dynamical system to a target point is a classical problem in control
theory. However, in many physical problems, only part of the state is known. Hence a state
feedback can not be directly implemented. When a stabilizing state feedback exists, a com-
monly used idea is to apply this feedback to an estimation of the state, relying on a dynamical
system called the observer, which learns the state of the system from its dynamics and the
measured output. This strategy belongs to the family of dynamic output feedback stabilization
techniques.

In the deterministic setting, output feedback stabilization has been extensively studied (see
e.g. [2, 3, 6, 7, 9, 13, 15, 17, 18]). The observability of a controlled system for some fixed input
qualifies the ability to estimate the state using its output, and characterizes the fact that two
trajectories of the system can be distinguished by their respective outputs over a given time
interval. This crucial notion constitutes a field of study in itself (see e.g. [2, 4, 10, 19]). A
commonly used hypothesis to achieve output feedback stabilization is the uniform observability
of the system, that is the system is observable for all possible inputs. It is well-known that
a globally state feedback stabilizable system that is uniformly observable is also semi-globally
output feedback stabilizable (see e.g. [7, 13, 17, 18]).

However, as shown in [10], it is not generic for a dynamical system to be uniformly observ-
able. There may exist singular inputs for the system, that are inputs that make the system
unobservable on any time interval, and the output feedback may produce such singular inputs.
This defeats the purpose of output feedback stabilization, which is still an open problem when
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such inputs exist. Investigating this issue, some authors propose a different approach by al-
lowing time-varying (either periodic as in [6] or “sample and hold” as in [16]) output feedback.
Doing so, the authors use a separation principle to show output feedback stabilization. Adopt-
ing another point of view and in line with [14], we are interested in smooth time-invariant
output feedback.

In this work, we restrict ourselves to the class of single-input single-output bilinear systems
with linear observation that are state feedback stabilizable at some target point, which, with no
loss of generality, is chosen to be 0. We also assume the system to be observable at the target,
that is, the constant input obtained by evaluation of the feedback at 0 is not singular. This
class of systems is a natural choice of study for two reasons. First, the uniform observability
hypothesis is still not generic in this case. In particular, one can easily check that there
generically exists constant inputs that make the system unobservable in any time. Secondly,
according to [8], any control-affine system with finite dimensional observation space may be
immersed in such a system.

In this context, a natural question to ask is: “Can we ensure that only observable inputs
are produced by the dynamics when the output feedback is obtained as a combination of an
observer and a stabilizing state feedback?” This question falls within the more general and
unsolved problem of building a smooth separation principle for systems with observability sin-
gularities. One cannot hope for generic bilinear systems that all stabilizing state feedback laws
ensure the observability of the closed-loop system. However, we show that for any stabilizing
state feedback law, there exist small additive perturbations to this feedback that satisfy this
observability property and conserve its locally stabilizing property. Transversality theory is
used to prove the existence of such an open and dense class of perturbations. In particular, for
almost all considered systems, almost any locally stabilizing feedback law ensures observability
of the closed-loop system. Stabilization by output feedback is beyond the scope of this paper,
which focuses only on the observability issue. Yet, the obtained results may pave the way to
the construction of a “generic” separation principle. For our results to hold, some properties
of the dynamical observer are needed. The problem is tackled with a general observer design,
and it is shown in a closing section that the classical Luenberger and Kalman observers fit our
hypotheses.

Organization of the paper

In Section 2, we state the main results of this paper. We begin this section with some definitions
and notations, and we emphasise the precise issue. In particular, we define the system and
the class of feedback perturbations we are interested in. We then state our main results on
observability properties of the perturbed system, and assert that the classical Kalman and
Luenberger observers fit our hypotheses.

In Section 3 the reader may find a proof of our main results in three subsections. We rely
on a transversality approach, which requires some technical preliminary results (Section 3.1).
Sections 3.2 and 3.3 are then focused on the proof of our first main theorem and its corollary,
respectively.

Lastly, we prove in Section 4 that the Luenberger and Kalman observers fit our hypotheses,
so that we can apply our previous theorems to these observers. In order to do so, we prove
that their dynamics are somehow compatible with the Kalman observability decomposition.

Notations

Let N be the set of non-negative integers. For any subset I ⊂ N, |I| denotes its cardinality.
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Let n, m be positive integers. Let 〈·, ·〉 be the canonical scalar product on Rn, |·| the induced
Euclidean norm, B(x, r) the open ball centered at x of radius r for this norm, and Sn−1 ⊂ Rn the
unit sphere. Let L(Rn,Rm) be the set of linear maps from Rn to Rm and End(Rn) = L(Rn,Rn).
For any endomorphism A ∈ End(Rn), denote by A∗ its adjoint operator.

If f is a function from Rn to Rm, the notation Df(x)[v] stands for the differential at x ∈ Rn

applied to the vector v ∈ Rn of the function f . The partial differential of f at x with respect
to the variable y is denoted by Dyf(x). In particular, for any function t 7→ v(t) defined on a

real interval containing zero, we use the shorthand notation v(i) = div
dti (0) for all i ∈ N.

Let k ∈ N. The set of all k-jets from Rn to Rm is denoted by Jk(Rn,Rm) (see, for instance,
[11, Chapter II]). The mapping σ : Jk

x (Rn,Rm) → Rn given by σ : jkf 7→ σ
(

jkf
)

= x is called
the source map and the mapping τ : Jk

x (Rn,Rm) → Rm given by τ : jkf 7→ τ
(

jkf
)

= f(x) is
called the target map. Put Jk

x (Rn,Rm) = σ−1(x), Jk(Rn,Rm)y = τ−1(y) and Jk
x (Rn,Rm)y =

σ−1(x)
⋂

τ−1(y). We have Jk(Rn,Rm) =
∐

x∈Rn Jk
x (Rn,Rm) = Rn × Jk

x (Rn,Rm).

2 Statement of the results

2.1 Problem statement

Let n be a positive integer, A, B ∈ End(Rn), C ∈ L(Rn,R), b ∈ Rn and u ∈ C∞(R+,R).
Set Au = A + uB. In the present article, we focus on the following observed bilinear control
system:

{

ẋ = Aux + bu

y = Cx.
(1)

System (1) is said to be observable in time T > 0 and for the control function u if and only
if, for all pair of solutions

(

(x1, y1), (x2, y2)
)

of (1), (y1 −y2)|[0,T ] ≡ 0 implies (x1 −x2)|[0,T ] ≡ 0.
For bilinear control systems of the form (1), we have the following characterization.

Proposition 2.1. System (1) is observable in time T for the control u if and only if for every
ω0 ∈ Sn−1 the solution of ω̇ = Au(t)ω initiated from ω0 satisfies Cω|[0,T ] 6≡ 0.

If (1) is observable for u = 0 in some time T > 0, then it is also observable in any time
T > 0, and we say that the pair (C, A) is observable. According to the Kalman rank condition,
(C, A) is observable if and only if the rank of the following observability matrix

O(C, A) =













C
CA

...
CAn−1













(2)

is equal to n.
Let S be a finite dimensional manifold and let L : S → L(R,Rn). For all u ∈ R, let

f(·, u) be a vector field over S. Denoting ε = x̂ − x, we introduce a dynamical observer system
depending on the pair (f, L):















˙̂x = Aux̂ + bu − L(ξ)Cε

ε̇ = (Au − L(ξ)C) ε

ξ̇ = f(ξ, u).

(3)

Let λ ∈ C∞(Rn,R) be such that 0 is an asymptotically stable equilibrium point of the vector
field x 7→ Aλ(x)x + bλ(x) for some open domain of attraction D(λ). We will further assume
that λ(0) = 0, which is true up to a substitution of A with A + λ(0)B.

3



As stated in the introduction, our goal is to make system (1) observable in time T for the
control u = λ ◦ x̂, where x̂ follows (3) with initial conditions (x̂0, ε0, ξ0). Since the stabilizing
feedback λ does not guarantee this property, we consider a small perturbation λ + δ of it. For
all δ ∈ C∞(Rn,R), we consider the coupled system



























˙̂x = A(λ+δ)(x̂)x̂ + b(λ + δ)(x̂) − L(ξ)Cε

ε̇ =
(

A(λ+δ)(x̂) − L(ξ)C
)

ε

ξ̇ = f(ξ, (λ + δ)(x̂))

ω̇ = A(λ+δ)(x̂)ω.

(4)

Remark 2.2. In system (4), the dynamics of (x̂, ε, ξ) do not depend on ω. However, the
dynamics of ω are included in (4) as they are crucial for the observability analysis of (1) with
input u = λ(x̂), as stated in Proposition 2.1. We will sometimes consider (x̂, ε, ξ) to be the
first coordinates of a solution of (4) without fixing any initial condition for ω.

From now on, we denote by K = K1 × K2 × K3 a semi-algebraic compact subset of D(λ) ×
Rn ×S, which stands for a subset of the space of initial conditions of system (3). For all R > 0,
let

VR = {δ ∈ C∞(Rn,R) : ∀x ∈ B(0, R), δ(x) = 0} .

We ask the observer given by (f, L) to satisfy the following important properties:

(FC) (Forward completeness.) For all u ∈ C∞(R+,R), the time-varying vector field
f(·, u) is forward complete. Moreover, for all (x̂0, ε0, ξ0, ω0) ∈ K × Sn−1 and for
all δ ∈ C∞(Rn,R) bounded over D(λ), the coupled system (4) has a unique
solution (x̂, ε, ξ, ω) ∈ C∞(R+,Rn × Rn × S × Sn−1) defined on [0, +∞).

(NFOT) (No flat observer trajectories.) For all R > 0, there exists η > 0 such that for all
δ ∈ VR satisfying sup{|δ(x)| : x ∈ K1} < η, for all (x̂0, ε0, ξ0, ω0) ∈ K × Sn−1

such that (x̂0, ε0) 6= (0, 0), there exists a positive integer k such that the solution
of (4) with initial condition (x̂0, ε0, ξ0, ω0) satisfies x̂(k)(0) 6= 0.

These properties are investigated in the last section of the paper. There, we show that the
classical Luenberger and Kalman observers fit these hypotheses so that the main results may
be applied to these observers.

For all k ∈ N, K ⊂ Rn and δ ∈ C∞(Rn,R), let

‖δ‖k,K = sup

{∣

∣

∣

∣

∣

∂ℓδ

∂xi1 · · · ∂xiℓ

(x)

∣

∣

∣

∣

∣

: 0 6 ℓ 6 k, 1 6 i1 6 · · · 6 iℓ 6 n, x ∈ K

}

.

For any k ∈ N, any compact subset K ⊂ Rn and any η > 0, k ∈ N, let

N (k, K, η) =
{

δ ∈ C∞(Rn,R) : ‖δ‖k,K < η
}

.

Remark 2.3. One can check that for any open subset U ⊂ D(λ) relatively compact in D(λ),
for all R > 0, there exists η > 0 such that for all δ ∈ VR satisfying |δ| < η, the feedback λ + δ
is such that 0 is asymptotically stable with domain of attraction containing U . Hence in the
following we focus only on the observability properties of the stabilizing feedback λ + δ.

Main issue. Let T > 0. Under genericity assumptions on (A, B, C), does there exist R, η > 0,
a positive integer k and a residual set O ⊂ N (k, K1, η) such that we have the following property.
For all δ ∈ O ∩ VR and for all initial conditions (x̂0, ε0, ξ0) ∈ K, system (1) is observable in
time T for the control u = (λ + δ) ◦ x̂, where x̂ follows (4) with initial conditions (x̂0, ε0, ξ0)
and feedback perturbation δ?
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2.2 Main results

In this section, we state the main results of the paper whose proofs are postponed to the
upcoming sections. We first state our main theorem, that deals with the observability of
system (4). Its proof is the most technical part of the paper, and heavily relies on transversality
theory.

Theorem 2.4. Assume that the pairs (C, A) and (C, B) are observable. Assume that 0 /∈
K1. Then there exist η > 0, a positive integer k and a dense open (in the Whitney C∞

topology) subset O ⊂ N (k, K1, η) such that the solution to (4) with δ ∈ O and initial condition
(x̂(0), ε(0), ξ(0), ω(0)) ∈ K × Sn−1 satisfies

∃k0 ∈ {0, . . . , k} :
dk0

dtk0

∣

∣

∣

∣

∣

t=0

Cω(t) 6= 0. (5)

The proof of this theorem can be found in Section 3.2.

Remark 2.5. Property (5) is stronger than observability of (4) in any time T > 0. This
implication is shown in Corollary 3.6. Pay attention to the assumption 0 /∈ K1. In Section 3.3,
this assumption is removed, while only slightly weakening our observability result.

Theorem 2.4 leads to the following corollary which states that under genericity assumptions
on the system, there exists a generic class of perturbations δ such that the feedback λ+δ makes
(4) observable.

Corollary 2.6. Assume that the pairs (C, A) and (C, B) are observable. Assume that 0 is in
the interior of K1. Let T > 0. Then there exist R, η > 0, a positive integer k and a dense open
subset O ⊂ N (k, K1, η) ∩ VR such that the solution to (4) with δ ∈ O and initial condition
(x̂0, ε0, ξ0, ω0) ∈ K × Sn−1 satisfies

∃t ∈ [0, T ] : Cω(t) 6= 0,

that is system (1) is observable in time T for the control u = (λ + δ) ◦ x̂, where x̂ follows (4)
with initial conditions (x̂0, ε0, ξ0) and feedback perturbation δ.

This result also implies a generic observability property directly on the stabilizing state
feedback law λ.

Corollary 2.7. Assume that the pairs (C, A) and (C, B) are observable. Assume that 0 is in
the interior of K1. Denote by Λ the set of feedbacks λ ∈ C∞(Rn,R) such that 0 is a locally
asymptotically stable equilibrium point of the vector field x 7→ Aλ(x)x + bλ(x). Let T > 0 and
ΛT ⊂ Λ be the set of feedbacks λ ∈ Λ such that (1) is observable in time T for the control
u = λ ◦ x̂, where x̂ follows (4) with δ ≡ 0 and initial conditions (x̂0, ε0, ξ0) in K. Then ΛT is
a dense open subset of Λ.

The proof of these two corollaries can be found in Section 3.3.

Remark 2.8. Because VR is not open in the Whitney C∞ topology, the set O defined in
Corollary 2.6 is not open in the Whitney C∞ topology, but it is open in the induced topology
on N (k, K1, η) ∩ VR. Also, the set of matrices (A, B, C) ∈ End(Rn)2 × L(Rn,R) such that
(C, A) and (C, B) are both observable is open and dense. As a consequence, “(C, A) and (C, B)
are observable” is a generic hypothesis. Contrarily to the strategy followed in [14] on some
specific example, the results of this paper do not explicitly design any perturbation δ ∈ O, but
rather state that for almost all bilinear system, almost all perturbation δ ∈ N (k, K1, η) ∩ VR

belongs to O (in a topological sense).
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Finally, the next theorem shows that the classical Luenberger and Kalman observers fit hy-
potheses (FC) and (NFOT). Hence, our results may be applied to these well-known observers.

Theorem 2.9. Assume that (C, A) is observable. Assume that λ is bounded over D(λ). Let
Q ∈ Sn. For all ξ ∈ Sn and all u ∈ R, consider the following well-known observers:

fLuenberger(ξ, u) = 0 (Luenberger observer)

fKalman
Q (ξ, u) = ξA∗

u + Auξ + Q − ξC∗Cξ (Kalman observer)

and L(ξ) = ξC∗. Then the coupled system (4) given by (f, L) satisfies the hypotheses (FC) and
(NFOT) for any f ∈ {fLuenberger, fKalman

Q }.

The proof of this theorem can be found in Section 4.

Remark 2.10. If λ is unbounded over D(λ), then for any open subset U relatively compact
in D(λ), we can obtain by smooth saturation of λ a new bounded feedback law λsat such that
λsat|U = λ|U , for which the previous statement holds. (In particular U ⊂ D(λsat).)

3 Proofs of the observability statements

In order to prove our main Theorem 2.4 and its Corollary 2.6, we need a series of preliminary
results that we state and prove below. The main results will appear as corollaries of these
subsequent lemmas.

Before we start the more technical elements of the paper, let us present the method we
follow in order to prove the main results. Theorem 2.4 is an application of transversality theory
to our particular problem (see [12] for the statements we rely on; see also [1, 11]). Consider a
solution to (4) for a given perturbation δ of the feedback law, and a set of initial conditions in
K × Sn−1. We set h : C∞(Rn,R) × (K × Sn−1) ×R+ → R to be the smooth map given by

h(δ, (x̂0, ε0, ξ0, ω0), t) = Cω(t).

As stated in Section 2, to get observability after perturbation of the feedback, we would like
to show that there exists δ, preferably small, such that

t 7→ h(δ, z0, t) 6= 0, ∀z0 = (x̂0, ε0, ξ0, ω0) ∈ K × Sn−1. (6)

A sufficient condition for δ to satisfy (6) is that for each z0 ∈ K × Sn−1, there exists an integer

k such that dk

dtk

∣

∣

∣

t=0
(h(δ, z0, t)) 6= 0. In other words, our goal will be achieved if we can prove

that there exists δ and a finite set I ⊂ N such that the map H : C∞(Rn,R)×(K×Sn−1) → R|I|

given by

H(δ, z0) =

(

dk

dtk

∣

∣

∣

∣

∣

t=0

h(δ, z0, t)

)

k∈I

,

never vanishes. This is where transversality theory comes into play. Let N denote the dimen-
sion of the surrounding space of K × Sn−1. We can ensure that there exists δ satisfying (6) if
we can prove that for some choice of I, with |I| > N , H is transversal to {0} at δ = 0. That
is to say, if we can prove that the rank of the map H(0, ·) is maximal, equal to |I| > N , at any
of its vanishing points (at which point H(0, ·) is then a submersion).

Now it should be noted that in general, proving that a map is transversal to a point is a
major hurdle, especially if the dimensions n and N of the spaces are unspecified. As a general
rule, considering more orders of derivation of h greatly increases the degrees of freedom of
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the map H (by including higher order derivatives of v, as jet spaces grow exponentially in
dimension), while only slightly increasing the size of the target space. This points towards an
augmentation of the rank of H, making a proof of transversality achievable.

The difficulty lies however in producing a “rank increasing property” on H as |I| increases.
That is, finding a symmetry in the successive derivatives of h that proves that for any dimen-
sion, a set I can be found by differentiating h sufficiently many times.

The symmetry we use to prove the rank condition on the map H can be described as
follows. For k ∈ N, let

hk(δ, z0, t) = CBkω(t).

It turns out that if hk+1(0, z0, ·) has a non-zero derivative of any order (including order 0), then
we automatically get the rank condition for hk(0, z0, ·) (this statement will be made precise in
Corollary 3.3).

Here the hypothesis that (C, B) is an observable pair becomes crucial. Indeed, observe that
hk(0, z0, 0) = CBkω0. Hence, for any ω0 ∈ Sn−1 there exists a k ∈ {0, . . . , n − 1} such that

hk(0, z0, 0) 6= 0.

This in turns induces a partition of K × Sn−1 into n subsets on each of which at least one of
the maps h0, . . . , hn−1 never vanishes. Since hk+1(0, z0, ·) not vanishing implies that the rank
condition is satisfied for hk(0, z0, ·), we chain-apply n successive transversality theorems to
prove the existence of a δ such that h(δ, z0, ·) has always at least one non-zero time derivative
at any point z0 ∈ K × Sn−1.

Section 3.1 is aimed at making explicit the connection between the rank condition and the
family of maps (hk)k∈N. Section 3.2 is dedicated to the effective application of the principles
presented in this introduction, which leads to the proof of Theorem 2.4. Section 3.3 concludes
the proof of the observability statements by taking into account the behavior of the system
near the target 0.

3.1 Preliminary results

Let u ∈ C∞(R+,R) and consider the ordinary differential equation

ω̇ = (A + u(t)B) ω. (7)

For all k, m ∈ N, let F m
k : C∞(R+,R) × Rn → R be the function such that

F m
k (u, ω0) = CBmω(k)(0)

where t 7→ ω(t) is the solution of (7) with initial condition ω0.
Let us introduce the n × n matrix valued polynomials in the indeterminates X0, . . . , Xk−1

by:

End(Rn)[X0, . . . Xk−1] =

{

End(Rn) if k = 0

End(Rn)[X0, . . . Xk−2][Xk−1] otherwise,

and set
End(Rn) [(Xk)k∈N] =

⋃

k∈N

End(Rn)[X0, . . . Xk−1].

Let Ψ : End(Rn) [(Xk)k∈N] → End(Rn) [(Xk)k∈N] be the linear map defined by

Ψ(P )(X0, . . . , Xk) = P (X0, . . . , Xk−1)(A + X0B) +
k−1
∑

i=0

∂P

∂Xi
(X0, . . . , Xk−1) Xi+1,
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where k = min {ℓ ∈ N : P ∈ End(Rn)[X0, . . . Xℓ−1]}.
Finally, let us define the family (Pk)k∈N of matrix valued polynomials such that P0 ∈

End(Rn) and Pk ∈ End(Rn)[X0, . . . Xk−1], for all k > 1, by

P0 = I, Pk+1 = Ψ(Pk), ∀k ∈ N. (8)

It is clear1 that for all m ∈ N,

F m
k (u, ω0) =







CBmω0 if k = 0

CBmPk

(

u(0), u(1), . . . , u(k−1)
)

ω0 otherwise,

where u(i) is shorthand for diu
dti (0) for all i ∈ N. For all k ∈ N and i ∈ N, 1 6 i 6 k, let

Qk
i =

∂Pk

∂Xk−i
.

Lemma 3.1. For all i ∈ N \ {0}, there exist R0
i , . . . , Ri−1

i ∈ End(Rn)[X0, . . . Xi−1] such that 2

Qi+k
i =

i−1
∑

j=0

kjRj
i , ∀k > 0.

Furthermore, Ri−1
i =

BPi−1

(i − 1)!
.

Proof. We prove the first part of the statement by induction on i. For i = 1, one easily checks
that

Q1+k
1 = B, ∀k ∈ N. (9)

Assuming the desired property for i, we have to prove that there exist R0
i+1, . . . , Ri

i+1 ∈
End(Rn)[X0, . . . Xi] such that

Qi+1+k
i+1 =

i
∑

j=0

kjRj
i+1, ∀k > 0.

Using the definition of Qi+1+ℓ
i+1 and the recurrence relation (8) yields

Qi+1+ℓ
i+1 = Ψ(Qi+ℓ

i ) + Qi+ℓ
i+1, ∀ℓ > 1. (10)

1Note that, for k 6= 0, the function F m
k actually acts on (k − 1)-jets at zero of functions and not on functions

themselves. Consequently, the restriction F m
k |Jℓ

0
(R,R)×Rn is well-defined as soon as ℓ > k − 1. Of course, for

k = 0, the restriction F m
0 |

Jℓ

0
(R,R)×Rn makes sense only if ℓ > 0. In summary, the restriction F m

k |
Jℓ

0
(R,R)×Rn is

well-defined as soon as ℓ > k.
2Actually, we can show that R0

i , . . . , Ri−1
i ∈ End(Rn)[X0, . . . Xi−2]
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Consequently, for all k > 0,

Qi+1+k
i+1 =

k
∑

ℓ=1

(

Qi+1+ℓ
i+1 − Qi+ℓ

i+1

)

+ Qi+1
i+1

=
k
∑

ℓ=1

(

Ψ(Qi+ℓ
i )

)

+ Qi+1
i+1 (by (10))

=
k
∑

ℓ=1





i−1
∑

j=0

ℓjΨ(Rj
i )



+ Qi+1
i+1 (by induction hypothesis)

=
i−1
∑

j=0

(

k
∑

ℓ=1

ℓj

)

Ψ(Rj
i ) + Qi+1

i+1

=
i−1
∑

j=0

Sj(k)Ψ(Rj
i ) + Qi+1

i+1, with Sj(k) =
k
∑

ℓ=1

ℓj.

Note that Qi+1
i+1, Ψ(Rj

i ) ∈ End(Rn)[X0, . . . , Xi] for all j ∈ {0, . . . , i − 1} (Qi+1
i+1 = ∂Pi+1/∂X0).

Moreover, according to Faulhaber’s formula, we have

Sj(k) =
kj+1

j + 1
+ T j(k), ∀j, k ∈ N,

where T j(k) is a polynomial in the variable k of degree j with no constant term. Consequently,

Qi+1+k
i+1 =

ki

i
Ψ(Ri−1

i ) +



T i−1(k)Ψ(Ri−1
i ) +

i−2
∑

j=0

Sj(k)Ψ(Rj
i )



+ Qi+1
i+1

= kiRi
i+1 +

i−1
∑

j=1

kjRj
i+1 + R0

i+1

=
i
∑

j=0

kjRj
i+1,

with Ri
i+1 = Ψ(Ri−1

i )/i, R0
i+1 = Qi+1

i+1 and Rj
i+1 ∈ End(Rn)[X0, . . . , Xi] for all j ∈ {0, . . . , i}.

The second part of the statement easily follows by induction. Indeed,

BP0 = Q1
1 =

0
∑

j=0

0jRj
1 = R0

1,

and

Ri
i+1 =

Ψ(Ri−1
i )

i
=

1

i
Ψ

(

1

(i − 1)!
BPi−1

)

=
1

i!
BΨ(Pi−1) =

1

i!
BPi.

The statement follows. �

Corollary 3.2. Let i, m ∈ N, i > 1. Let v ∈ Ri and ω0 ∈ Rn. Either there exists k0 > i such
that CBmQk

i (v)ω0 6= 0 for all k > k0 or CBmQk
i (v)ω0 = 0 for all k > i.

Proof. By Lemma 3.1, we have Qk
i =

∑i−1
j=0(k − i)jRj

i for all integer k > i. If CBmRj
i (v)ω0 = 0

for all j ∈ {0, . . . , i − 1}, then CBmQk
i (v)ω0 = 0 for all k > i. Otherwise, there exists

9



j ∈ {0, . . . , i − 1} such that CBmRj
i (v)ω0 6= 0. Let (k0, . . . ki−1) ∈ Ni with k0 < · · · < ki−1.

We have

CBm









Qi+k0
i (v)

...

Q
i+ki−1

i (v)









ω0 =







1 k0 . . . ki
0

...
...

...
1 ki−1 . . . ki

i−1






CBm









R0
i (v)
...

Ri−1
i (v)









ω0.

Since k0, . . . ki−1 are pairwise different, the Vandermonde matrix is invertible. Consequently,

there exits j ∈ {0, . . . , i − 1} such that CBmQ
i+kj

i (v)ω0 6= 0. Hence, there exists at most

i − 1 positive integers kj such that CBmQ
i+kj

i (v)ω0 = 0. Thus, there exists k0 > i such that
CBmQk

i (v)ω0 6= 0 for all k > k0. �

For all P ∈ End(Rn)[X0, . . . Xk−1] and all v ∈ RN, we set P (v) = P (v0, . . . , vk−1).

Corollary 3.3. Let v ∈ RN, ω0 ∈ Rn and m ∈ N. If there exists i ∈ N \ {0} such that
CBm+1Pi−1(v)ω0 6= 0, then there exists k0 ∈ N such that, for all N ∈ N \ {0}, the mapping 3

ϕ : Jk0+N−1
0 (R,R) = Rk0+N → RN defined by

ϕ(·) = (CBmPk0(·)ω0, . . . , CBmPk0+N−1(·)ω0)

has a rank N differential at (v0, . . . , vk0+N−1).

Proof. Assume that there exists i > 1 such that CBm+1Pi−1(v)ω0 6= 0. Since, according to
Lemma 3.1, Ri−1

i = BPi−1/(i − 1)!, this is equivalent to CBmRi−1
i (v)ω0 6= 0. Thus, reasoning

as in the proof of Corollary 3.2, the sequence
(

CBmQk
i (v)ω0

)

k>i
is not constant equal to zero.

Set
i0 = min

{

i ∈ N \ {0} :
(

CBmQk
i (v)ω0

)

k>i
6≡ 0

}

. (11)

As a consequence of Corollary 3.2, there exists k0 ∈ N such that CBmQk
i0

(v)ω0 6= 0 for all
k > k0, i.e.

∂ (CBmPkω0)

∂Xk−i0

(v0, . . . , vk0+N−1) =
∂ (CBmPkω0)

∂Xk−i0

(v) 6= 0, ∀k > k0,

and (by construction of i0)

∂ (CBmPkω0)

∂Xℓ
(v0, . . . , vk0+N−1) =

∂ (CBmPkω0)

∂Xℓ
(v) = 0, ∀ℓ > k − i0.

In other words,

Dϕ(v0, . . . , vk0+N−1) =







∗ . . . ∗ a0(v) 0 . . . 0
...

. . .
. . .

. . .
...

∗ . . . ∗ aN−1(v) 0 . . . 0






, (12)

with ai(v) = CBmQk0+i
i0

(v)ω0. The statement follows. �

3Note that ϕ(·) = F m
{k0,...,k0+N−1}(·, ω0), with F m

{k0,...,k0+N−1} defined as in Section 3.2
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3.2 Observability away from the target and proof of Theorem 2.4

Using the results of the previous section, we are now able to prove our main Theorem 2.4.
In this section, we assume that 0 /∈ K1. From now on t 7→ (x̂(t), ε(t), ξ(t), ω(t)), or simply
(x̂, ε, ξ, ω), denotes the solution to (4) with initial condition (x̂0, ε0, ξ0, ω0).

Let us introduce some new notation. For any k ∈ N, define the map Gk by:

Gk : Jk(Rn,R) × K2 × K3 −→ Jk
0 (R,R)

(

jkδ(x̂0), ε0, ξ0

)

7−→ jk
(

(λ + δ) ◦ x̂
)

(0).

For any finite subset I ⊂ N and any m ∈ N, set kI = max I and define the maps, F m
I and Hm

I

as follows:
F m

I : JkI
0 (R,R) × Sn−1 −→ R|I|

(v, ω0) 7−→
(

CBmPk(v)ω0
)

k∈I
,

Hm
I = F m

I ◦
(

GkI × ISn−1

)

.

Remark 3.4. Notice that for any m, k0 ∈ N and any N ∈ N \ {0} such that I ⊂ {k0, . . . , k0 +
N − 1}, the map F m

I satisfies

F m
I = πI ◦ F m

{k0,...,k0+N−1},

where πI : Jk0+N−1
0 (R,R) = Rk0+N → R|I| denotes the canonical projection onto the factors

that correspond to indices in I.

Now we state the following proposition, which leads directly to Theorem 2.4.

Proposition 3.5. For all m ∈ {0, . . . , n − 1}, define

Em =

{

Sn−1 if m = 0
{

ω0 ∈ Sn−1 : CBiω0 = 0, ∀i ∈ {0, . . . , m − 1}
}

otherwise.

Suppose (C, A) and (C, B) are observable pairs. Then for every m ∈ {0, . . . , n − 1}, there exist
k ∈ N, a positive real number η and a dense open subset Om ⊂ N (k, K1, η) such that for all
(δ, x̂0, ε0, ξ0, ω0) ∈ Om × K × Em

Hm
{0,...,k}(jkδ(x̂0), ε0, ξ0, ω0) 6= 0.

Proof. The proof strongly relies on the results of Section 3.1 and on the Goresky-MacPherson
transversality theorem (see [12, Part I, Chapter 1]). We prove the proposition by finite de-
scending induction on m. Note that since the pair (C, B) is observable, we have ∅ = En ⊂
En−1 ⊂ · · · ⊂ E1  E0 = Sn−1.

For m = n − 1, the result is immediate because, by observability of the pair (C, B),
CBn−1ω0 6= 0 for all ω0 ∈ En−1. Hence, for k = 0 and any positive real number η, we have for
all (δ, x̂0, ε0, ξ0, ω0) ∈ N (k, K1, η) × K × En−1,

Hn−1
{0} (j0δ(x̂0), ε0, ξ0, ω0) = CBn−1ω0 6= 0.

Now suppose 1 6 m 6 n − 1. Note that, by definition of Em−1 \ Em,

CBm−1ω0 6= 0, ∀ω0 ∈ Em−1 \ Em. (13)
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Assume that we are given a k ∈ N, a positive real number η and a dense open subset
Om ⊂ N (k, K1, η) such that

Hm
{0,...,k}(jkδ(x̂0), ε0, ξ0, ω0) 6= 0, ∀(δ, x̂0, ε0, ξ0, ω0) ∈ Om × K × Em. (14)

Choose (δ, x̂0, ε0, ξ0, ω0) ∈ Om ×K×Em and put u(t) = (λ+δ)
(

x̂(t)
)

. Equation (14) implies

that CBmPi(u
(0), . . . , u(k))ω0 6= 0 for an integer i ∈ {0, . . . , k}, so, by Corollary 3.3 there exists

k0 ∈ N such that, for any positive integer k1, the map F m−1
{k0,...,k0+k1−1} has a rank k1 differential

at (u(0), . . . , u(k0+k1−1)).
Let i0 ∈ N be defined as in the proof of Corollary 3.3. Let p ∈ N\{0} be such that x̂(p) 6= 0

and x̂(q) = 0 for all q < p (which exists by hypothesis (NFOT) and 0 /∈ K1), and choose

ℓ ∈ {1, . . . n} so that x̂
(p)
ℓ 6= 0. Put

j0 = min
{

j > k0 : j − i0 ≡ 0 (mod p)
}

4 and I =
{

j0 + rp : r ∈ {0, . . . , N − 1}
}

,

where N is a positive integer. The (partial) differential of Gm
I with respect to

w =

(

δ,
∂

∂xℓ

δ, . . . ,

(

∂

∂xℓ

)kI

δ

)∣

∣

∣

∣

∣

x=x̂0

at X0 = (jkI δ(x̂0), ε0, ξ0, ω0) is the submatrix DwGm
I (X0) obtained from DGm

I (X0) by deleting
all columns that do not correspond to partial derivatives with respect to w. In other words,

DwGm
I (X0) =

(

col(0) · · · col(kI − 1)
)

.

Each column col(i), i ∈ {0, . . . , kI − 1} of DwGm
I (X0) satisfies

col(i)∗ =
(

0 · · · 0 bi(X0) ∗ · · · ∗
)∗

, bi(X0) 6= 0,

where the non zero coefficient bi(X0) appears at the ip th row. According to Faà di Bruno
formula, we have

bi(X0) = ni

(

x̂
(p)
ℓ

)i
,

ni being a positive integer for each i ∈ {0, . . . , kI − 1}.
It is clear from the definition of F m

I and Remark 3.4 thereafter that DF m
I is the submatrix

of DF m
{k0,...,kI} (see equation (12)) obtained by keeping the i th rows for i ∈ I. Therefore,

rank (DHm
I (X0)) > rank

(

DvF m
I

(

GkI (X0), ω0

)

◦ DwGkI (X0)
)

= rank







∗ · · · ∗ c0(X0) 0 · · · 0
...

. . .
. . .

. . .
...

∗ · · · ∗ cN−1(X0) 0 · · · 0






,

where cr(X0) = aj0+rp

(

GkI (X0), ω0

)

bj0+rp(X0), r ∈ {0, . . . , N − 1}. Hence Hm−1
I has a rank

N differential at X0.

For any k ∈ N, any compact subset K ⊂ Rn and any η > 0, k ∈ N, define

M(k, K, η) =
{

α ∈ Jk(Rn,R) : ∃f ∈ N (k, K, η), ∃a ∈ K, α = jkf(a)
}

.

4Index j0 corresponds to the smallest index j > k0 such that x̂
(p)
ℓ appears in u(j−i0).
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Clearly, M(k, K, η) is an open submanifold of Jk(Rn,R).
Since the rank is a semi-continuous map, there exists a neighborhood V ⊂ M(kI , K1, η) ×

K2 × K3 × Em of (jkI
0 (x̂0), ε0, ξ0, ω0) such that Hm−1

I has a rank N on V . Let ρ ∈ (0, η) and
C(ρ) = C1 × C2 × C3 × Ωm be a semi-algebraic compact subset of K × Em such that

W := M(kI , K1, ρ) × C2 × C3 × Ωm ⊂ V.

Let B =
(

Hm−1
I |W

)−1
(0) and Z = π(B), where π is the projection that is parallel to C2 ×

C3 × Ωm. Then, and because C2 × C3 × Ωm is compact, Z ⊂ M(kI , K1, ρ) is a closed semi-
algebraic subset. Hence, according to the Goresky-McPherson transversality theorem ([12,
Part I, Chapter 1, page 38, Proposition]), the set

Õ(ρ) =
{

f ∈ C∞(Rn, M(kI , K1, ρ)
)

: f |C1 is transversal to Z
}

is open and dense (in the Whitney C∞ topology) in C∞
(

Rn, M(kI , K1, ρ)
)

. Moreover, since
Hm−1

I |W is a submersion, we have codimM(kI ,K1,ρ) Z > codimRN {0} − dim(C(ρ) × Em) =
N − dim(C(ρ) × Em). Picking N sufficiently large, we have

codimM(kI ,K1,ρ) Z > n

in which case, transversal necessarily means to avoid. It follows that

Õ(ρ) =
{

f ∈ C∞(Rn, M(kI , K1, ρ)
)

: ∀x̂ ∈ C1, f(x̂) /∈ Z
}

=
{

f ∈ C∞(Rn, M(kI , K1, ρ)
)

: ∀(x̂, ε, ξ, ω) ∈ C(ρ),
(

f(x̂), ε, ξ, ω
)

/∈ B
}

=
{

f ∈ C∞(Rn, M(kI , K1, ρ)
)

: ∀(x̂, ε, ξ, ω) ∈ C(ρ), Hm−1
I

(

f(x̂), ε, ξ, ω
)

6= 0
}

.

By compactness of K × Em, there exists q ∈ N such that

K × Em =
q
⋃

i=1

C(ρi). (15)

Set η = min{ρi : i = 1, . . . , q} > 0, k = max{kI(ρi) : i = 1, . . . , q} and define Õ =
⋂q

i=1 Õ(ρi). According to (15),

Õ =
{

f ∈ C∞(Rn, M(k, K1, η)
)

: ∀(x̂, ε, ξ, ω) ∈ K × Em,

Hm−1
{0,...,k}

(

f(x̂), ε, ξ, ω
)

6= 0
}

.

Also, by definition of Em−1 and Em, Hm−1
{0} (ω) = CBm−1ω 6= 0 for all ω ∈ Em−1 \ Em. Thus,

Õ =
{

f ∈ C∞(Rn, M(k, K1, η)
)

: ∀(x̂, ε, ξ, ω) ∈ K × Em−1,

Hm−1
{0,...,k}

(

f(x̂), ε, ξ, ω
)

6= 0
}

is an open dense subset of C∞(Rn, M(k, K1, η)). Then Om−1 := {τ ◦ f : f ∈ Õ} where τ is
the target map is an open dense subset of N (k, K1, η) and

Om−1 =
{

δ ∈ N (k, K1, η) : ∀(x̂0, ε0, ξ0, ω0) ∈ K × Em−1,

Hm−1
{0,...,k}(jkδ(x̂0), ε0, ξ0, ω0) 6= 0

}

.

It concludes the induction and the proof. �
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Proof of Theorem 2.4. Applying Proposition 3.5 to m = 0 and recalling the definition of
H0

{0,...,k}, we immediately get the main Theorem 2.4. �

A straightforward consequence of Theorem 2.4 is the following corollary, that deals with
the observability of (1), as announced in Remark 2.5.

Corollary 3.6. Assume that (C, A) and (C, B) are observable pairs. Assume that 0 /∈ K1.
Then there exist η > 0, k ∈ N and an open dense subset O ⊂ N (k, K1, η) such that for all
(δ, x̂0, ε0, ξ0) ∈ O ×K, system (1) is observable in any time T > 0 for the control u = (λ+δ)◦x̂,
where x̂ follows (4) with initial conditions (x̂0, ε0, ξ0) and feedback perturbation δ.

Proof. Applying Proposition 3.5 to m = 0, we find that there exist η > 0, k ∈ N and
an open dense subset O ⊂ N (k, K1, η) such that for all (δ, x̂0, ε0, ξ0, ω0) ∈ O × K × E0,
H0

{0,...,k}(jkδ(x̂0), ε0, ξ0, ω0) 6= 0. Let (δ, x̂0, ε0, ξ0, ω0) ∈ O × K × Sn−1, and let (x̂, ε, ξ, ω) de-

note the solution of (4) with initial conditions (x̂0, ε0, ξ0, ω0). From the definition of H0
{0,...,k}

it follows that there exists i ∈ N such that Cω(i)(0) 6= 0. Consequently, Cω|[0,T ] 6≡ 0, which
was to be proved. �

As stated in Remark 2.5, we now want to complete the compact K1 with a neighborhood
of zero as in Corollary 2.6. We do so in the following section.

3.3 Observability near the target and proof of Corollary 2.6

We use Theorem 2.4 to prove Corollary 2.6. In order to do so, we need the following notations
and lemmas. For any control u ∈ C∞(R+,R), let Φu : R+ → End(Rn) be the flow of the
time-varying linear ordinary differential equation (7). So Φu(t)ω0 is the solution of (7) at time
t ∈ R+ with initial condition ω0 ∈ Rn. Notice for instance that Φ0(t) = eAt. Recall that an
input u ∈ C∞(R+,R) is said to make system (1) observable in time T > 0 if for all ω0 ∈ Sn−1

there exists t ∈ [0, T ] such that CΦu(t)ω0 6= 0.

Lemma 3.7. Let T > 0, η0 = max{|CΦ0(t)ω0| : t ∈ [0, T ], ω0 ∈ Sn−1} and u ∈ C∞(R+,R).
If

∀t ∈ [0, T ], ∀ω0 ∈ Sn−1, |CΦu(t)ω0 − CΦ0(t)ω0| < η0, (16)

then u makes system (1) observable in time T .

Proof. Let t ∈ [0, T ] and ω0 ∈ Sn−1 be such that |CΦ0(t)ω0| = η0. Using (16), we get

|CΦu(t)ω0| > |CΦ0(t)ω0| − |CΦu(t)ω0 − CΦ0(t)ω0| > 0,

which shows that u makes system (1) observable in time T . �

Lemma 3.8. Let T > 0. Let M = sup{‖Φ0(t)‖ : t ∈ [0, T ]}. Let u ∈ C∞(R+,R) and let
uM = sup{|u(t)| : t ∈ [0, T ]}. Then there exists a constant K > 0 such that for all t ∈ [0, T ]
and all ω0 ∈ Sn−1,

|Φu(t)ω0 − Φ0(t)ω0| < MKuM eKuM . (17)

Proof. By the variation of constants formula, for all t ∈ [0, T ] and all ω0 ∈ Sn−1,

Φu(t)ω0 − Φ0(t)ω0 =

∫ t

0
Φ0(t − s)Bu(s)Φu(s)ds ω0.
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Iterating integrals, we get a (formal) series expansion

∫ s0

0
Φ0(s0 − s1)Bu(s)Φu(s)ds1 =

+∞
∑

k=0

Jk (18)

where

Jk =

∫ s0

0
· · ·

∫ sk

0
Ψk(s0, . . . , sk+1)Φ0(sk+1)u(s0)· · · u(sk+1)ds1 · · · dsk+1

with Ψk(s0, . . . , sk+1) = Φ0(s0 − s1)B · · · Φ0(sk − sk+1)B.
Then ‖Ψk(s0, . . . , sk+1)‖ 6 Mk+1‖B‖k+1 and

‖Jk‖ 6 Mk+2‖B‖k+1uk+1
M

∫ s0

0
· · ·

∫ sk

0
ds1 · · · dsk+1 6 Mk+2‖B‖k+1uk+1

M

T k+1

(k + 1)!
.

Thus
+∞
∑

k=0

‖Jk‖ 6

+∞
∑

k=0

Mk+2‖B‖k+1uk+1
M

T k+1

(k + 1)!

6 M2‖B‖uM T
+∞
∑

k=0

Mk‖B‖kuk
M

T k

k!

which proves the convergence of the series expansion (18) and inequality (17) with K =
M‖B‖T. �

Proposition 3.9. Assume that the pair (C, A) is observable. Assume that 0 is in the interior
of K1. Let T > 0. Then there exists R > 0 such that B(0, R) ⊂ K1 and η1 > 0 such that the
following property holds:

Let (x̂, ε, ξ, ω) be the solution of (4) with initial condition (x̂0, ε0, ξ0, ω0) ∈ B(0, R) × Rn ×
S × Sn−1. Let δ ∈ C∞(Rn,R) such that δ(0) = 0 and sup{|δ(x)| : x ∈ K1} < η1. If
x̂(t) ∈ B(0, R) for all t ∈ [0, T ], then the control u : t 7→ (λ + δ)(x̂(t)) makes system (1)
observable in time T .

Proof. Let T > 0 and η0 be as in the statement of Lemma 3.7. The observability of the pair
(C, A) yields η0 > 0. Let η1 > 0 be such that MKη1eKη1 < η0. For all R > 0 and all
δ ∈ C∞(Rn,R) satisfying δ(0) = 0 and sup{|δ(x)| : x ∈ K1} < η1, let uM (R, δ) = sup{|(λ +
δ)(x)| : x ∈ B(0, R)}. Since λ + δ is continuous and λ(0) = δ(0) = 0, uM (·, δ) is a continuous
non decreasing function on R+ such that uM (0, 0) = 0 and uM (R, δ) 6 uM (R, 0) + η1. Then,
we can choose R > 0 such that MK(uM (R, 0) + η1)eK(uM (R,0)+η1) < η0. Since uM (·, 0) is non
decreasing, it is possible to choose R such that B(0, R) ⊂ K1.

Now, fix δ ∈ C∞(Rn,R) satisfying δ(0) = 0 and sup{|δ(x)| : x ∈ K1} < η1. Let (x̂, ε, ξ, ω)
be the solution of (4) with initial condition (x̂0, ε0, ξ0, ω0) ∈ B(0, R) × Rn × S × Sn−1. Then
MKuM (R, δ)eKuM (R,δ) < η0. Hence, from Lemmas 3.7 and 3.8, if x̂(t) ∈ B(0, R) for all
t ∈ [0, T ], then the control u : t 7→ (λ + δ)(x̂(t)) makes system (1) observable in time T . �

Proof of Corollary 2.6. Let R > 0 and η1 be as in Proposition 3.9. Let r ∈ (0, R) and ρ ∈ (0, r).
We apply Corollary 3.6 to the compact K1 \ B(0, r). Since the statement holds for some η
small enough, we assume without loss of generality that η < η1: there exist η ∈ (0, η1),
k ∈ N and an open dense subset O ⊂ N (k, K1 \ B(0, r), η) such that for all (δ, x̂0, ε0, ξ0) ∈
O × (K1 \ B(0, r)) × K2 × K3, system (1) is observable in any time T > 0 for the control
u = (λ+δ)◦ x̂, where x̂ follows (4) with initial conditions (x̂0, ε0, ξ0) and feedback perturbation
δ.
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Let

O
′ =

{

δ̃ ∈ N (k, K1, η) ∩ Vρ : ∃δ ∈ O, ∀x ∈ K1 \ B(0, r), δ̃(x) = δ(x)
}

.

Then O ′ is open and dense in N (k, K1, η) ∩ Vρ (in the Whitney C∞ induced topology) since
O is open and dense in N (k, K1 \ B(0, r), η). Moreover, if δ̃ ∈ O ′, then system (1) is still
observable in any time T > 0 for the control u = (λ + δ̃) ◦ x̂ with initial conditions (x̂0, ε0, ξ0)
in (K1 \ B(0, r)) × K2 × K3.

Let (δ̃, x̂0, ε0, ξ0) ∈ O ′ × K. If x̂0 /∈ B(0, r), then the result holds from above. On the
other hand, assume that x̂0 ∈ B(0, r). If x̂(t) ∈ B(0, R) for all t ∈ [0, T ], then according to
Proposition 3.9, (1) is observable in time T for the control u = (λ + δ̃) ◦ x̂. Otherwise, there
exists t0 ∈ (0, T ) such that x̂(t0) /∈ B(0, r). Apply Corollary 3.6 with the new initial condition
(x̂(t0), ε(t0), ξ(t0)) and with the same perturbation δ̃. Then (1) is observable in time T > t0

for the control u = (λ + δ̃) ◦ x̂. �

Proof of Corollary 2.7. Let T > 0 and λ ∈ Λ. Let R, η, k and O be as in Corollary 2.6. Since
O is dense (in the Whitney C∞ topology) in N (k, K1, η) ∩ VR, for all neighborhood U of
λ ∈ Λ, there exists δ ∈ O such that λ + δ ∈ U ∩ ΛT . Hence, ΛT is a dense subset of Λ.
Moreover,

ΛT =
{

λ ∈ Λ : ∀(x̂0, ε0, ξ0, ω0) ∈ K × Sn−1, ∃t ∈ [0, T ], Cω(t) 6= 0
}

=
⋂

(x̂0,ε0,ξ0,ω0)∈K×Sn−1

h−1
x̂0,ε0,ξ0,ω0

(C∞([0, T ],R) \ {0})

where hx̂0,ε0,ξ0,ω0 : Λ → C∞([0, T ],R) is given by hx̂0,ε0,ξ0,ω0(λ) = Cω|[0,T ] where ω is the
solution of (4) with initial condition (x̂0, ε0, ξ0, ω0) and δ ≡ 0. The map h is continuous, the
set C∞([0, T ],R) \ {0} is open and the set K × Sn−1 is compact. Thus ΛT is open in Λ. �

4 Application to classical observers

In this section, we show that there exist observers such that the key hypotheses (FC) and
(NFOT) are satisfied. In particular, we show that both the Luenberger observer and the
Kalman observer satisfy these hypotheses, as stated in Theorem 2.9. Hence, the main Theo-
rem 2.4 and its Corollary 2.6 apply to these observers. While (FC) has already been studied for
such observers (see e.g. [5, 10]), (NFOT) is more difficult to check, and relies on the fact that
the observer dynamics is somehow compatible with the Kalman observability decomposition.

For the sake of generality, we state the results of this section for an arbitrary output
dimension m (i.e. C ∈ L(Rn,Rm)). Let Sn ⊂ End(Rn) denote the subset of real positive-
definite symmetric endomorphism on Rn.

Regarding hypothesis (FC), the following result is well-known.

Proposition 4.1. Assume that λ is bounded over D(λ). Let Q ∈ Sn. For all ξ ∈ Sn and all
u ∈ R, consider the following well-known observers:

fLuenberger(ξ, u) = 0 (Luenberger observer)

fKalman
Q (ξ, u) = ξA∗

u + Auξ + Q − ξC∗Cξ (Kalman observer)

and L(ξ) = ξC∗. Then the coupled system (4) given by (f, L) satisfies the hypothesis (FC) for
any f ∈ {fLuenberger, fKalman

Q }.
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Let us investigate hypothesis (NFOT). First, we state sufficient conditions for it to hold,
and then show that they are satisfied by both the Kalman and Luenberger observers.

For all A0 ∈ C∞ (R+, End(Rn)) and for all C0 ∈ L(Rn,Rm), let f(·, A0, C0) be a forward
complete time-varying vector field over Sn. Let L : Sn × L(Rn,Rm) → L(Rm,Rn). For all
T ∈ GL(Rn), for all (Ā, C̄) ∈ End(Rn) × L(Rn,Rm) and for all ξ ∈ Sn, let (f̄ , L̄) be defined by

{

f̄(T ξT ∗, T ĀT −1, C̄T −1) = T f(ξ, Ā, C̄)T ∗

L̄(T ξT ∗, C̄T −1) = T L(ξ, C̄).
(19)

For all (Ā, C̄, b̄) ∈ End(Rn) × L(Rn,Rm) × Rn, we consider the following dynamical observer
system



















˙̂x = Āx̂ + b̄ − L̄(ξ, C̄)C̄ε

ε̇ =
(

Ā − L̄(ξ, C̄)C̄
)

ε

ξ̇ = f̄(ξ, Ā, C̄).

(20)

For all k ∈ {1, . . . , n}, let (Ā, C̄) ∈ End(Rn) × L(Rn,Rm) having the following structure:

Ā =

(

A11 0
A21 A22

)

, C̄ =
(

C1 0
)

, (21)

with suitable matrices A11 ∈ End(Rk), A21 ∈ L(Rk,Rn−k), A22 ∈ End(Rn−k) and C1 ∈
L(Rk,Rm). For any solution of (20), set similarly

x̂ =

(

x̂1

x̂2

)

, ε =

(

ε1

ε2

)

, b̄ =

(

b1

b2

)

, ξ =

(

ξ11 ξ12

ξ∗
12 ξ22

)

.

Proposition 4.2. Assume that the pair (C, A) is observable. Assume that for all T ∈ GL(Rn),
for all (f̄ , L̄) as in (19), for all k ∈ {1, . . . , n} and for all (Ā, C̄) ∈ End(Rn) × L(Rn,Rm) as
in (21), the following hypotheses hold.

H1. There exists (f11, L1) such that















˙̂x1 = A11x̂1 + b1 − L1(ξ11, C1)C1ε1

ε̇1 = (A11 − L1(ξ11, C1)C1) ε1

ξ̇11 = f11(ξ11, A11, C1)

(22)

where (f11, L1) is such that

f̄(ξ, Ā, C̄) =

(

f11(ξ11, A11, C1) ∗
∗ ∗

)

, L̄(ξ, C̄) =

(

L1(ξ11, C1)
∗

)

.

H2. If (C1, A11) ∈ L(Rk,Rm) × End(Rk) is an observable pair, then the solutions of (20) are
such that for any initial conditions, L11(ξ11(t), C1)C1ε1(t) → 0 as t → +∞.

H3. For all ξ11 ∈ Sk and all C1 ∈ L(Rk,Rm), ker L1(ξ11, C1) ∩ Im C1 = {0}.

Then the coupled system (4) given by (f(·, Au, C), L(·, C)) satisfies the hypothesis (NFOT).
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Remark 4.3. In the case where T is the identity matrix and k = n, (H1) is clearly satisfied,
(H2) means that the correction term L(ξ, C̄)C̄ε converges to zero for any observable pair
(Ā, C̄), and (H3) means that the correction term is null if and only if C̄ε = 0. We will see
in Theorem 2.9 that these hypotheses are clearly satisfied for the Luenberger and Kalman
observers.

Remark 4.4. Hypothesis (H1) can be seen as a compatibility condition between the observer
dynamics and the Kalman observability decomposition: when Ā is of the standard form (21),
the observer acts autonomously on the upper left matrix block, which will correspond to the
observable part of the system.

This proposition is a consequence of the series of lemmas that follows. Until the end of the
proof of Proposition 4.2, assume that its hypotheses are satisfied. For any µ : Rn → R, Fµ

denotes the vector field over Rn given by Fµ(x) = Aµ(x)x + bµ(x).

Lemma 4.5. For all R > 0, there exists η > 0 such that for all δ ∈ VR satisfying sup{|δ(x)| :
x ∈ K1} < η, 0 is the unique equilibrium point of Fλ+δ lying in K1.

Proof. Let R > 0 and δ ∈ VR. Let x ∈ K1 be such that Fλ+δ(x) = 0. Then,

0 = Fλ+δ(x) = Fλ(x) + δ(x)(Bx + b).

Then |Fλ(x)| = |δ(x)| |Bx + b|. Set C1 = inf{|Fλ(x)| : x ∈ K1\B(0, R)}. Since 0 is not in the
closure of K1\B(0, R), we get by uniqueness of the equilibrium point of Fλ that C1 > 0. Set
also C2 = sup{|Bx + b| : x ∈ K1}. Since K1 is compact, C2 < +∞. Set η = C1

C2
. Assume that

sup{|δ(x)| : x ∈ K1} < η. Then,

Fλ(x) 6 η |Bx + b| 6 C1.

Hence x ∈ B(0, R) by definition of C1. Then δ(x) = 0. Hence Fλ(x) = 0. Thus, x = 0 since 0
is the unique equilibrium point of Fλ. Moreover, by definition of VR, Fλ+δ(0) = 0. �

Lemma 4.6. Assume that the pair (C, A) is observable. Let (u0, x̂0, ε0, ξ0) ∈ R×Rn ×Rn × S.
Let (x̂, ε, ξ) be the solution of (3) given by the initial condition (x̂0, ε0, ξ0) and the constant
input u ≡ u0. If x̂ is constant, then for all t ∈ R+, L(ξ(t), C)Cε(t) = 0.

Proof. Let (u0, x̂0, ε0, ξ0) ∈ R × Rn × Rn × S. Let (x̂, ε, ξ) be the solution of (3) given by
the initial condition (x̂0, ε0, ξ0) and the constant input u ≡ u0. Assume that x̂ is constant,
i.e. x̂ ≡ x̂0. Set A0 = A + u0B and b0 = bu0. Then ˙̂x ≡ 0 yields

A0x̂ + b0 − L(ξ, C)Cε ≡ 0.

Since x̂ is constant, so is L(ξ)Cε. Then, set K = L(ξ, C)Cε. It remains to show that K = 0.
Let k = rank O(C, A0) where O(C, A0) is defined by (2) Since C 6= 0 (since (C, A0) is

observable), k > 1. According to the Kalman observability decomposition, there exists an
invertible endomorphism T ∈ GL(Rn) such that Ā = T A0T −1 and C̄ = CT −1 have the
following structure:

Ā =

(

A11 0
A21 A22

)

, C̄ =
(

C1 0
)

, (23)

with suitable matrices A11 ∈ End
(

Rk
)

, A21 ∈ L
(

Rk,Rn−k
)

, A22 ∈ End
(

Rn−k
)

and C1 ∈
L
(

Rk,Rm
)

. Moreover, the pair (C1, A11) is observable. For the sake of readability, we omit
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the horizontal bars over the submatrices (for instance, A11 is a submatrix of Ā and not of A).
Similarly, set

x̄ = T x =

(

x1

x2

)

, ¯̂x = T x̂ =

(

x̂1

x̂2

)

, ε̄ = T ε =

(

ε1

ε2

)

,

b̄0 = T b0 =

(

b1

b2

)

, K̄ = T K =

(

K1

K2

)

, ξ̄ = T ξT ∗ =

(

ξ11 ξ12

ξ∗
12 ξ22

)

.

Then, according to (19), we have the following observed control system on x̄, and the corre-
sponding observer:











































˙̄x = Āx̄ + b̄0

y = C̄x̄

˙̂̄x = Ā¯̂x + b̄0 − L̄(ξ, C̄)C̄ε̄

˙̄ε =
(

Ā − L̄(ξ, C̄)C̄
)

ε̄

˙̄ξ = f̄(ξ̄, Ā, C̄).

(24)

Then, according to hypothesis (H1), we can write















ξ̇11 = f11(ξ11, A11)

˙̂x1 = A11x̂1 + b1 − L1(ξ11, C1)C1ε1

ε̇1 = (A11 − L1(ξ11, C1)C1) ε1.

(25)

Since the pair (C1, A11) is observable, (H1) and (H2) yield L1(ξ11(t), C1)C1ε1(t) → 0 as t →
+∞. The equality K1 = L1(ξ11(t), C1)C1ε1(t) thus yields K1 = 0. Then, by hypotheses (H1)
and (H3), C̄ε ≡ C1ε1 ≡ 0. Hence K = 0. Finally, we have K = T −1K̄ = 0. �

Lemma 4.7. Let (δ, x̂0, ε0, ξ0) ∈ C∞(Rn,R) × K. Let (x̂, ε, ξ) be the solution of (4) given by
(δ, x̂0, ε0, ξ0). Set u0 = (λ + δ)(x̂0). Let (x̂ω, εω, ξω) be the solution of (3) given by the initial
condition (x̂0, ε0, ξ0) and the constant input u ≡ u0. If x̂(i)(0) = 0 for all i ∈ N \ {0}, then x̂ω

is constant and
(ε(k)

ω (0), ξ(k)
ω (0)) = (ε(k)(0), ξ(k)(0)) (26)

for all k ∈ N.

Proof. Assume that x̂(i)(0) = 0 for all i ∈ N \ {0}. Then, for all i ∈ N \ {0},

A
(i)
(λ+δ)(x̂)(0) = 0. (27)

According to the ODE version of the Cauchy-Kovalevskaya theorem, (x̂ω, εω, ξω) is analytic in
a neighborhood of 0. Hence, it is sufficient to show that

(x̂(k)
ω (0), ε(k)

ω (0), ξ(k)
ω (0)) = (x̂(k)(0), ε(k)(0), ξ(k)(0)) (28)

for all k ∈ N. By definition of (x̂, ε, ξ) and (x̂ω, εω, ξω), we have

(x̂ω(0), εω(0), ξω(0)) = (x̂0, ε0, ξ0) = (x̂(0), ε(0), ξ(0)).
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Let k ∈ N. Assume that for all i ∈ {0, . . . , k}, (28) is satisfied. Then we prove that (28) is also
satisfied for i = k + 1. Using Faà di Bruno’s formula and (27), we get

ξ(k+1)(0) = f
(

ξ, A(λ+δ)(x̂), C
)(k)

(0)

= f
(

ξ, A(λ+δ)(x̂(0)), C
)(k)

(0) (by (27))

= f
(

ξω, A(λ+δ)(x̂(0)), C
)(k)

(0) (by induction hypothesis)

= ξ(k+1)
ω (0).

Likewise, we obtain ε(k+1)(0) = ε
(k+1)
ω (0) and x̂(k+1)(0) = x̂

(k+1)
ω (0). �

Lemma 4.8. Assume that the pair (C, A) is observable. Let (x̂0, ε0, ξ0) ∈ K. Let R > 0, η > 0
as in Lemma 4.5 and δ ∈ VR satisfying sup{|δ(x)| : x ∈ K1} < η. Let (x̂, ε, ξ) be the solution
of (4) given by (δ, x̂0, ε0, ξ0). If for all i ∈ N \ {0}, x̂(i)(0) = 0, then x̂ ≡ ε ≡ 0.

Proof. Assume that for all i ∈ N \ {0}, x̂(i)(0) = 0. Set u0 = (λ + δ)(x̂0). Let (x̂ω, εω, ξω) be
the solution of (4) given by the initial condition (x̂0, ε0, ξ0) and the constant input u ≡ u0.

According to Lemma 4.7, x̂ω ≡ x̂0 and for all k ∈ N, (ε
(k)
ω (0), ξ

(k)
ω (0)) = (ε(k)(0), ξ(k)(0)). Then,

by Lemma 4.6, we get that L(ξω, C)Cεω ≡ 0. Hence, Au0 x̂ω + bu0 ≡ 0 i.e. A(λ+δ)(x̂0)x̂ω(t) +
b(λ+ δ)(x̂0) = 0 for all t ∈ R+. In particular, at t = 0 we have that Fλ+δ(x̂0) = 0. Hence, from
Lemma 4.5, x̂0 = 0. By uniqueness of the solution of (4) for a given initial condition, it remains
to prove that ε0 = 0 in order to get that x̂ ≡ ε ≡ 0. Since the pair (C, A) is observable, it is
sufficient to prove that CAkε0 = 0 for all k ∈ N. We proceed by induction. From Lemma 4.6,
L(ξω(0), C)Cεω(0) = 0. Then, according to hypothesis (H3), Cε0 = Cεω(0) = 0. Let k ∈ N.
Assume that CAiε0 = 0 for all i ∈ {0, . . . , k − 1}. We prove in the following that CAkε0 = 0.
From Lemma 4.6, (L(ξω, C)Cεω)(i)(0) = 0 for all i ∈ N. Hence, by Lemma 4.7, we get for all
i ∈ N, (L(ξ, C)Cε)(i)(0) = (L(ξω, C)Cεω)(i)(0) = 0 and then Cε(i)(0) = CAi

u0
ε0 = CAiε0 since

u0 = (λ + δ)(x̂0) = (λ + δ)(0) = 0. Then,

0 = (L(ξω, C)Cεω)(k)(0) (by Lemma 4.6)

= (L(ξ, C)Cε)(k)(0) (by Lemma 4.7)

=
k
∑

i=0

(

k

i

)

L(ξ, C)(k−i)(0)Cε(i)(0) (by Leibniz rule)

=
k
∑

i=0

(

k

i

)

L(ξ, C)(k−i)(0)CAiε0

= L(ξ0, C)CAkε0. (by induction hypothesis)

Thus, by hypothesis (H3), CAkε0 = 0, which concludes the induction and the proof. �

This concludes the series of lemmas necessary to prove Proposition 4.2 and Theorem 2.9.

Proof of Proposition 4.2. The statement follows directly from the contrapositive of Lemma 4.8.
�

Proof of Theorem 2.9. Recall that, according to Proposition 4.1, the Luenberger observer and
the Kalman observer satisfy (FC). It remains to show that the sufficient conditions stated in
the Proposition 4.2 are satisfied by these observers to conclude the proof of Theorem 2.9.
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Let Q ∈ Sn. For all (Ā, C̄) ∈ End(Rn) × L(Rn,Rm) and all ξ ∈ Sn, let

fLuenberger(ξ, Ā, C̄) = 0 (Luenberger observer)

fKalman
Q (ξ, Ā, C̄) = ξĀ∗ + Āξ + Q − ξC̄∗C̄ξ (Kalman observer)

and L(ξ, C) = ξC̄∗. Let f ∈ {fLuenberger, fKalman
Q }. According to Proposition 4.1, the time-

varying vector field f is forward complete. For all T ∈ GL(Rn), for all (Ā, C̄) ∈ End(Rn) ×
L(Rn,Rm) and for all ξ ∈ Sn, let (f̄ , L̄) be defined by

{

f̄(T ξT ∗, T ĀT −1, C̄T −1) = T f(ξ, Ā, C̄)T ∗

L̄(T ξT ∗, C̄T −1) = T L(ξ, C̄).
(29)

Then

L̄(T ξT ∗, C̄T −1) = T L(ξ, C̄) = T ξC̄∗ = T ξT ∗(C̄T −1)∗ = L(T ξT ∗, C̄T −1).

Hence L̄ = L. Moreover, if f = fLuenberger, then f̄ = f = 0. Otherwise, if f = fKalman
Q and

then

f̄(T ξT ∗, T ĀT −1, C̄T −1) = T f(ξ, Ā, C̄)T ∗

= T ξĀ∗ + Āξ + Q − ξC̄∗C̄ξT ∗

= T ξT ∗(T ĀT −1)∗ + (T ĀT −1)T ξT ∗

+ T QT ∗ − T ξT ∗(C̄T −1)∗C̄T −1T ξT ∗

= fKalman
T QT ∗ (T ξT ∗, T ĀT −1, C̄T −1),

Hence it is sufficient to prove that, for all (Ā, C̄) ∈ End(Rn)×L(Rn,Rm) satisfying (21), (f, L)
satisfies hypotheses (H1), (H2) and (H3). Hypothesis (H1) requires some computations to
check that if (Ā, C̄) is of the form (21), then (22) is satisfied with

f11(ξ11, Ā11, C̄1) =

{

0 if f = fLuenberger

ξ11Ā∗
11 + Ā11ξ11 + Q11 − ξ11C̄∗

1 C̄1ξ11 if f = fKalman
Q

(30)

and L1(ξ11, C̄1) = ξ11C̄∗
1 . Hence, for any f ∈ {fLuenberger, fKalman

Q }, f11 is an observer of the

same form than f acting on Rk. Hypothesis (H2) follows from the fact that these well-known
observers guaranty that the correction term L1(ξ11, C̄1)C̄1ε1 goes to 0 as soon as the pair
(C̄1, Ā11) is observable (see e.g. [5, Chapter 1, Theorems 3 and 4]). Hypothesis (H3) is clear:
for all ξ11 ∈ Sk and all C̄1 ∈ L(Rk,Rm), if ε1 ∈ Rk is such that ξ11C̄∗

1 C̄1ε1 = 0, then C̄1ε1 = 0
since ξ11 is invertible. Thus the conclusion of Proposition 4.2 holds. �

Acknowledgments

The authors would like to thank Vincent Andrieu and Daniele Astolfi for many fruitful discus-
sions. They would also like to thank the anonymous reviewer, for suggesting the addition of
Corollary 2.7 to the paper.

21



References

[1] R. Abraham and J. Robbin. Transversal mappings and flows. An appendix by Al Kelley.
W. A. Benjamin, Inc., New York-Amsterdam, 1967.

[2] V. Andrieu and L. Praly. A unifying point of view on output feedback designs for global
asymptotic stabilization. Automatica J. IFAC, 45(8):1789–1798, 2009.

[3] A. N. Atassi and H. K. Khalil. A separation principle for the stabilization of a class of
nonlinear systems. IEEE Trans. Automat. Control, 44(9):1672–1687, 1999.

[4] P. Bernard, L. Praly, V. Andrieu, and H. Hammouri. On the triangular canonical form
for uniformly observable controlled systems. Automatica J. IFAC, 85:293–300, 2017.

[5] G. Besançon. Nonlinear Observers and Applications. Lecture Notes in Control and Infor-
mation Sciences. Springer Berlin Heidelberg, 2007.

[6] J.-M. Coron. On the stabilization of controllable and observable systems by an output
feedback law. Math. Control Signals Systems, 7(3):187–216, 1994.

[7] F. Esfandiari and H. K. Khalil. Output feedback stabilization of fully linearizable systems.
Internat. J. Control, 56(5):1007–1037, 1992.

[8] M. Fliess and I. Kupka. A finiteness criterion for nonlinear input–output differential
systems. Siam Journal on Control and Optimization, 21, 09 1983.

[9] J.-P. Gauthier and I. Kupka. A separation principle for bilinear systems with dissipative
drift. IEEE Trans. Automat. Control, 37(12):1970–1974, 1992.

[10] J.-P. Gauthier and I. Kupka. Deterministic observation theory and applications. Cam-
bridge University Press, Cambridge, 2001.

[11] M. Golubitsky and V. Guillemin. Stable Mappings and Their Singularities. Graduate
texts in mathematics. Springer, 1974.

[12] M. Goresky and R. MacPherson. Stratified Morse theory, volume 14 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1988.

[13] H. K. Khalil and F. Esfandiari. Semiglobal stabilization of a class of nonlinear systems
using output feedback. IEEE Transactions on Automatic Control, 38(9):1412–1415, Sep.
1993.

[14] M. Lagache, U. Serres, and J. Gauthier. Exact output stabilization at unobservable points:
Analysis via an example. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 6744–6749, Dec 2017.

[15] L. Marconi, L. Praly, and A. Isidori. Output stabilization via nonlinear Luenberger ob-
servers. SIAM J. Control Optim., 45(6):2277–2298, 2007.

[16] H. Shim and A. Teel. Asymptotic controllability and observability imply semiglobal prac-
tical asymptotic stabilizability by sampled-data output feedback. Automatica, 39(3):441
– 454, 2003.

22



[17] A. Teel and L. Praly. Global stabilizability and observability imply semi-global stabiliz-
ability by output feedback. Systems Control Lett., 22(5):313–325, 1994.

[18] A. Teel and L. Praly. Tools for semiglobal stabilization by partial state and output
feedback. SIAM J. Control Optim., 33(5):1443–1488, 1995.

[19] M. Tucsnak and G. Weiss. Observation and Control for Operator Semigroups. Birkhäuser
Advanced Texts / Basler Lehrbücher. Birkhäuser Verlag, 2009.

23


	Introduction
	Statement of the results
	Problem statement
	Main results

	Proofs of the observability statements
	Preliminary results
	Observability away from the target and proof of Theorem 2.4
	Observability near the target and proof of Corollary 2.6

	Application to classical observers

